量子行为粒子群优化算法中文版37页PPT

合集下载

粒子群优化算法与蚁群算法PPT

粒子群优化算法与蚁群算法PPT
它们是如何完成聚集、移动这些功能呢?
5
6
背景
对鸟群行为的模拟: Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改 变方向,散开或者聚集等。那么一定有某种潜在 的能力或规则保证了这些同步的行为。这些科学 家都认为上述行为是基于不可预知的鸟类社会行 为中的群体动态学。
粒子群优化算法的基本思想是通过群体中个体 之间的协作和信息共享来寻找最优解.
9
算法介绍
设想这样一个场景:一群鸟在随机的搜索食物。 在这个区域里只有一块食物,所有的鸟都不知道 食物在那。但是它们知道自己当前的位置距离食 物还有多远。
那么找到食物的最优策略是什么?
最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。
在找到这两个最优值后,粒子通过下面的 公式来更新自己的速度和位置。
v k 1 i

vik

c1

rand
()

(
pbest

xik
)

c2

rand
()

(gbest

xik
) (1)式
xk 1 i

xik
vik 1
(2)式
在式(1)、(2)中,i=1,2,…,M,M是该群体中粒
子的总数
12
粒子就是通过自己的经验和同伴中最好的经验 来决定下一步的运动。
以上面两个公式为基础,形成了后来PSO 的标 准形式
15
算法介绍
1998年shi等人在进化计算的国际会议上
发表了一篇论文《A modified particle swarm
optimizer》对前面的公式(1)进行了修正。引 入惯性权重因子。

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

《粒子群优化算法》课件

《粒子群优化算法》课件
2 原理
粒子群优化算法是基于群体智能思想的优化方法,其思想来源于生物群体中的合作行为。
粒子群优化算法的流程
1
初始化种群
随机生成一定数量的个体,作为种群的起始状态。
2
计算适应度函数
对每个个体,根据适应度函数计算其适应度值。
3
更新速度和位置
根据当前的速度和位置,以及社会经验和个体经验,计算每个个体的新速度和新位置。
《粒子群优化算法》PPT 课件
这是一份关于粒子群优化算法的PPT课件,通过它,你将掌握这种算法的定 义、原理、应用,以及未来的发展方向。
什么是粒子群优化算法?
1 定义
粒子群优化(Particle Swarm Optimization,PSO)算法是一种进化算法,由Kennedy和 Eberhart在1995年提出测种群的状态是否满足结束条件,如果是,输出结果;否则继续更新。
粒子群优化算法在求解函数最小值中的应 用
Rosenbrock函数
粒子群优化算法可以用于求解Rosenbroke函数的全 局最优解。
Rastrigin函数
粒子群优化算法可以用于求解Rastrigin函数的全局 最优解。
粒子群优化算法在机器学习中的应用
粒子群优化算法的未来
1
发展方向
加强算法的智能性和泛化能力。
2
进一步应用
将粒子群优化算法应用到集成优化、无人驾驶、协同控制等领域。
总结
1 通过这份PPT课件,你已经了解了粒子群优化算法的定义、原理、应用和未来的发展方
向。
神经网络优化
粒子群优化算法可以优化神经网络中的连接权重、 偏置值等参数,提高神经网络的精确度。
选取最优超参数
粒子群优化算法可以为机器学习模型选择最优的超 参数,包括学习率、迭代次数、隐藏层数等。

粒子群优化算法PPT上课讲义

粒子群优化算法PPT上课讲义

02
ALGORITHM PRINCIPLE
算法原理
02 算法原理
抽象
鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,
粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速 度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函
数决定的适应值(fitness value),并且知道自己到目前为止发现的
01 算法介绍
PSO产生背景之二:人工生命
研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、 研究如何利用生物技术研究计算问题。
我们关注的是第二点。已有很多源于生物现象的计算技巧,例如 神经网络和遗传算法。 现在讨论另一种生物系统---社会系统:由简 单个体粒子群优化算法PPT
01
ALGORITHM INTRODUCTION
算法简介
粒子群算法
设想这样一个场景:一群鸟在随 机搜索食物。在这个区域里只有 一块食物。所有的鸟都不知道食 物在那里。但是他们知道当前的 位置离食物还有多远。那么找到 食物的最优策略是什么呢?
最简单有效的就是搜寻目前离食 物最近的鸟的周围区域。
01 算法介绍
01 算法介绍
PSO产生背景之一:CAS
我们把系统中的成员称为具有适应性的主体(Adaptive Agent),简称为主体。所谓具有适应性,就是指它能够 与环境以及其它主体进行交流,在这种交流的过程中 “学习”或“积累经验”,并且根据学到的经验改变自 身的结构和行为方式。整个系统的演变或进化,包括新 层次的产生,分化和多样性的出现,新的、聚合而成的、 更大的主体的出现等等,都是在这个基础上出现的。即 CAS(复杂适应系统)理论的最基本思想

量子行为粒子群优化算法-中文版

量子行为粒子群优化算法-中文版

量子行为粒子群优化
02
算法的实现过程
初始化阶段
01
02
03
初始化粒子群
在解空间中随机初始化一 组粒子,每个粒子代表一 个潜在的解。
初始化粒子速度
为每个粒子随机分配一个 速度,用于控制其位置的 变化。
初始化粒子位置
根据问题的约束条件和目 标函数,为每个粒子随机 分配一个初始位置。
更新阶段
计算适应度值
量子行为粒子群优化算法的基本原理
• 量子行为粒子群优化算法的基本原理是:每个粒子被视为一 个量子比特,其状态由波函数表示。粒子通过不断更新自己 的位置和速度来搜索解空间,同时通过与其它粒子的信息共 享和协作来不断逼近最优解。在更新过程中,粒子不仅受到 自身经验和群体最佳位置的影响,还受到量子旋转门和量子 测量等量子操作的作用,从而在解空间中实现全局搜索和局 部搜索的平衡。
THANKS.
组合优化问题
组合优化问题是指在一组可行解中寻 找最优解的问题,如旅行商问题、背 包问题、图着色问题等。
量子行为粒子群优化算法能够处理这 类问题,通过粒子间的信息共享和协 作,寻找最优解或近似最优解。
机器学习与数据挖掘
在机器学习和数据挖掘领域,量子行为粒子群优化算法可用 于特征选择、模型参数优化和超参数调整等方面。
算法在实际问题中的应用前景
组合优化问题
量子行为粒子群优化算法在求解组合优化问题方面具有优 势,如旅行商问题、背包问题等,有望在实际生产、物流 等领域得到广泛应用。
机器学习与数据挖掘
量子行为粒子群优化算法可用于特征选择、模型参数优化 等方面,为机器学习和数据挖掘提供新的思路和方法。
控制系统优化
在控制系统的参数优化和控制器设计中,量子行为粒子群 优化算法具有潜在的应用价值,有助于提高控制系统的性 能和稳定性。

第7章粒子群优化ppt课件

第7章粒子群优化ppt课件
加速系数(acceleration coefficient),一 般为正常数。学习因子使粒子具有自我总结 和向群体中优秀个体学习的能力,从而向自 己的历史最优点以及群体内或邻域内的历史 最优点靠近。通常等于2。
26
三. 基本PSO(7)
2. 基本PSO公式 粒子的速度被限制在一个最大速度Vmax的
16
二. PSO的基本思想(13)
4.名称的由来:Swarm和Particle Swarm:在美国传统字典中有三个意思 (1)一大群尤指正在行进中的一大群昆虫或其
它细小生物。 (2)蜂群由蜂王带领迁移到别处建立一新据点
的一群蜜蜂。 (3)一大群尤指处于骚乱中或成群出动的一大
批喧闹的人或动物。
17
(Swarm)对多维搜索空间进行搜索,每个 个体在搜索时,考虑到了自己搜索到的历史 最好点和群体内(或邻域内)其他个体的历 史最好点,在此基础上进行位置(状态,也 就是解)的变化
15
二. PSO的基本思想(12)
3. PSO算法概述 这里,多维搜索空间是对人类多维的心理空
间的模仿,个体在搜索时考虑自己的历史最 好点,这是个体经验的积累,同时考虑到群 体内其他个体的历史最好点,这是社会信息 的共享作用和个体本身具有学习能力的表现。
三. 基本PSO(10)
3. 基本PSO步骤
步 4:对每个粒子,将其历史最优适应值与群体内或邻域内所 经历的最好位置的适应值进行比较,若更好,则将其作为当前的 全局最好位置。
步 5:根据式(7.1)和(7.2)对粒子的速度和位置进行更新。 步 6:若未达到终止条件,则转步 2。
30
四. 标准PSO(1)
24
三. 基本PSO(5)
2. 基本PSO公式

粒子群优化算法ppt

粒子群优化算法ppt

联合优化
粒子群优化算法可以用于联合优化神经网络的参数和结构,进一步提高神经网络的性能。
粒子群优化算法在神经网络训练中的应用
粒子群优化算法可以用于优化控制系统的控制器参数,以提高控制系统的性能和稳定性。
控制器参数优化
鲁棒性优化
联合优化
粒子群优化算法可以用于提高控制系统的鲁棒性,以应对系统中的不确定性和干扰。
粒子群优化算法可以用于联合优化控制系统的参数和结构,进一步提高控制系统的性能和稳定性。
03
粒子群优化算法在控制系统中的应用
02
01
06
总结与展望
粒子群优化算法是一种高效的全局优化算法,具有速度快、简单易行、易于并行化等优点。它利用群体智慧,通过粒子间的协作与信息共享,可以快速找到全局最优解。
优点
PSO算法的特点包括:简单易懂、易实现、能够处理高维问题、对初始值不敏感、能够处理非线性问题等。
定义与特点
粒子群优化算法的起源与发展
PSO算法的起源可以追溯到1995年,由 Kennedy 和 Eberhart博士提出,受到鸟群觅食行为的启发。
最初的PSO算法主要应用于函数优化问题,后来逐渐发展应用到神经网络训练、模式识别、图像处理、控制等领域。
边界条件的处理
通过对粒子速度进行限制,可以避免粒子在搜索空间中过度震荡,从而更好地逼近最优解。
粒子速度的限制
实例一
针对函数优化问题,通过对粒子速度和位置进行更新时加入随机扰动,可以增加粒子的探索能力,从而寻找到更好的最优解。
实例二
针对多峰函数优化问题,将粒子的个体最佳位置更新策略改为基于聚类的方法,可以使得粒子更好地逼近问题的全局最优解。
粒子的适应度函数用于评估其位置的好坏。

粒子群优化算法PPT

粒子群优化算法PPT

Swarm Intelligence(续)
Swarm可被描述为一些相互作用相邻个体的集合体, 蜂群、蚁群、鸟群都是Swarm的典型例子。鱼聚集成 群可以有效地逃避捕食者,因为任何一只鱼发现异常 都可带动整个鱼群逃避。蚂蚁成群则有利于寻找食物, 因为任一只蚂蚁发现食物都可带领蚁群来共同搬运和 进食。一只蜜蜂或蚂蚁的行为能力非常有限,它几乎 不可能独立存在于自然世界中,而多个蜜蜂或蚂蚁形 成的Swarm则具有非常强的生存能力,且这种能力不 是通过多个个体之间能力简单叠加所获得的。社会性 动物群体所拥有的这种特性能帮助个体很好地适应环 境,个体所能获得的信息远比它通过自身感觉器官所 取得的多,其根本原因在于个体之间存在着信息交互ce(续)
由于SI的理论依据是源于对生物群落社会性的模拟, 因此其相关数学分析还比较薄弱,这就导致了现有研 究还存在一些问题。首先,群智能算法的数学理论基 础相对薄弱,缺乏具备普遍意义的理论性分析,算法 中涉及的各种参数设置一直没有确切的理论依据,通 常都是按照经验型方法确定,对具体问题和应用环境 的依赖性比较大。其次,同其它的自适应问题处理方 法一样,群智能也不具备绝对的可信性,当处理突发 事件时,系统的反应可能是不可测的,这在一定程度上 增加了其应用风险。另外,群智能与其它各种先进技 术(如:神经网络、模糊逻辑、禁忌搜索和支持向量机 等) 的融合还不足。
Swarm Intelligence(续)
信息的交互过程不仅仅在群体内传播了信息,而 且群内个体还能处理信息,并根据所获得的信息 (包括环境信息和附近其它个体的信息)改变自身 的一些行为模式和规范,这样就使得群体涌现出一 些单个个体所不具备的能力和特性,尤其是对环境 的适应能力。这种对环境变化所具有适应的能力可 以被认为是一种智能(关于适应性与智能之间的关 系存在着一些争议,Fogel认为智能就是具备适应 的能力),也就是说动物个体通过聚集成群而涌现 出了智能。因此,Bonabeau 将SI的定义进一步推 广为:无智能或简单智能的主体通过任何形式的聚 集协同而表现出智能行为的特性。这里我们关心的 不是个体之间的竞争,而是它们之间的协同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档