(整理)高等数学课程描述
高等数学的课程简介

高等数学的课程简介高等数学是现代工科、理科等专业中必修的一门课程,主要是为了帮助大家系统的掌握数学基础知识,让同学们可以逐步深入理解数学原理,成为高水平的科技人才。
下面将为大家简单介绍一下高等数学的课程。
第一步:基础知识阶段在高等数学的学习过程中,最重要的一步是夯实数学基础。
这一环节主要注重于对数学概念的讲解和理解,从初中、高中的数学知识开始进行复习,如函数、极限、微积分、矩阵等。
这个阶段建立了对数学基础的清晰、整体的认识,为后续的学习奠定了稳固的基础。
第二步:微积分学微积分是数学基础知识的基础,是高等数学的重要部分。
在微积分学阶段,我们将学习微积分概念、函数的微分和积分、微积分定理等内容,这些内容构成了微积分学的主要内容。
在学习中,我们需要通过反复的习题、真题练习来加深自己对微积分的理解。
第三步:线性代数学线性代数学是数学的一门分支领域,主要讨论向量空间及其变换的代数性质。
它被广泛应用于物理、经济学、统计学等学科领域,是很多领域研究的基础。
在线性代数学阶段,我们将学习矩阵、向量、行列式等基础知识,同时学习线性方程组的求解、特征值、特征向量等高端内容。
第四步:常微分方程常微分方程是高等数学中的重要内容。
它是分析幅员内的相互关系和其他物理规律的数学方法之一。
在常微分方程学阶段,我们将学习微分方程基础知识和解微分方程的方法,涉及欧拉、拉普拉斯等知名数学家的成果,非常有趣而且实用。
总之,高等数学的课程内容十分丰富,需要学生经过逐步的深入学习,才能真正理解数学的内涵,了解数学的应用。
只有通过经年累月的学习,同学们才能掌握一门高水平的科技技艺,成为优秀的工程师、科学家、研究员等科技人才。
高等数学的教学大纲(最新完整版)

高等数学的教学大纲(最新完整版)高等数学的教学大纲高等数学是大学本科公共基础课程,内容主要包括极限与连续、微积分、线性代数、概率论和数理统计等方面。
具体的教学大纲可能会因学校、地区或教师而有所不同,以下是一般高等数学的大致内容:1.极限与连续:包括极限的定义、性质和计算,以及连续的概念和应用。
2.导数与微分:包括导数的定义、性质和计算,以及微分的概念和应用。
3.积分学:包括不定积分、定积分的定义、性质和计算,以及积分的应用。
4.线性代数:包括行列式、矩阵、向量空间、线性方程组等概念和应用。
5.概率论:包括概率、条件概率、随机变量、期望和方差等概念和应用。
6.数理统计:包括基本概念、参数估计、假设检验、回归分析等应用。
除了以上内容,高等数学的教学大纲还包括数学建模、数学软件应用等方面的内容,以培养学生的数学思维和应用能力。
教育部大学数学教学大纲教育部大学数学教学大纲是指教育部制定的大学数学课程的教学大纲,包括高等数学、线性代数、概率论与数理统计等。
这些大纲规定了大学数学课程的教学内容、教学要求、教学时数等方面的内容,是大学数学教师进行教学的重要依据。
教育部大学数学教学大纲的内容包括:高等数学:一、函数与极限;二、导数与微分;三、导数的应用;四、不定积分;五、定积分;六、定积分的应用;七、微分方程;八、向量代数与空间解析几何;九、多元函数微分学;十、重积分;十一、曲线积分与曲面积分;十二、无穷级数。
线性代数:一、行列式;二、矩阵;三、向量;四、线性方程组;五、矩阵的特征值和特征向量;六、二次型。
概率论与数理统计:一、概率论的基本概念;二、随机变量及其分布;三、多维随机变量及其分布;四、随机变量的数字特征;五、大数定律和中心极限定理;六、样本及抽样分布;七、参数估计;八、假设检验。
高等数学实验教学大纲高等数学实验教学大纲是指为了更好地指导学生进行实验,所编写的指导性文件。
以下是部分高等数学实验的教学大纲:1.极限与连续__极限的定义与计算__极限存在性定理__无穷小与无穷大的性质__连续函数的定义与性质__极限与连续的应用2.导数与微分__导数的定义与计算__导数的应用__微分的定义与计算__微分的应用3.积分学__不定积分与定积分的定义与计算__积分的应用__微积分基本定理__积分学的学习方法4.微分方程__微分方程的定义与计算__微分方程的应用__常微分方程的解法__微分方程的学习方法5.向量代数与空间解析几何__向量代数的基础知识__向量代数在几何中的应用__空间解析几何的基础知识__空间解析几何在几何中的应用6.多重积分与曲线积分__多重积分的基础知识__多重积分的计算与应用__曲线积分的基础知识__曲线积分的计算与应用高等数学教学大纲撰写意见根据《大学数学教学基本要求》,结合《高等数学》课程特点,对教学大纲的撰写提出以下意见:1.课程概述:简要介绍高等数学的基本内容、课程目标、学习方法等,突出高等数学在自然科学、工程技术和经济生活中的重要地位,强调数学素质的培养对学生全面发展的重要性。
(完整版)高等数学课程描述.doc

《高等数学》课程描述高等数学是工科类职业教育中的一门必修的重要基础课,为学习后继课程( 如:工程数学等 ) 和进一步获得数学知识奠定必要的数学基础。
通过教学,一方面使学生掌握微积分、常微分方程等基本知识,能熟练地运用其分析计算方法处理一些实际问题;另一方面通过各个教学环节,培养学生的抽象概括能力、逻辑思维能力、运算能力、自学能力及综合运用所学知识分析问题与解决问题的能力。
鉴于工科类职业技术教育的特点,教学中应以分析和运算方法的掌握为重点,并注重与各专业的实际应用结合起来,同时对基本理论应择重有所了解。
使学生具备专业要求的数学基础,又便于提高进一步学习数学知识及应用数学知识解决实际问题的能力一、教学内容本课程要求学生通过学习获得:1) 一元函数微积分学;2) 向量代数和空间解析几何;3) 多元函数微积分学;4) 无穷级数; 5) 常微分方程等方面的基本概念、基本理论和比较熟练的运算能力以及综合运用所学知识去分析问题和解决实际问题的能力。
本课程具有抽象性与科学性、较强的逻辑性及应用的广泛性的特点。
第一章:函数、极限与连续函数主要内容:1.函数的概念( 定义、表示法) ,函数的几种特性,反函数,复合函数,初等函数。
2.数列极限的概念,函数极限的概念 (x → xo 与 x→∞时函数的极限 ) ,函数极限与无穷小的关系,无穷小性质,极限四则运算法则,两个极限存在准则:夹逼准则和单调有界准则,两个重要极限的结果: lim sin x =1,lim(1 1 )x=e,无穷小量的比较。
x 0 x x x3.连续函数的概念,函数的间断点,连续函数的四则运算,初等函数的连续性,闭区间上连续函数的性质( 叙述 ) 。
教学时数12 课时第二章:导数与微分主要内容:1.导数的概念( 定义、几何意义、几何应用) ,函数可导性与连续性之间的关系,函数的和、差、积、商的导数,复合函数与反函数的导数,基本初等函数的导数公式,初等函数的求导问题,高阶导数,隐函数求导法, 对数求导法。
高等数学一课程描述

第三部分:课程描述高等数学(一)1. 课程代码: 000202. 课程名称:高等数学(一)3. 课程类别:公共必修课4. 教学时数:周学时: 4 总学时: 1365. 学分: 66. 教学目标与要求:《高等数学(一)微积分》是经济管理类各专业高等专科自学考试计划中的一门重要的基础理论课程,是为培养各种与经济管理有关的人才而设置的。
在当今科技飞速发展,特别是计算机科学及其应用日新月异的时代,数学科学已渗透到各个科技领域(包括经济科学和管理学),学习任何一门科学或经济管理专业都要用到许多数学知识,而其中最基本的则是微积分学。
学习本课程不仅为学习自学考试计划中多门后继课程提供必要的数学基础,而且也是提高自身科学素养的一个重要组成部分。
本课程的重点是一元函数的导数和积分概念、计算及其应用。
各章节教学目标具体如下:函数及其图形:理解一元函数的定义及函数与图形之间的关系;了解函数的几种常用表现法;理解函数的几种基本特性;理解函数的反函数及它们的图形之间的关系;掌握函数的复合与分解;熟练掌握基本初等函数及其图形的性态;知道什么是初等函数;知道几种常见的经济函数;能从比较简单的实际问题建立其中蕴含的函数关系。
极限和连续:理解极限和无穷小量的概念以及它们之间的关系;掌握无穷小量的基本性质和极限的运算法则;清楚无穷大量的概念及其与无穷小量的关系;熟练掌握两个重要极限;理解无穷小量的阶的比较和高阶无穷小量的概念;理解函数的连续性和间断点;知道初等函数的连续性;清楚闭区间上连续函数的基本性质。
一元函数的导数和微分:理解导数和微分的定义,清楚它们之间的关系;知道导数的几何意义和实际意义;知道平面曲线的切线方程的求法;理解函数可导与连续之间的关系;熟练掌握函数求导的各种法则,特别是复合函数的求导法则;熟记基本初等函数的求导公式;会求函数的高阶导数;掌握微分的基本公式和运算法则;理解函数的边际函数和弹性函数及其意义。
微分中值定理和导数的应用:能准确陈述微分中值定理;熟练掌握洛必达法则;会用导数的符号判定函数的单调性;理解函数的极值概念并掌握其求法;清楚函数的最值及其求法并能解决简单的应用问题;了解曲线的凹凸性和拐点的概念,会用函数的二阶导数判定曲线的凹凸性和计算拐点的坐标;会求曲线的水平和铅直渐近线。
《高等数学》课程标准

《高等数学》课程标准第一部分课程概述一、课程性质和作用高等数学是高职高专各专业重要的基础课程,其教学内容与后继专业课教学内容有着紧密的联系,它影响到学生后继专业课程的学习,影响到学生专业素质的提高。
它具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。
通过本课程的教学,首先让学生掌握高等数学的基本理论、技巧和思想方法,为后设专业课程提供必要的数学基础知识和科学的思想方法。
其次,逐步培养了学生具有一定的抽象概括问题能力,一定的逻辑推理能力,比较熟练的运算能力,综合分析并解决实际问题的能力等。
最后还充分调动学生已有的数学知识为专业目标服务,培养学生运用数学知识分析处理实际专业问题的数学应用能力和综合素质,以满足后继专业课程对数学知识需要,培养出能够满足工作需要的,具有良好综合素质的应用型人才。
二、课程基本理念高等数学作为高职高专各专业公共基础课,在课程设计中,我们对照教育部最新制定的《高职高专教育高等数学课程教学基本要求》,致力于实现高职高专院校的培养目标,着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程内容不仅反映出专业的需要、数学学科的特征,同时符合学生的认知规律;不仅包括数学的结论,而且包括数学结论的形成过程和数学思想方法。
同时,课程设计努力满足学生对未来的学习、工作和生活的需要,使学生通过本课程的学习,在抽象思维、推理能力、应用意识、情感、态度与价值观等诸多方面均有大的发展。
三、课程标准设计思路及依据(一)教学内容《标准》安排了《一元函数微积分》的基本内容。
课程内容的学习,强调学生的数学学习活动,发展学生的应用意识。
(二)目标根据教育部制定的《高职高专教育高等数学课程基本要求》和《高职高专教育人才培养目标及规格》,《标准》明确了高等数学课程的总目标,其子目标从知识、能力、情感等三个方面作出了进一步阐述。
(三)实施建议《标准》针对教学、评价、教材编写、教案编写、课程资源的利用与开发提出了建议,以保证《标准》的顺利实施。
《高等数学》课程标准(经典实用模板)

《高等数学》课程标准一、课程简介高等数学课程是我校通识教育中心数学教研室承担的一门重要的公共基础必修课程,总学时54,开设时间是大专一年级第一学期。
数学强则国强,数学在自然科学、工程技术、生命科学、社会科学、经济管理等诸多领域都有着十分广泛的应用。
数学强则学生未来的职业能力强,它不仅是学生学习专业课必备的工具,而且对学生的可持续发展,甚至是一个人的人生都起着举足轻重的作用,数学的思想、数学的逻辑推理方法、处理问题的技巧,让学生不仅获得必需的微积分知识,更学会应用数学的方法综合分析问题并解决问题,树立辩证唯物主义的思想观点。
二、课程定位本课程是支撑计算机类专业相关课程的一门重要公共基础课程,同时也是培养学生自主学习和可持续发展能力的基本保障,是实施素质教育和培养全面发展人才的重要途径。
该课程凸显基础性地位与工具性作用,强化数学课程与计算机专业的融合,提高学生的数学应用能力以及分析问题和解决问题的能力,为后续专业课程的学习打好基础,同时提高学生的数学素养,培育做事情精益求精、考虑问题缜密、条理清晰的优秀品质.三、课程设计思路高等数学课程要与专业深度融合,依据各专业的人才培养目标,设计教学内容、改革教学方法,突出课程育人优势,通过学习使学生获得专业必须的数学知识,以及基本的数学思想方法和数学运算能力,使学生学会用数学的思维去解决生活、学习和工作中遇到的实际问题,从而进一步增强对数学的认识和兴趣,培养学生团队合作、勇于创新的数学精神,课程设计思路如下:(1)加强数学素养的培育(2)依托专业,设计教学内容(3)信息化进课堂,改革数学教学模式,提高教学质量(4)重视过程考核,改革高等数学课程评价体系四、课程教学目标通过对本课程中的数学基本知识和基本思想方法的学习和训练,培养学生的逻辑思维能力,数学运算能力,语言表达能力,空间想象能力,抽象和辩证思维能力,分析问题和解决问题的能力,数学建模能力和学生的数学素养及应用与实践能力,为学生进一步学习和发展提供坚实的知识和能力基础,从而实现人才的可持续发展。
出国留学-课程描述样本(大一)
大一学年各课程的课程描述数学分析(一):通过本课程的教学,使学生深刻认识极限的思想和方法,正确理解微积分学的基本概念和定理,系统掌握分析学中的论证方法,获得熟练的演算技能和分析理论应用能力,也可以使学生在更高层次上更加深入地理解中学数学的实质。
为进一步学习后续课程打下扎实的基础。
数学分析(1)包括:函数的概念及其性质、确界原理、数列极限与函数极限、连续函数与导数、微分中值定理及其应用、实数集完备性的基本定理。
Through this course, students will deeply understand the ideas and methods of limits, correctly understand the basic concepts and theorems of calculus, master the argumentation of analytics. Students will obtain calculus skills and application ability, they can also get in-depth understanding of mathematics, which lay a solid foundation for further studies.Mathematical analysis (1): the concept and nature of the function, supremum principle, limit and the functional limit, continuous function and derivative, Mean Value Theorem and its applications, the fundamental theorem of real numbers completeness.本课程是数学类各专业以及力学各专业的一门重要基础课,基本内容包括极限论、微分学、积分学、级数理论,在教学上可分为一元微积分学、多元微积分学、高等分析三部分。
(完整版)高等数学课程描述.doc
(完整版)⾼等数学课程描述.doc《⾼等数学》课程描述⾼等数学是⼯科类职业教育中的⼀门必修的重要基础课,为学习后继课程( 如:⼯程数学等 ) 和进⼀步获得数学知识奠定必要的数学基础。
通过教学,⼀⽅⾯使学⽣掌握微积分、常微分⽅程等基本知识,能熟练地运⽤其分析计算⽅法处理⼀些实际问题;另⼀⽅⾯通过各个教学环节,培养学⽣的抽象概括能⼒、逻辑思维能⼒、运算能⼒、⾃学能⼒及综合运⽤所学知识分析问题与解决问题的能⼒。
鉴于⼯科类职业技术教育的特点,教学中应以分析和运算⽅法的掌握为重点,并注重与各专业的实际应⽤结合起来,同时对基本理论应择重有所了解。
使学⽣具备专业要求的数学基础,⼜便于提⾼进⼀步学习数学知识及应⽤数学知识解决实际问题的能⼒⼀、教学内容本课程要求学⽣通过学习获得:1) ⼀元函数微积分学;2) 向量代数和空间解析⼏何;3) 多元函数微积分学;4) ⽆穷级数; 5) 常微分⽅程等⽅⾯的基本概念、基本理论和⽐较熟练的运算能⼒以及综合运⽤所学知识去分析问题和解决实际问题的能⼒。
本课程具有抽象性与科学性、较强的逻辑性及应⽤的⼴泛性的特点。
第⼀章:函数、极限与连续函数主要内容:1.函数的概念( 定义、表⽰法) ,函数的⼏种特性,反函数,复合函数,初等函数。
2.数列极限的概念,函数极限的概念 (x → xo 与 x→∞时函数的极限 ) ,函数极限与⽆穷⼩的关系,⽆穷⼩性质,极限四则运算法则,两个极限存在准则:夹逼准则和单调有界准则,两个重要极限的结果: lim sin x =1,lim(1 1 )x=e,⽆穷⼩量的⽐较。
x 0 x x x3.连续函数的概念,函数的间断点,连续函数的四则运算,初等函数的连续性,闭区间上连续函数的性质( 叙述 ) 。
教学时数12 课时第⼆章:导数与微分主要内容:1.导数的概念( 定义、⼏何意义、⼏何应⽤) ,函数可导性与连续性之间的关系,函数的和、差、积、商的导数,复合函数与反函数的导数,基本初等函数的导数公式,初等函数的求导问题,⾼阶导数,隐函数求导法, 对数求导法。
《高等数学》课程标准
《高等数学》课程标准第一部分课程概述一、课程性质和作用高等数学是高职高专各专业重要的基础课程,其教学内容与后继专业课教学内容有着紧密的联系,它影响到学生后继专业课程的学习,影响到学生专业素质的提高。
它具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。
通过本课程的教学,首先让学生掌握高等数学的基本理论、技巧和思想方法,为后设专业课程提供必要的数学基础知识和科学的思想方法。
其次,逐步培养了学生具有一定的抽象概括问题能力,一定的逻辑推理能力,比较熟练的运算能力,综合分析并解决实际问题的能力等。
最后还充分调动学生已有的数学知识为专业目标服务,培养学生运用数学知识分析处理实际专业问题的数学应用能力和综合素质,以满足后继专业课程对数学知识需要,培养出能够满足工作需要的,具有良好综合素质的应用型人才。
二、课程基本理念高等数学作为高职高专各专业公共基础课,在课程设计中,我们对照教育部最新制定的《高职高专教育高等数学课程教学基本要求》,致力于实现高职高专院校的培养目标,着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程内容不仅反映出专业的需要、数学学科的特征,同时符合学生的认知规律;不仅包括数学的结论,而且包括数学结论的形成过程和数学思想方法。
同时,课程设计努力满足学生对未来的学习、工作和生活的需要,使学生通过本课程的学习,在抽象思维、推理能力、应用意识、情感、态度与价值观等诸多方面均有大的发展。
三、课程标准设计思路及依据(一)教学内容《标准》安排了《一元函数微积分》的基本内容。
课程内容的学习,强调学生的数学学习活动,发展学生的应用意识。
(二)目标根据教育部制定的《高职高专教育高等数学课程基本要求》和《高职高专教育人才培养目标及规格》,《标准》明确了高等数学课程的总目标,其子目标从知识、能力、情感等三个方面作出了进一步阐述。
(三)实施建议《标准》针对教学、评价、教材编写、教案编写、课程资源的利用与开发提出了建议,以保证《标准》的顺利实施。
《高等数学》课程标准
《高等数学》课程标准《高等数学》是许多学科的基础课程,特别是在数学、物理、工程学、经济学等学科中有着广泛的应用。
这门课程不仅提供了这些学科所需的基本数学工具,而且还锻炼了学生的逻辑思维和问题解决能力。
以下是对《高等数学》课程标准的详细描述。
一、课程目标《高等数学》旨在为学生提供深入理解数学基本概念、原理和方法的工具。
通过本课程的学习,学生应能:1.理解并掌握高等数学的基本概念、原理和算法,包括但不限于微积分、线性代数、概率论和数理统计等。
2.培养学生运用数学工具解决实际问题的能力,包括数据分析、建模、优化和概率决策等。
3.培养学生的逻辑推理和抽象思维能力,包括对问题的表述、分解、推导和总结等。
4.通过团队协作和讨论,提高学生的沟通技巧和批判性思维。
二、课程内容《高等数学》主要包括以下四个部分:1.微积分:包括极限、导数、微分、不定积分、定积分和微分方程等。
2.线性代数:包括行列式、矩阵、向量空间、线性变换和特征值等。
3.概率论:包括随机变量、概率分布、期望、方差、协方差和相关系数等。
4.数理统计:包括抽样分布、参数估计、假设检验和方差分析等。
三、课程安排《高等数学》课程应按照以下时间表进行安排:1.第一学期:微积分(1-16周),每周4小时,共64课时;2.第二学期:线性代数(17-32周),每周4小时,共64课时;3.第三学期:概率论(33-48周),每周4小时,共64课时;4.第四学期:数理统计(49-64周),每周4小时,共64课时。
四、教学方法本课程的教学方法应注重实践性和互动性。
具体方法包括:1.课堂讲解:由教师主导,详细讲解课程内容,突出重点和难点。
2.实例分析:通过分析具体的数学实例,让学生理解和掌握数学原理的应用。
3.学生自主学习:鼓励学生通过自主学习,完成作业和阅读指定参考书籍,以培养学生的独立思考能力和解决问题的能力。
4.小组讨论:鼓励学生分组讨论,提高学生之间的合作与交流能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》课程描述
高等数学是工科类职业教育中的一门必修的重要基础课,为学习后继课程(如:工程数学等)和进一步获得数学知识奠定必要的数学基础。
通过教学,一方面使学生掌握微积分、常微分方程等基本知识,能熟练地运用其分析计算方法处理一些实际问题;另一方面通过各个教学环节,培养学生的抽象概括能力、逻辑思维能力、运算能力、自学能力及综合运用所学知识分析问题与解决问题的能力。
鉴于工科类职业技术教育的特点,教学中应以分析和运算方法的掌握为重点,并注重与各专业的实际应用结合起来,同时对基本理论应择重有所了解。
使学生具备专业要求的数学基础,又便于提高进一步学习数学知识及应用数学知识解决实际问题的能力
一、教学内容
本课程要求学生通过学习获得: 1)一元函数微积分学; 2)向量代数和空间解析几何;
3)多元函数微积分学;4)无穷级数;5)常微分方程等方面的基本概念、基本理论和比较熟练的运算能力以及综合运用所学知识去分析问题和解决实际问题的能力。
本课程具有抽象性与科学性、较强的逻辑性及应用的广泛性的特点。
第一章:函数、极限与连续函数
主要内容:
1.函数的概念(定义、表示法),函数的几种特性,反函数,复合函数,初等函数。
2. 数列极限的概念,函数极限的概念(x→xo与x→∞时函数的极限),函数极限与无穷小的关系,无穷小性质,极限四则运算法则,两个极限存在准则:夹逼准则和单调有界准则,
两个重要极限的结果:lim
x→0sin x
x
=1,lim
x→∞
()
1
1
+
x
x=e,无穷小量的比较。
3. 连续函数的概念,函数的间断点,连续函数的四则运算,初等函数的连续性,闭区间上连续函数的性质(叙述)。
教学时数12课时
第二章:导数与微分
主要内容:
1.导数的概念(定义、几何意义、几何应用),函数可导性与连续性之间的关系,函数的和、差、积、商的导数,复合函数与反函数的导数,基本初等函数的导数公式,初等函数的求导问题,高阶导数,隐函数求导法,对数求导法。
2.微分的概念,微分运算法则,微分在近似计算中的应用。
教学时数16课时
第三章:中值定理与导数的应用
主要内容:
1.中值定理(罗尔、拉格朗日、柯西定理),洛必达法则,泰勒中值定理.
2.导数的应用:函数单调性的判定法,函数的极值,判断函数图形的凹凸性,求拐点,最大值与最小值问题及其求法,描绘函数的图形(包括水平与垂直渐近线)。
教学时数10课时
第四章:不定积分
主要内容:
1.原函数与不定积分的定义,不定积分性质、基本积分公式.
2.换元积分法,分部积分法,有理函数及三角函数有理式积分的举例,积分表用法。
教学时数20课时
第五章:定积分及其应用
主要内容:
1.定积分的概念与性质,定积分中值定理.
2. 定积分作为变上限的函数及其求导定理,牛顿—莱布尼茨公式。
3.定积分的换元法与分部积分法,
4.定积分在几何上的应用(如面积、体积和弧长等求法)。
5.定积分在物理上的应用(如功、水压力、引力等求法)。
教学时数12课时
第六章:微分方程
主要内容:
1.微分方程的基本概念。
2.一阶微分方程:可分离变量的微分方程,齐次方程,线性方程。
3.可降阶的高阶微分方程:y n()=f(x),y”=f(x,y’),y”=f(y,y’)。
4.二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程。
教学时数10课时
第七章:向量代数与空间解析几何
主要内容:
1.空间直角坐标系,两点间距离,向量的概念,向量的坐标表示,向量的运算(加减法与数乘,数量积与向量积),向量模,单位向量,方向余弦,两向量平行与垂直的充要条件。
2.平面方程 (点法式、一般式、截距式),直线方程 (点向式、参数式、一般式)。
3.曲面方程的概念,旋转曲面(包括圆锥面)与二次曲面,母线平行于坐标轴的柱面方程;空间曲线作为两曲面交线,空间曲线的参数方程。
教学时数10课时
第八章:多元函数微分法及其应用
主要内容:
1.多元函数的概念(定义、二元函数的几何意义),二元函数的极限与连续,有界闭区域上连续函数的性质(叙述)。
2.偏导数的概念(定义、二元函数偏导数的几何意义、求法),高阶偏导数,混合偏导数可交换求导次序的条件(叙述),全微分的概念〔定义、全微分存在的充分条件〕,可导、可微与连续函数之间的关系,全微分在近似计算中的应用。
多元复合函数的求导法则,全导数、隐函数求导法。
3.偏导数的几何应用(空间曲线的切线与法平面,曲面的切平面与法线),多元函数的极值及其求法,最大值与最小值问题,条件极值。
教学时数16课时
第九章:重积分
主要内容:
1.二重积分的概念(定义、性质)。
2.二重积分的计算(直角坐标、极坐标)。
3. 二重积分的应用(立体体积、曲面面积、质量、重心、转动惯量等)。
教学时数12课时
第十章:无穷级数
主要内容:
1.常数项无穷级数的概念(收敛与发散的定义),无穷级数的基本性质,级数收敛的必要条件,几何级数、调和级数,p 级数,正项级数的比较审敛法、比值审敛法,极限审敛法,交错级数及其审敛法,绝对收敛与条件收敛。
2.幂级数的概念,幂级数的收敛半径与收敛区间及其求法,幂级数的四则运算,幂级数和函数的连续性、逐项微分与逐项积分,函数展开成幂级数, 函数e x
、sinx 、cosx 、1n(1+x)、α)1(x +等幂级数展开式。
教学时数10课时
说明:少数专业对基本要求及时数可适当调整,但必须适应后续课程学习需要及学生基本数学素养培养的要求。
二.教学方法及教学建议
1.本课程在教学过程中要尽量改变传统教学模式中教师讲学生听的教学形式,让学生参与到课堂讲授中来,教师针对某一内容和知识点,灵活运用启发式、讨论式、研究式等教学方法,以此实现学习由“要我学”向“我要学”的方向转变。
2、实现课堂教学与具体实践的互动。
本课程在教学过程中,采取课内实践与课外实践相结合,阶段实践和课程实践相结合的实践教学方式,教师针对讲授内容,除进行必要的课堂实践训练外,还积极组织学生进行社会调研,数学建模,以此培养学生运用所学知识分析解决实际问题的能力。
3、把能力培养落实到课程内容中、惯穿于课程教学全过程。
根据人才培养需要安排课程,加大课程交叉与课程综合的力度;打破课程的学科体系完整性,加强课程的针对性和实用性。
4.在本课程的教学中,要从高等工程专科教育的培养目标出发,正确处理好“以应用为目的”和“以必需、够用为度”的关系,全面实现高等数学课程作为重要基础课的教学基本要求。
同时,要注意与相关课程的配合与衔接。
5.本课程的教学以掌握概念、强化应用、培养技能为教学重点。
在教学的各个环节中,要充分注意引导学生通过对各种实际问题建立数学模型、求解及分析,掌握数学概念、方法的应用,逐步培养综合应用所学知识解决实际问题的能力。
要结合教学内容特点培养学生独立学习习惯。
要充分重视习题课的安排和课外作业的选择。
要使学生有足够的复习和练习时间,及时地、正确地独立完成足够数量的课外作业。
6.要不断探索适合高等工程专科教育特点和要求的教学方式,注意现代化教学手段的应用,发挥教与学两个方面的积极性和教师的主导作用,切实提高教学质量和教学效率,在规定的学时范围内,结合专业特点,保证总体大纲的贯彻执行。
7.各专业必修内容实际总学时不低于108学时,其中讲课与习题课比例约为5:1,上机实验4学时。
课内、课外学时比例需达到1:1.2—1.5,以保证复习时间并完成总量不低于400题的课外作业。
三、课程考核方式
《高等数学》课程的考核方式为考试。
期中笔试占总成绩的30%,期末笔试占总成绩的
50%,重点考基本概念、理论、方法及其应用。
平时成绩占20%。