数字PID控制算法

合集下载

数字pid控制算法的研究实验报告

数字pid控制算法的研究实验报告

数字pid控制算法的研究实验报告数字PID控制算法是一种常用的控制系统算法,能够通过对比例、积分和微分三个参数进行调整来控制系统的稳定性和精度。

本文将对数字PID控制算法的研究实验进行详细的描述。

实验设计本次实验采用一个控制器,其输出为闭环信号,被用于控制一个加速变量,以实现一个平稳的控制过程。

实验的具体步骤如下:1. 确定控制器的输出参数根据控制系统的实际需求,确定控制器的比例参数、积分参数和微分参数。

2. 建立实验模型将实验系统建模为阻尼比为1,反馈系数为0.8的系统。

其中,加速变量的幅值为0.1,根据实验结果,调整PID参数后可以使系统达到稳定的输出状态。

3. 进行实验将实验模型连接到控制器上,通过输入信号控制加速变量的幅值,实现控制系统的平稳输出。

通过仿真软件对实验过程进行模拟,记录实验的增益、响应时间和精度等指标。

4. 分析实验结果根据实验结果,对PID控制器的输出参数进行调整,以获得更好的控制效果。

同时,对不同参数组合的增益、响应时间和精度等指标进行分析,探究不同参数组合对控制效果的影响规律。

实验结果通过本次实验,得到以下实验结果:- 比例参数对控制效果的影响规律为:当比例参数增大时,控制增益增大,但响应时间变慢;当比例参数减小时,控制增益减小,但响应时间变快。

- 积分参数对控制效果的影响规律为:当积分参数增大时,控制增益减小,但控制稳定性好;当积分参数减小时,控制增益增大,但控制稳定性差。

- 微分参数对控制效果的影响规律为:当微分参数增大时,控制增益增大,但控制稳定性好;当微分参数减小时,控制增益减小,但控制稳定性差。

结论通过本次实验,可知数字PID控制算法在平稳控制过程中具有较好的效果,不同的参数组合可以影响控制效果的稳定性和精度,可以根据实际应用的需要调整PID控制器的参数,以实现更好的控制效果。

实验三 数字式PID调节器控制算法仿真

实验三   数字式PID调节器控制算法仿真

实验三 数字式PID 调节器控制算法仿真一、实验目的1、了解并掌握基本的数字PID 控制算法和常用的PID 控制改进算法。

2、掌握用Matlab 进行仿真的方法。

3、了解PID 参数整定的方法及参数整定在整个系统中的重要性。

二、实验设备PC 机(Matlab 软件)三、实验原理1、基本的PID 控制算法:基本的数字P0控制有三种算法:位置式、增量式和速率式,其中应用最为广泛的是增量式,因为增量式算法只与最近几次采样值有关,不需要累加;计算机输出增量,误差动作时影响小。

因此这里采用增量式PID 算法:)]1()1(2)([)()]1()([)(-+--++--=∆k e k e k e k k e k k e k e k k u d i p其中设)]1()([)(--=k e k e k k u p p)()(k e k k u i i =)]2()1(2)([)(-+--=k e k e k e k k u d d则)()()()(k u k u k u k u d i p ++=∆2、数字PID 调节器参数的整定:为使系统性能满足一定的要求,必须确定算法中各参数的具体值,这就是参数整定。

参数整定是十分重要的,调节系统参数整定的好坏直接影响调节品质。

要想快速、灵活的将参数整定好,首先应透彻理解这些参数对系统性能的影响:增大比例系数,一般将加快系统的响应,这在有静差系统中有利于减小静差,但过大会使系统有较大超调,并产生振荡,使稳定性变坏。

增大积分时间(积分作用减弱)有利于减小超调,减小振荡,使系统更加稳定,但系统静差消除的过程将随之减慢。

增大微分时间(微分作用增强)有利于加快系统响应,使超调减小,稳定性增加,但系统对扰动有较敏感的响应。

四、实验要求1、在Matlab 环境中,按照给定对象,构建仿真PID 控制系统。

2、调整PID 参数,观察各参数对系统响应的影响。

3、采用增量式PID 算法进行控制系统仿真,对各参数进行整定,观察系统响应曲线,直到获得满意的响应曲线。

PID数字控制器的结构算法及参数设定

PID数字控制器的结构算法及参数设定

PID数字控制器的结构算法及参数设定
一、PID数字控制器的基本结构及算法
1.PID数字控制器的基本结构
PID控制PID控制兼有比例、积分和微分三种基本控制规律的优点,可使系统的稳态和动态性能以及系统的稳定性都得到改善,因而应用最为广泛。

其控制规律如下:
2.PID数字控制器的程序算法
3.PID控制规律的脉冲传递函数形式
二、PID数字控制器的参数设定
常用参数确定方法:
1.用逐步逼近法确定PID参数
1)首先只整定比例部分。

2)如果在比例控制的情况下静差达不到设计要求,则需加进积分环节。

3)若使用PI调节器控制消除了静差,而动态性能反复调整仍不能满意,则可加入微分环节,构成PID控制。

2.简易工程法确定PID参数
1)扩充临界比例度法
2)扩充响应曲线法
三、采样周期的选择
1.系统给定值变化频率较高时,采样频率也应取得较高,以使给定值的变化得到迅速响应。

2.如果被控对象是缓慢变化的热工或化工过程时,采样周期可以取得大些,当被控对象是快速系统时,采样周期可以取得较小。

3.当执行机构惯性较大时,采样周期可取得大些。

4.系统中控制回路数较多时,考虑到控制程序的执行时间,应取较大的采样周期。

pid算法公式详解

pid算法公式详解

pid算法公式详解
PID算法,即比例(proportional)、积分(integral)、微分(derivative)控制算法,是一种应用广泛的控制算法。

它结合了比例、积分和微分三种环节于一体,适用于连续系统的控制。

在工业应用中,它是最广泛算法之一,如四轴飞行器、平衡小车、汽车定速巡航、温度控制器等场景均有应用。

PID算法的公式如下:
\[U(t)=K_p e(t)+K_i\int_{0}^{t}e(\tau)d\tau+K_d frac{de(t)}{dt}\]
其中,
-\(U(t)\)是控制器输出的控制信号;
-\(e(t))是控制器输入的误差信号;
-\(K_p\)、\(K_i\)和\(K_d\)是比例、积分和微分系数;
-(\int_{0}^{t}e(\tau)d\tau)是误差信号的累积值,即积分项;
-(\frac{de(t)}{dt}\)是误差信号的变化率,即微分项。

这个公式描述了PID控制器如何根据当前的误差以及过去的误差来计算出控制信号。

比例项反映了当前误差的大小,积分项反映了过去误差的累积,微分项反映了误差变化的趋势。

通过调整这三个参数,可以实现对系统的精确和快速控制。

(完整版)数字PID及其算法

(完整版)数字PID及其算法

数字PID 及其算法主要内容:1、PID 算法的原理及数字实现2、数字PID 调节中的几个实际问题3、几种发展的PID 算法4、PID 参数的整定方法一、概述几个概念:1、程序控制:使被控量按照预先规定的时间函数变化所作 的控制,被控量是时间的函数。

2、顺序控制:是指控制系统根据预先规定的控制要求,按 照各个输入信号的条件,使过程的各个执行机构自动地按预 先规定的顺序动作。

3、PID 控制:调节器的输出是输入的比例、积分、微分的 函数。

4、直接数字控制:根据采样定理,先把被控对象的数学模 型离散化,然后由计算机根据数学模型进行控制。

5、最优控制:是一种使控制过程处在某种最优状态的控制。

6、模糊控制:由于被控对象的不确定性,可采用模糊控制。

二、PID 算法的原理及数字实现PID 调节的实质:根据系统输入的偏差,按照PID 的函数 关系进行运算,其结果用以控制输出。

PID 调节的特点:PID 的函数中各项的物理意义清晰,调节灵活,便于程序化实现。

三、 PID 算法的原理及数字实现PID 调节器是一种线性调节器,他将设定值w 与实际值y 的偏差:按其比例、积分、微分通过线性组合构成控制量1、比例调节器:比例调节器的微分方程为:)(*y t e Kp =y 为调节器输出,Kp 为比例系数,e(t)为调节器输入偏差。

由上式可以看出比例调节的特点:调节器的输出与输入偏差成正比。

只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时的特点。

但是,Kp 过大会导致动态品质变坏,甚至使系统不稳定。

比例调节器的阶跃响应特性曲线如下图yw e -=sd *K s Ki pK 对象 we + - + + + u y2、积分调节器:积分作用是指调节器的输出与输入偏差的积分成比例的作用,其作用是消除静差。

积分方程为:TI 是积分时间常数,它表示积分速度的大小,TI 越大,积分速度越慢,积分作用越弱。

PID控制算法(PID控制原理与程序流程)

PID控制算法(PID控制原理与程序流程)

PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。

1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。

控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。

2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。

控制规律的实现,是通过软件来完成的。

改变控制规律,只要改变相应的程序即可。

3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。

微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。

由于计算机的决策直接作⽤于过程,故称为直接数字控制。

DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。

(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。

a、PID调节器的微分⽅程式中b、PID调节器的传输函数a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。

b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。

积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。

c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。

数字pid位置型控制算法和增量型控制算法

数字pid位置型控制算法和增量型控制算法

数字pid位置型控制算法和增量型控制算法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!数字PID位置型控制算法和增量型控制算法在工业控制领域中,PID控制算法是一种常见且有效的控制方法。

(完整版)PID控制规律及数字PID基本算法

(完整版)PID控制规律及数字PID基本算法

积分 微分
u* (t )
离散化过程相当于脉冲序列调制过程
脉冲信号:

(t

T
)

kT ) k 0


e*(t) e(t) (t kT ) e(kT ) (t kT ) k 0,1,2,K
k 0
k 0
积分环节的离散化处理
PID控制规律及数字PID基本算法
未经许可不得转载 内容仅限参考
知识回顾
系统控制的目标
r(t) e(t)
u(t)

校正环节 Gc (s)
c(t)
执行机构
检测单元
c(t)
被控对象 G(s)
控制目标:系统准确性、稳定性、快速性要求 系统评价:稳态特性、动态特性 稳态特性:稳态误差(误差度),与系统型次及开环增益相关 动态特性:时域指标(超调量、调整时间等);频域指标(稳定裕度、剪切频率、中频宽度、带宽等 经典系统分析方法:时域、频域法、根轨迹等(开环分析闭环) 系统校正:串联校正、反馈校正、复合校正、频率特性校正
2
2.5
3
time(s)
rin,yout
五、小结与数字PID应用中的核心问题
小结 1、理解并掌握PID控制器中比例、积分、微分在调节系统稳态
特性与动态特性中的作用 2、掌握数字PID位置式、增量式的基本算法与特点 3、能够利用基本程序语言实现位置式增量式的程序编写 后续学习内容 1、PID参数的整定问题(周三实验介绍关于PID工程整定方法及
系统校正单元由基本环节构成,包括比例环节、积分环节、惯性环节、一阶微分、 二阶微分等,其中由比例、积分、微分环节构成的PID控制在工业控制中占有非常重 要的地位,了解PID控制规律、掌握PID控制器设计方法是十分必要的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章、计算机测控系统设计与实现
一、参考书目:
书名:《计算机控制系统》
章节:第六章
页号:P140-156
二、主要学习内容:
1.数字PID 控制算法
PID 控制规律的基本输入/输出关系可用微分方程表示:
()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K Y D I P 1
在模拟调节系统中,PID 控制算法的模拟表达式为:
()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t Y D I P 1
2.对标准PID 算法的改进
1、微分项的改进
不完全微分型PID 算法传递函数
⎪⎪⎪⎪⎭
⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=1111)(S K T S T S T K S G D D D I P C
2、积分项的改进
抗积分饱和
积分作用虽能消除控制系统的静差,但它也有一个副作用,即会引起积分饱和。

在偏差始终存在的情况下,造成积分过量。

当偏差方向改变后,需经过一段时间后,输出u(n)才脱离饱和区。

这样就造成调节滞后,使系统出现明显的超调,恶化调节品质。

这种由积分项引起的过积分作用称为积分饱和现象。

克服积分饱和的方法:
1、积分限幅法
积分限幅法的基本思想是当积分项输出达到输出限幅值时,即停止积分项的计算,这时积分项的输出取上一时刻的积分值。

其算法流程如图3-2-4所示。

2、积分分离法
积分分离法的基本思想是在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值ε时才进行积分累积。

这样既防止了偏差大时有过大的控制量,也避免了过积分现象。

其算法流程如图3-2-5。

三、知识点:
1、为什么要用PID调节器
1、经典控制方法,可靠成熟。

2、相比两位式控制,控制精度大大提高。

3、算法成熟,资源丰富。

2、数字PID控制算法的比例、积分、微分的作用特点和不足
PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。

PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:
比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取
决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

3、PID控制算法数字化前提条件
图 4.1 模拟PID控制系统原理框图
采样周期T很小,这样dt可用T近似代替,de(t)可用e(n)-e(n-1)近似代替,积分用求和近似代替。

4、两种算法表达式及相互比较
数字PID控制算法包括增量型算法和位置型算法,两者相比增量型算法具有以下优点:
(1)增量型算法不需要做累加,控制量增量的确定仅与最近几次误差采样值有关,计算误差或计算精度问题对控制量的计算影响较小,而位置型算法要用到过去的误差累加值,容易产生较大的累加误差。

(2)增量型算法得出的是控制量的增量,例如阀门控制中,只输出阀门开度的变化部分,误动作影响小,必要时通过逻辑判断限制或禁止本次输出,不会严重影响系统工作。

(3)采用增量型算法,易实现手动到自动的无冲击切换。

5、对标准PID算法的改进——“饱和”作用的抑制
在PID控制系统中由于积分作用,存在饱和现象,这种现象会引起大幅度的超调,使系统不稳定,所以要对饱和作用进行抑制。

抑制方法主要有两种:
1.遇限削弱积分法
基本思想:一旦控制量进入饱和区,则停止进行增大积分的运算。

在计算P(K)值时,先判断P(K-1)是否超过限制范围,如果超出,将根据偏差的符号,判断系统的输出是否进入超调区域,再决定是否将相应偏差计入积分项。

P(K-1) ≥Pmax,且E(K)>0
P(K-1) ≤ Pmin,且E(K)<0
2.有效偏差法
用位置型PID算式算出的控制量超出限制范围时,控制量实际上只能取边界值,即P(K)=Pmax或P(K)=Pmin
有效偏差法的实质:将相当于这一控制量的偏差值作为有效偏差值进行积分,而不是将实际偏差值进行积分。

有效偏差值可按位置型PID 算式逆推出:
)()()1()()()(*1
0*
*k P k P K K K k E K j E K k P k E D
I P D k j I =++-+-=∑-=此时,
6、采样周期的选择依据
(1)给定值的变化频率
加到被控对象上的给定值变化频率越高,采样频率应越高,以使给定值的改变通过采样迅速得到反映,而不致在随动控制中产生大的时延。

(2)被控对象的特性
考虑对象变化的缓急,若对象是慢速的热工或化工对象时,T 一般取得较大。

在对象变化较快的场合,T 应取得较小。

考虑干扰的情况,从系统抗干扰的性能要求来看,要求采样周期短,使扰动能迅速得到校正。

(3)使用的算式和执行机构的类型
采样周期太小,会使积分作用、微分作用不明显。

同时,因受微机计算精度的影响,当采样周期小到一定程度时,前后两次采样的差别反映不出来,使调节作用因此而减弱。

执行机构的动作惯性大,采样周期的选择要与之适应,否则执行机构来不及反应数字控制器输出值的变化。

(4)控制的回路数
要求控制的回路较多时,相应的采样周期越长,以使每个回路的调节算法都有足够的时间来完成。

控制的回路数n 与采样周期T 有如下关系:
∑=≥n j j
T T 1式中,Tj 是第j 个回路控制程序的执行时间。

四、实例
实例网址:
/view/32d4620a79563c1ec5da7175.html 个人分析:在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。

在应用计算机实现控制的系统中,PID很容易通过编制计算机语言实现。

由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性。

相关文档
最新文档