直线的参数方程两种形式学案
高中数学必修4《直线的参数方程》导学案

§2.3 直线的参数方程1,了解直线参数方程的条件及参数的意义2,能根据直线的几何条件,写出直线的参数方程及参数的意义 3,通过观察、探索、发现的创造性过程,培养创新意识。
【重点、难点】\教学重点:曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程. 二、学习过程 【情景创设】1.写出圆方程的标准式和对应的参数方程。
圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.写出椭圆参数方程.3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参 【导入新课】1、问题的提出:一条直线L 的倾斜角是030,并且经过点P (2,3),如何描述直线L 上任意点的位置呢?如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢?2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的参数方程 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)三 、典例分析 1、直线)(sin cos 为参数θθθ⎩⎨⎧==t y t x 与圆)(sin 2cos 24为参数ϕϕϕ⎩⎨⎧=+=y x 相切,那么直线的倾斜角为(A )A .6π或65πB .4π或43πC .3π或32πD .6π-或65π-2、(2009广东理)(坐标系与参数方程选做题)若直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .【变式拓展】(2009天津理)设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y=3x+4则1l 与2l 的距离为_______四、总结反思1,参数方程化为普通方程的过程就是消参过程常见方法有三种: (1) 代入法:利用解方程的技巧求出参数t ,然后代入消去参数 (2) 三角法:利用三角恒等式消去参数(3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。
高二数学教案:直线的参数方程学案-学习文档

高二数学教案:直线的参数方程学案第06课时2、2、3 直线的参数方程学习目标1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则 =︱︱ ;3、经过点,倾斜角为的直线的普通方程为。
二、新课导学◆探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点M的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。
如图,在直线上任取一点,则 = ,而直线的单位方向向量因为,所以存在实数,使得 = ,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?◆应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A ,B两点的距离之积。
(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:◆反馈练习1.直线上两点A ,B对应的参数值为,则 =( )A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。
三、总结提升◆本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条件及参数的意义;2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业1. 已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。
2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点M到焦点F的距离。
直线的参数方程及其应用学案

直线的参数方程及其应用学案一、直线的参数方程定义:直线是平面上的一种图形,可以用直线上的一个点和方向来唯一确定。
通过参数方程,可以将直线的方程转化为参数的形式。
x = x0 + aty = y0 + bt其中(x0,y0)为直线上的一个点,a和b为直线的方向向量。
二、直线参数方程的应用:1.直线的点线距离:直线的一般方程为Ax+By+C=0,点(x0,y0)到直线的距离为:d=,Ax0+By0+C,/√(A^2+B^2)利用直线的参数方程,可以将点线距离公式转化为参数的形式:d=,(a,b)×(x0-x,y0-y),/√(a^2+b^2)其中,(a,b)为直线的方向向量,(x,y)为直线上的点坐标。
2.直线的夹角:直线的夹角是指两条直线之间的夹角,可以通过直线的方向向量来求解。
直线的方向向量为(a,b)和(c,d),夹角θ的余弦公式为:cosθ = (a * c + b * d) / (√(a^2 + b^2) * √(c^2 + d^2))3.直线的平行与垂直关系:两条直线平行或垂直的条件为,它们的方向向量成比例或互相垂直。
假设直线的方向向量分别为(a,b)和(c,d),则有以下判断条件:-平行关系:a*d-b*c=0;-垂直关系:a*c+b*d=0。
4.直线的位置关系:两条直线的位置关系可以通过它们的方向向量和一个公共点来判断。
-相交关系:两条直线的方向向量不成比例,且它们通过一个公共点;-重合关系:两条直线的方向向量成比例,且它们通过无穷多个公共点;-平行关系:两条直线的方向向量成比例,且它们不通过任何公共点。
三、直线参数方程的解题步骤:1.根据已知条件确定直线的方向向量(a,b);2.根据直线上的一个点(x0,y0)和方向向量(a,b),写出直线的参数方程;3.根据具体的问题要求,进行参数的取值范围限制;4.根据参数方程求解具体的点坐标,或利用参数方程进行相关计算。
四、直线参数方程的例题分析:例题1:已知直线L1的一个点为A(2,3),方向向量为(1,-2),求直线L1与直线L2:x=3t+1,y=2t-1的夹角。
直线参数方程教案

直线参数方程教案教案标题:直线参数方程教案教学目标:1. 理解直线的参数方程表示方法;2. 掌握求解直线参数方程的方法;3. 能够应用直线参数方程解决实际问题。
教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、直尺、计算器等;2. 学生准备:纸、铅笔、直尺、计算器等。
教学过程:一、导入(5分钟)1. 教师通过引入直线方程的概念,提醒学生之前学习过的直线方程形式;2. 引导学生思考,直线是否可以用参数方程来表示。
二、讲解直线参数方程的概念(10分钟)1. 教师通过示意图,引导学生理解参数方程的概念;2. 解释直线参数方程的定义和意义;3. 提供直线参数方程的一般形式:x = x₁ + at, y = y₁ + bt,并解释各个参数的含义。
三、求解直线参数方程的步骤(15分钟)1. 教师通过示例,详细讲解求解直线参数方程的步骤;2. 强调确定直线上的一点和直线的方向向量的重要性;3. 指导学生如何通过已知条件确定直线上的一点和直线的方向向量。
四、练习与讨论(15分钟)1. 学生个人或小组完成练习题,求解给定直线的参数方程;2. 学生互相讨论解题思路和答案,教师进行指导和纠正。
五、应用实例(10分钟)1. 教师提供一个实际问题,引导学生将其转化为直线参数方程的求解;2. 学生个人或小组完成实际问题的求解,并展示解题过程和答案。
六、总结与拓展(5分钟)1. 教师对本节课的内容进行总结,强调直线参数方程的重要性和应用;2. 引导学生思考,直线参数方程在其他数学领域的应用。
七、作业布置(5分钟)1. 布置相关作业,巩固直线参数方程的求解方法;2. 鼓励学生自主拓展,寻找更多直线参数方程的应用实例。
教学反思:教案中通过导入、讲解、练习、应用等环节,全面引导学生理解和掌握直线参数方程的概念、求解方法和应用实例。
通过练习和应用实例的训练,能够提高学生对直线参数方程的理解和运用能力。
同时,鼓励学生自主拓展,培养学生对数学知识的独立思考和应用能力。
第16-17节直线的参数方程教案

第16、17节:直线的参数方程(1)(2)教学目标:1.了解直线的参数方程的推导过程,进一步理解参数方程的重要性;2.体会参数方程在解题中的应用;3.通过本节学习,进一步明确求曲线的参数方程的一般步骤。
教学重点:直线的参数方程的推导过程及其参数方程在解题中的应用。
教学难点:直线的参数方程的推导过程。
授课类型:新授课教学过程:一、复习引入:我们学过的直线的普通方程都有哪些?1.点斜式:2.斜截式:3.两点式:4.截距式:5.一般式:二.新课讲解:经过点M 0(x 0,y 0),倾斜角为α)2(πα≠的直线l 的普通方程是y-y 0=tan α(x-x 0),怎样建立直线l 的参数方程呢?经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是为参数)t t y y t x x (.sin ,cos 00⎩⎨⎧+=+=αα 思考:参数方程中t 的几何意义是什么?重合。
与点则点,的方向向下;若,则的方向向上;若则,的方向总是向上,若的单位方向向量直线000M M 0t M M 0t M M 0t e l ,=<>=t 三.例题讲解21.:10l x y y x +-==例已知直线与抛物线交于A,B 两点,求线段AB 的长度和点M(-1,2)到A,B两点的距离之积。
探究:思考:例2的解法对一般圆锥曲线适用吗?把“中点”改为“三等分点”,直线l 的方程怎样求?例3.当前台风中心P 在某海滨城市O 向东300Km 处生成,并以40km/h 的速度向西偏北45度方向移动.已知距台风中心250km 以内的地方都属于台风侵袭的范围,那么经过多长时间后该城市开始受到台风侵袭?12121212(),,.(1)2y f x M M t t M M M M M t =直线与曲线交于两点,对应的参数分别为曲线的弦的长是多少?()线段的中点对应的参数的值是多少?2214,y A B +=2x 例。
经过点M(2,1)作直线L ,交椭圆16于两点。
《直线的参数方程》教案

《直线的参数方程》教案(第1课时)一、【教学目标】1、知识与技能:能根据直线的几何条件,选择参数写出直线的参数方程;能比较深刻的理解直线参数方程中参数t的几何意义并初步应用;2、过程与方法:启发引导→讨论探究→归纳概括→简单应用3、情感态度价值观:在探求直线参数方程中注重锻炼学生的发散式思维,在探究活动中培养学生思考问题的严密性和概括能力.二、【教学重点、难点】重点:联系向量知识写出直线的参数方程,并理解参数的几何意义;难点:从直线的几何条件联想到向量;参数t的几何意义及简单应用的探究.三、【教学方法与手段】启发引导→讨论探究→归纳概括→简单应用四、【教学过程】(一)复习引入1、在平面直角坐标系中,确定一条直线的几何条件是什么?2、根据直线的几何条件,你认为用哪个几何条件来建立参数方程比较好?3、根据直线的这个几何条件,你认为应当怎样选择参数?(二) 任务一:探求直线的参数方程1.我们知道过定点000(,)M x y ,且倾斜角为α(2πα≠)的直线l 可以唯一确定,其普通方程是00tan ()y y x x α-=-.2.其参数方程如何建立呢?引导学生思考:倾斜角可以刻画直线的方向,那么能否换一个量来刻画直线的方向呢?从而引进直线l 的单位方向向量(c o s ,s i n ),[e αααπ=∈.又000(,)M M x x y y =--,0//M M e ,由向量共线定理的坐标表示易知存在实数t R ∈,使得00(,)(cos ,sin ),x x y y t αα--=化简得直线的参数方程为(三)梳理归纳(1)直线的参数方程中的变量和常量;(2)直线参数方程的形式;(3) 参数t 的取值范围是什么?(4) 参数t 的意义是什么? (问而不答,通过探究表让学生自己探究,见附页){00cos ,(t )sin ,x x t y y t αα=+=+为参数随堂检测:(四) 探究参数的几何意义及简单应用梳理归纳:参数t 的意义主要体现在2个方面:①t 的大小(即绝对值)等于0M M 的长度(即0M 与M 的距离); ②t 的正负决定了0M M 的方向.(五)、任务二:例题讲解通过例题数学生对直线参数方程以及参数t 的几何意义理解更清楚,如下例。
直线参数方程课时优秀教案
直线参数方程(第一课时)学案目标点击:1.掌握直线参数方程地标准形式和一般形式,理解参数地几何意义; 2.熟悉直线地参数方程与普通方程之间地互化;基础知识点击:1、直线参数方程地标准式(1)过点P 0(00,y x ),倾斜角为α地直线l 地参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 地几何意义:t 表示有向线段0p p u u u u r 地数量,P(y x ,) 为直线上任意一点.则0p p u u u u r=t ∣0p p u u u u r∣=∣t ∣(2)若P 1、P 2是直线上两点,所对应地参数分别为t 1、t 2,则1p p u u u r =t 2-t 1∣1p p u u u r∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上地点,所对应地参数分别为t 1、t 2、t 3则P 1P 2中点P 3地参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2地中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程地一般式过点P 0(00,y x ),斜率为abk =地直线地参数方程是 ⎩⎨⎧+=+=bty y atx x 00 (t 为参数) 一、直线地参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α地直线l设点P(y x ,)是直线l 上任意一点,直线L 地正方向)过点P 作y 轴地平行线,过P 0轴地平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -= Q P =0y y -∴0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 求地直线l 地参数方程∵P 0P =t ,t 为参数,t 知点P 0(00,y x )到点 P(y x ,)P在点P 0地上方;2.当t =0时,点P 与点P 0重合;3.当t<0时,点P 在点P 0地下方;x l特别地,若直线l 地倾斜角α=0时,直线l⎧+=0tx x ① 当t>0时,点P 在点P 0地右侧; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0地左侧; 问题2:直线l 上地点与对应地参数t 是不是一对应关系?我们把直线l 看作是实数轴,以直线l 向上地方向为正方向,以定点P 0原坐标系地单位长为单位长,这样参数t 数轴上地点P 建立了 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t ∣问题4:若P 0为直线l 上两点P 1、P 2地中点,1、t 2 ,则t 1、t 2之间有何关系?根据直线l P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2∴|P 1P |=|P 2P | P 1P =-P 2P ,即t 1=-t 2, t 1t 2一般地,若P 1、P 2、P 3是直线l 别为t 1、t 2、t 3,P 3为P 1、P 2地中点则t 3=221t t +(∵P 1P 3=-P 2P 3, 根据直线l 参数方程t ∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) )基础知识点拨:1、参数方程与普通方程地互化例1:化直线1l 地普通方程13-+y x =0为参数方程,并说明参数地几何意 义,说明∣t ∣地几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=211l 地参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数) t 是直线1l 上定点M 0(1,0)到t 对应地点M(y x ,)地有向线段M M 0地数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应地点M(y x ,)地有向线段MM 0地长.点拨:求直线地参数方程先确定定点,再求倾斜角,注意参数地几何意义.例2:化直线2l 地参数方程⎩⎨⎧+=+-= t313y tx (t 为参数)为普通方程,并求倾斜角,x x说明∣t ∣地几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31(1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式)可见k=3, tg α=3,倾斜角α=3π普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x∣t ∣是定点M 0(3,1)到t 对应地点M(y x ,)地有向线段M M 0地长地一半.点拨:注意在例1、例2中,参数t 地几何意义是不同地,直线1l 地参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=ty t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程地标准形式,(-23)2+(21)2=1, t 地几何意义是有向线段M M 0地数量.直线2l 地参数方程为⎩⎨⎧+=+-= t 313y tx 是非标准地形式,12+(3)2=4≠1,此时t 地几何意义是有向线段M M 0地数量地一半.你会区分直线参数方程地标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t 331y tx (t 为参数)是否为直线l 地参数方程?如果是直线l 地参数方程,指出方程中地参数t 是否具有标准形式中参数t 地几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 地地普通方程 0333=+--y x ,所以,以上两个方程都是直线l 地参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0地数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述地几何意义.点拨:直线地参数方程不唯一,对于给定地参数方程能辨别其标准形式,会利用参数t 地几何意义解决有关问题.问题5:直线地参数方程⎩⎨⎧+=+= t 331y tx 能否化为标准形式?是可以地,只需作参数t 地代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331yt x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l参数方程地标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '地几何意义是有向线段M M 0地数量.2、直线非标准参数方程地标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程地一般式为,.⎩⎨⎧+=+=bt y y atx x 00(t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 地几何意义是有向线段M M 0地数量. (2)当22b a +≠1时,则t 不具有上述地几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '地几何意义是有向线段M M 0地数量. 例4:写出经过点M 0(-2,3),倾斜角为43π地直线l 地标准参数方程,并且 求出直线l 上与点M 0相距为2地点地坐标.解:直线l 地标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2地点为M 点,且M 点对应地参数为t,则|M 0M |=|t| =2, ∴t=±2 将t 地值代入(1)式当t=2时,M 点在 M 0点地上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点地下方,其坐标为(-2+2,3-2).点拨:若使用直线地普通方程利用两点间地距离公式求M 点地坐标较麻烦, 而使用直线地参数方程,充分利用参数t 地几何意义求M 点地坐标较容易.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)地倾斜角 . 解法1:消参数t,地34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+=οο110sin )(4110cos )(3t y t t x (-t 为参数)∴此直线地倾斜角为110°。
直线的参数方程 教案
直线的参数方程教案教案标题:直线的参数方程教案目标:1. 理解直线的参数方程的定义和概念;2. 掌握求解直线的参数方程的方法;3. 能够应用直线的参数方程解决实际问题。
教学重点:1. 直线的参数方程的定义和概念;2. 求解直线的参数方程的方法。
教学难点:1. 运用直线的参数方程解决实际问题。
教学准备:1. 教师准备:教学投影仪、白板、黑板、彩色粉笔、教案、课件;2. 学生准备:课本、笔记本。
教学过程:一、导入(5分钟)1. 引入直线的概念,复习直线的一般方程和斜率截距方程。
二、知识讲解(15分钟)1. 介绍直线的参数方程的概念和定义;2. 讲解直线的参数方程的一般形式和求解方法;3. 通过示例演示如何将直线的一般方程或斜率截距方程转化为参数方程。
三、示范演练(15分钟)1. 给出一些直线的一般方程或斜率截距方程,要求学生转化为参数方程;2. 学生跟随教师的指导进行演练。
四、拓展应用(15分钟)1. 提供一些实际问题,要求学生运用直线的参数方程解决;2. 学生独立或小组合作完成拓展应用题。
五、讲评与总结(10分钟)1. 教师对学生的演练和拓展应用进行讲评;2. 总结直线的参数方程的求解方法和应用。
六、作业布置(5分钟)1. 布置课后作业:完成课后习题中与直线的参数方程相关的题目。
教学反思:本节课通过引入直线的概念,再结合直线的一般方程和斜率截距方程,引出了直线的参数方程的概念和定义。
通过示例演示和学生的跟随指导进行演练,加深了学生对直线的参数方程求解方法的理解和掌握。
通过拓展应用,培养了学生运用直线的参数方程解决实际问题的能力。
在讲评与总结环节,对学生的答案进行了讲评,巩固了学生的学习成果。
最后,布置了课后作业,巩固学生的学习效果。
整节课教学内容紧凑,学生参与度高,达到了预期的教学目标。
高中数学直线参数方程教案
高中数学直线参数方程教案
目标:学习如何用参数方程表示直线
一、直线方程的一般形式
在平面直角坐标系中,一条直线可以用一般形式的方程表示为:
Ax + By + C = 0
其中A、B、C为常数,A和B不同时为0。
二、直线的参数方程
一个方程组可以用参数形式表示为:
x = x0 + at
y = y0 + bt
其中x0、y0分别是直线上的一个点的坐标,a、b为实数。
三、如何求直线的参数方程
1.已知直线上的两个点P(x1, y1)和Q(x2, y2),可以先求出直线的斜率:
m = (y2 - y1) / (x2 - x1)
然后,根据直线的斜率和一个已知点的坐标,可以得出直线的参数方程。
2.已知直线的一般形式方程Ax + By + C = 0,可以先求出一个点P(x0, y0):
x0 = -C / A
y0 = 0
然后,根据这个点和直线的斜率,可以得出直线的参数方程。
四、练习题
1.已知直线L过点P(1, 2)和Q(-2, 5),求直线L的参数方程。
2.已知直线L的一般形式方程2x - 3y + 6 = 0,求直线L的参数方程。
五、思考题
1.直线的参数方程和一般形式方程有何区别?
2.如果已知直线的参数方程x = 2t - 1,y = 3t + 4,如何表示这条直线的斜率?
六、作业
1.完成练习题。
2.思考题中的问题,并写下自己的回答。
本节课重点:学习如何用参数方程表示直线,以及如何根据已知条件求出直线的参数方程。
直线的参数方程教案
直线的参数方程教案直线的参数方程教案一、教学目标1. 知识与技能(1)掌握直线的参数方程的概念;(2)掌握直线的一般方程与参数方程的互相转化方法;(3)能够根据直线的参数方程绘制直线的图像。
2. 过程与方法(1)引导学生通过观察、实验等方式发现直线的参数方程的特点;(2)通过讲解和举例引导学生理解直线的参数方程的定义及其性质;(3)通过练习题巩固学生对直线的参数方程的掌握程度;(4)通过绘制直线的图像帮助学生加深对直线的参数方程的理解。
3. 情感、态度和价值观培养学生观察、发现、分析和解决问题的能力,培养学生的数学思维能力和创新能力。
二、教学重点与难点1. 教学重点掌握直线的参数方程的概念和性质,掌握直线的一般方程与参数方程的互相转化方法。
2. 教学难点能够根据直线的参数方程绘制直线的图像。
三、教学过程1. 导入新课通过展示几何平面坐标系上的一条直线图像,引导学生观察,思考直线的方程与参数方程之间的关系,并提问学生:你对直线的参数方程有什么了解?2. 探究活动(1)教师用实物或几何软件展示一条直线和坐标系,并选取直线上两个点A(x1, y1)和B(x2, y2)。
(2)教师引导学生观察并发现直线上每个点都可以由参数t确定,并写出该点的坐标为(x, y),并尝试找出x和y与t之间的关系。
(3)学生根据已知的两个点的坐标、点A和点B的参数t值,写出点A和点B的参数方程。
(4)通过实际计算验证参数方程是否正确。
3. 理论总结通过探究活动,引导学生总结直线的参数方程的定义和性质,并帮助学生理解直线的参数方程与一般方程的转化方法。
4. 拓展(1)教师提问:已知直线的参数方程x = 2 + 3t,y = -1 + t ,如何将其转化为一般方程?(2)学生尝试将参数方程转化为一般方程,并进行实际计算和验证。
5. 练习巩固(1)教师出示几道直线的参数方程的题目,要求学生逐步转化为一般方程,并进行计算验证。
(2)学生独立完成练习题,并核对答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案7 直线的标准参数方程及一般参数方程互化及应用
教学目标:
1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化;
3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 教学重点:熟悉直线的参数方程与普通方程之间的互化 教学难点:理解参数的几何意义 教学过程
1、参数方程与普通方程的互化
例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.
解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-3
1=-3
3
设倾斜角为α,tg α=-3
3,α= π65, cos α =-23, sin α=2
1
1l 的参数方程为⎪⎪⎩
⎪⎪⎨
⎧
=
-
=t y t x 2
1
2
3
1 (t 为参数)
∣t ∣是定点M 0(1,0)到动点M(y x ,)的有向线段M M 0的长.
点拨:(1)求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.
(2)你还能写出其他的参数方程吗?
例2:化直线2l 的参数方程⎩⎨⎧+=+-= t
313y t
x (t 为参数)为普通方程,并求倾斜角,
说明∣t ∣的几何意义. 解:原方程组变形为⎩⎨
⎧=-=+ (2) t
31 (1) 3y t x (1)代入(2)消去参数t ,
得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3
π
普通方程为 01333=++-y x t 的几何意义是有向线段M M 0的数量的一半.
∣t ∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半.
提问;你能直接写出直线斜率吗? 例3: 将直线的参数方程⎩
⎨
⎧+=+= t 331y t
x (t 为参数)化为标准形式
变式:13x t y =-⎧⎪⎨=⎪⎩
及13x t y =+⎧⎪⎨=⎪⎩
及13x t
y =-⎧⎪⎨=+⎪⎩如何化为标准形式
例4:直线⎩⎨⎧-=+=
20
cos 420sin 3t y t x (t 为参数)的倾斜角 . 例5:已知直线l 过点P (2,0),斜率为3
4
和抛物线x y 22=相交于A 、B 两点, 设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|
解:(1)∵直线l 过点P (2,0),斜率为3
=3
4
cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩
⎪⎨⎧=+=t
y t x 54
532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,
整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个
根为t 1、t 2,由韦达定理得 t 1+t 2=
815
, t 1t 2=4
25- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=2
21t t + =1615
∵中点M 所对应的参数为t M =16
15
,将此值代入直线的标准参数方程*,
M 点的坐标为⎪⎩
⎪⎨⎧=•==•+=43
16155416411615532y x 即 M (1641,43) 例6:已知直线l 经过点P (1,-33),倾斜角为3
π,
(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;
(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3
π,∴直线l 的标准参数方
程为⎪⎩⎪⎨⎧
+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩
⎪⎪
⎨⎧+-=+=t
y t x 2333211(t 为参数)代入直线l ':
32-=x y 得032)2
3
33()211(=-+
--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几
何意义可知:|t|=| PQ|,∴| PQ|=4+23.
x
(2) 把直线l 的标准参数方程为⎪⎪⎩
⎪⎪⎨
⎧+-=+=t y t x 2333211(t 为参数)代入圆的方程
22y x +=16,得16)2
333()211(2
2=+
-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12
根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点 A, B 所对应的参数值,则|t 1|=| PA|,|t 2|=| PB|,
所以| PA|·| PB|=|t 1 t 2|=12
点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 课下作业
1、 求过点(6,7),倾斜角的余弦值是2
3的直线l 的标准参数方程.
2、 直线l 的方程:⎩⎨⎧+=-=
25
cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°
3、 直线⎪⎪⎩
⎪⎪⎨
⎧
+-=-=t
y t
x 5
2
15
11(t 为参数)的斜率是( )
4、直线l 的方程: ⎩
⎨
⎧+=+=bt y y at
x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数
值t 1、t 2,那么|AB|等于( )
A ∣t 1-t 2∣
B 22b a +∣t 1-t 2∣
C 2
2
21b
a t t +- D ∣t 1∣+∣t 2∣
5、已知直线l :⎩⎨
⎧+-=+= t
351y t
x (t 为参数)与直线m :032=--y x 交于P 点,求点
M(1,-5)到点P 的距离. 6、直线⎩⎨
⎧+-=+=t
21y t x (t 为参数)与椭圆822
2=+y x 交于A 、B 两点,则|AB|等于( )
A 22 B
334 C 2 D 3
6
7、过点P(6, 27)的直线⎪⎩
⎪⎨⎧+=+=t 2726y t x (t 为参数)与抛物线y 2=2x 相交于A 、B 两点, 则点P 到A,B 距离之积为 . 8、直线⎩
⎨
⎧+=+=αα
sin cos 00t y y t x x (t 为参数)与二次曲线A 、B 两点,则|AB|等于( )
A |t 1+t 2|
B |t 1|+|t 2|
C |t 1-t 2| D
2
2
1t t +
9、 直线⎪⎩
⎪⎨⎧
+-=-=t
21
1212y t x (t 为参数)与圆122=+y x 有两个交点A 、B ,若P 点的坐
标为(2,-1),则|PA|·|PB|=
. .。