第七章限制性三体问题

合集下载

第七章限制性三体问题

第七章限制性三体问题
系统的质心 又因为 得到
π2月球质量与地月质量的比值0.01215
第5页/共27页
1.2 限制性三体问题的动力学方程
在BBR坐标系中
dr dr ωr dt I dt R
w=n=sqrt(u/a^3)
u=G(m1+m2) a=r12(即地月距离)
d 2r dt 2
I
d 2r dt 2
R
2ω dr dt

发现了三个平衡点,分别命名为:拉格朗日L1,L2,L3点。
第11页/共27页
1.3 拉格朗日解
地月系统:拉格朗日L1,L2,L3点(π2=0.01214)
第12页/共27页
1.3 拉格朗日解
地月系统5个拉格朗日点(以地球为坐标原点)
第13页/共27页
3/2
1.3 本节作业
作业:计算地月系统5个拉格朗日点(地球为中心)
y2)
1
d dt
1 r1
2
d dt
1 r2
第17页/共27页
2.1 雅可比积分
1 2
dv2 dt
1 2
2
d dt
(x2
y2)
1
d dt
1 r1
2
d dt
1 r2
d dt
1
2
v2
1 2
2 (x2
y2)
1
1 r1
2
1 r2
0
动能
旋转 势能
势能
机械能
1 v2 2
1 2(x2
2
y2 ) 1
1 r1
思考题:拉格朗日存在的力学原理?
d 2r dt 2
R

dr dt

变质量椭圆限制性三体问题

变质量椭圆限制性三体问题

作者: 郑学塘[1];郁丽忠[2]
作者机构: [1]华东工程学院应用物理系;[2]华东工程学院应用物理系
出版物刊名: 南京理工大学学报:社会科学版
页码: 1-6页
主题词: 天体力学 三体问题 平动点 质量天体 琼斯定律
摘要: 该文利用Мещерскuu时空变换和波动坐标系研究了变质量椭圆限制性三体问题,得到小天体在波动坐标系中的运动方程、积分不变式和平动点的位置。

文中指出:当小天体的质量减少时,所有平动点都移向坐标原点,当小天体的质量增加时,所有平动点都离开原点。

三体问题教学教材

三体问题教学教材
一般的三体问题,每一个天体在其他两个天体的万 有引力作用下,其运动方程都可以表示成6个一阶 的常微分方程,因此,一般三体问题的运动方程为 18阶方程,必须得到18个积分才能得到完全解。
然而,现阶段还只能得到三体问题的10个初积分, 远远不足以解决三体问题。
无解?
我们常说的“三体问题无解”,准确地来说,是无 解析解,意思是三体问题没有规律性答案,不能用 解析式表达出来,只能算数值解,没有办法得出精 确值。
三体问题
三体问题
序言
2015年8月23日,被誉为“中国科幻第一人”的刘 慈欣凭借其科幻小说《三体》获得“雨果奖”最佳 长篇小说奖,这是亚洲人首次获得雨果奖,也是中 国科幻第一次获得世界级的认可。在小说中,三体 叛军通过《三体》游戏向社会传播三体文化,游戏 玩家们建立了各种模型来躲避乱纪元、预测恒纪元 的到来。
限制性三体问题
其实,三体运动已经是对实际物理简化得很厉害了 ,比如说对质点,球体自转、形状已经统统不考虑 了,然而即使是这样,牛顿、拉格朗日、拉普拉斯 、泊松、雅可比、庞加莱等等大师们为这个问题穷 尽精力,也未能将它攻克。
科学发展到现在,三体问题的求解和应用其实就是 一部心酸的简化史。
研究三体问题的意义
然而其他的解就复杂得多了。比如被他们起名为“ 纱线”的解,在形状球空间中的形状就像一个线团
,而在实际空间中,轨道的样子就像一大坨意大利 面(RAmen!)。Šuvakov and Dmitrašinović根据此方法 把所有已发现的通解,包括前人发现的那些,总共 分成了16族。他们又根据对称性和其他性质将这16 族解分成了4大类,其中第一类囊括了所有前人发 现的特解。
(1)、8字型族——三个物体在一条8字形的轨道上互 相追逐。

关于一些特殊的限制性三体问题的讨论

关于一些特殊的限制性三体问题的讨论

关于一些特殊的限制性三体问题的讨论一般来说,三体问题是不可积的,因此我们需要做一些近似。

其中很重要的一类就是限制性三体问题,这也是很多实际问题的很好的近似模型,例如,研究卫星的轨道演化的时候,不妨引入太阳+行星+无质量的测试粒子的模型,亦如研究太阳系主带小行星或者柯伊伯带天体的时候,也可以简化成太阳+木星或者海王星+无质量的测试粒子的模型;这些都是真实情况的很好近似。

特别的,我们所感兴趣的是等级式的系统(系统可以分成内部轨道和外部轨道因而保证了系统的稳定性),大体来说,限制性等级式三体问题可以分成外限制(测试粒子在外部轨道)和内限制(测试粒子在内部轨道)两种,我们在第一章和第二章中分别做讨论。

在对外限制问题的讨论中,我们利用展开了的摄动函数,得到最低阶的一个可积的系统,由此得出,这时候测试粒子的升交点经度可能会平动,并且此时伴有较高的倾角;更一般的,我们介绍了这个系统的演化特性。

而后我们引入高阶影响,特别关注了此时的偏心率的演化。

在近共面的情况下,我们得到此时的偏心率激发和共面情况没有(明显)差别的结论;在近极轨的条件下,我们发现,此时偏心率的激发可能会依赖初始的倾角的不同而分为两种情况,这是因为这两种不同的激发在相图中属于不同的平动区的缘故;并且,当轨道属于高激发区域时,偏心率可以从近零激发到0.3,这会极大的影响这种轨道的轨道稳定性,事实上,我们利用这种偏心率激发机制可以很好的限制环高偏心率双星的高倾角轨道的稳定性。

在对内限制问题的研究中,我们关注的重点是外部天体的平运动与内部测试粒子的进动频率相当的时候所引起的近共振的影响。

在共面的假设下,我们推导了含有偏心率的哈密顿量,并利用此时发生倍周期分叉临界点可以得出关于稳定性边界的限制。

我们也推导了高阶的描述倾斜轨道的演化的哈密顿量。

天体的中三体问题

天体的中三体问题

天体中的三体问题韩博伟谈三体问题算是经典力学里面的天体力学的老难题了,从牛顿那个时候起就是物理学家和数学家的恶梦。

先说一下什么叫三体。

用物理语言来说,在一个惯性参考系中有N个质点,求解这N个质点的运动方程就是N体问题。

参考系是惯性参考系,也就是说不受系统外的力的作用,所有的作用力都来自于体系内的这N个质点之间。

在天体力学里面,我们通常就只考虑万有引力。

用数学语言来说,经典力学的N体问题模型就是,在三维平直空间里有N个质点,每个质点的质量都已知而且不会变化。

在初始时刻,所有质点的位置和速度都已知。

每个质点都只受到来自其它质点的万有引力,引力大小由牛顿的同距离平方成反比的公式描述。

要求解的就是,任意一个时刻,某个质点的位置。

N=2,就是二体问题。

N=3,也就是我们要说的三体问题了。

N=2的情况,早在牛顿时候就已经基本解决了。

学过中学物理后,大家都会知道,两个质点在一个平面上绕着共同质心作圆锥曲线运动,轨道可以是圆、椭圆、抛物线或者双曲线。

然而三体运动的情况就糟糕得多。

攻克二体问题后,牛顿很自然地开始研究三体问题,结果也是十分自然的——头痛难忍。

牛顿自述对付这种头痛的方法是:用布带用力缠紧脑袋,直至发晕为止—虽则这个办法治标不治本而且没多少创意,然而毕竟还是有效果的。

其实,三体运动已经是对物理实际简化得很厉害了。

比如说对质点,自转啦、形状啦我们统统不用考虑。

但是只要研究实际的地球运动,就已经比质点复杂得多。

比如说,地球别说不是点,连球形都不是,粗略看来是个赤道上胖出来一圈的椭球体。

于是,在月球引力下,地球的自转轴方向就不固定,北极星也不会永远是那一颗。

而考虑潮汐作用时,地球都不能看成是“硬”的了,地球自转也因此越来越慢。

然而即使是极其简化了的三体问题,牛顿、拉格朗日、拉普拉斯、泊松、雅可比、庞加莱等等大师们为这个祭坛献上了无数脑汁也未能将它攻克。

当然,努力不会完全白费的,许多有效的近似方法被鼓捣了出来。

受摄圆型限制性三体问题平动点渐近稳定性法则及应用

受摄圆型限制性三体问题平动点渐近稳定性法则及应用

收 稿 日期 :0 0—0 21 5—1 。 2
基 金项 目 : 西 省 白然 科 学 基 金 资 助 项 目( 5 12 ) 江 西 省 教 育 厅 科 技 项 F( J 8 7 ) 江 0 10 5 ; 1GJ 37 。 0 作 者简 介 : 云 辉 (97一) 男 , 师 , 士 。 易 17 , 讲 硕

)~ ) + =0 ( ) 。 Y+( ( ) 2 ) +( ) =0 ㈩ ( n+ )
: :。


) +( 。
2 :

这 里 (
) = ( F ) I 。 F, …


0( , 方 程 ( ) ( )式 得 ( Y , ) 解 2 、3 , ) 即可 得 受 摄 动
第3 5卷 第 1 期 2 1 年 2月 01
南 昌 大 学 学报 ( 科 版 ) 理 J un l f a e a g U i ri ( aua S i c ) o ra o N n h n nv s y N trl c n e e t e
V0 . 5 No 1 3 .1 Fe 2 b. 011

要 : 用 著 名 的 霍 尔 维 茨 ( uwt) 理 , 到 r受 摄 圆型 限 制 性 三 体 问 题 平 动 点 稳 定 的一 个判 别 条 件 , 应 用 利 H ri 定 s 得 并
它 讨 论 了与 速 度 有 关 的外 力摄 动 对 圆型 限制 性 三 体 问题 三 角 平 动 点 稳 定 性 影 响 , 进 了文 I 的 主要 结 论 。 改 2中

十 二= + , 2 F
() 1
后 的平动点 ( , ) , 。 一 易知 系统 ( )的平动点 ( , )特征 方程为 1 Y

限制性三体问题和拉格朗日点的研究

限制性三体问题和拉格朗日点的研究

摘要:详细分析并得出了限制性三体问题中的力学模型,并绘制了势能分布图。

提出了一种迭代计算拉格朗日点附近物体运动轨迹的方法。

结合得到的势能分布图,对每个拉格朗日点的特性进行了详细的描述。

关键词:拉格朗日点限制性三体问题力学特性限制性三体问题和拉格朗日点的研究文/仲泽昂在宇宙中,三体问题是一种广泛存在的相互作用系统。

早在十八世纪就由牛顿、拉格朗日等人开始了对它的研究。

而在很多情况下,例如考虑发射人造卫星,计算质量较小的卫星(如木星周围的特洛伊群小行星带)的轨迹时,就可以假定其中一个质点的质量相对于另两个可忽略不计,即以限制性三体问题为模型进行简化。

而拉格朗日点是限制性三体问题的解。

其解共有五个,前三个由欧拉算出,后两个由拉格朗日算出。

其中有两个是稳定的解,即在受外力后有回到原来的相对位置的趋势。

在这五个点上的质点将总是相对于另两个静止,这作为一特性已被广泛应用在天文学、航空航天等领域。

以日地系统为例,L1 点位于地球和太阳中间,适合停留空间太阳望远镜等设备,方便对太阳的直接观测。

L2点处背离太阳和其他干扰,可以实现低损伤,低油耗的停留,适宜停驻空间天文台,在深空天体特别是红外波段的观测中有着无可比拟的优势。

在本文中,我们将会对限制性三体问题进行力学分析,求出势能模型,并使用MATLAB 对限制性三体问题的模型画图。

通过分析各个特征点的周围势能的分布情况,以及所处的位置情况,对拉格朗日点的特性进行分析。

一、限制性三体问题的势能模型在限制性三体问题中,将质量较小的研究对象的质量计为m ,体系中另外两个质点的质量分别为M 1,M 2。

由限制性三体问题定义有:以M 1,M 2为参考系,对于研究对象m ,由万有引力提供向心力,且受系统转动而产生的惯性力。

系统将在同一平面内做角速度为ω的转动,其转动圆心为M 1,M 2的质心[1]。

设万有引力常量为r ,与M 1,M 2的质心间的距离为。

由牛顿第二定律,可得:上式中,第一项为M 1和m 之间的引力,第二项为M 2和m 之间的引力,第三项为旋转过程中m 所受的离心力。

中学物理解答限制性三体问题的讨论

中学物理解答限制性三体问题的讨论

中学物理解答限制性三体问题的讨论
限制性三体问题是物理学中比较有挑战的问题,也是一个不知道结论的
难题。

它涉及三个物体的相互作用,物体之间没有外力耦合且物体之间受到
引力,而且这个问题存在着对称性,没有解决办法,具体到这三个物体之间
受到指定引力作用,讨论其形成的结果。

回归到实际,我们可以考虑三个相同质量的星球,它们受到其他星球的
引力作用,这样也就形成一个方阵的形状。

这里的关键是物体之间的力矩,
三个物体的力矩之和必须为零,才能确保物体不会发生运动。

这显然意味着
物体之间的距离也是有限的,即使受到的力越来越大,它们还是会保持一个
固定的形状,也就是不断发生变形但总体不会偏离一个特定的位置。

三体问题实际上只有无穷多种解,这也是这个问题非常复杂的原因,一
不小心就会让物体进入到一个不稳定的状态,而这个状态的变形甚至会导致
物体之间的碰撞。

总体而言,解决带有限制性的三体问题是非常困难的任务,需要很高的数学计算能力,同时要利用力学中约束着运动物体的有限条件来
求解,以使三个物体能够不断稳定地发生变形,以便能够以一种较好的状态
来构成我们所想要的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 算例
结论:10m/s左右的速度冲量,对探测器可达 到的访问范围有巨大的影响。
授课内容
1. 限制性三体问题的拉格朗日解 2. 雅可比约束 3. 具体应用
具体应用
天然的天文观测点:韦伯太空望远镜,2018年放 置于太阳─地球的第二拉格朗日点 天然的通信中继站:嫦娥4号将在地月拉格朗日2 点放置一颗数据中继卫星,实现月球背面的通信。
z
2
r23
z
z=0,平衡点在 天体运动平面内
1.3 拉格朗日解
2x
1
r13
(x2r12)
2
r23
(x1r12)
2
y
1
r13
y
2
r23
y
G(m1m2)
r132
r132
1.3 拉格朗日解
当 拉格朗日L4,L5点
1.3 拉格朗日解

发现了三个平衡点,分别命名为:拉格朗日L1,L2,L3点。
1.3 拉格朗日解 地月系统:拉格朗日L1,L2,L3点(π2=0.01214)
r232(xx& y& yzz& 1r12x& )
2.1 雅可比积分
1 2d d v t21 22d d t(x2y2)1d d tr 1 12d d tr 1 2
2.1 雅可比积分
1 2d d v t21 22d d t(x2y2)1d d tr 1 12d d tr 1 2
d dt 1 2v21 22(x2y2)1r 1 12r1 2 0
r132iz
1.2 限制性三体问题的动力学方程
系统的质心 又因为
得到 π2月球质量与地月质量的比值0.01215
1.2 限制性三体问题的动力学方程
在BBR坐标系中
dr dr ωr dt I dt R
w=n=sqrt(u/a^3)
u=G(m1+m2) a=r12(即地月距离)
d2r d2r 2ω dr ω & rω ω r
请批评指正!
2.1 雅可比积分
x&&x&x&2y&x&2x
1
r13
x&(x 2r12)
2
r23
x&(x1r12)
y&&y& &
y&2x& y&2y
1
r13
y&y
2
r23
y&y
z&&z&1 zz& 2 zz&
r13
r23
x& & x& y& & y& & z& & z& 2xx& yy& r131(xx& y& yzz& 2r1
1r12 )
&y& 2x&2 y 1 y 2 y
&
r13
r23
&z&
1
r13
z
2
r23
z
限制性三体动力学方程, 没有一般的解析解!
1.3 拉格朗日解
平衡点:状态变量时间变化率为0的点。
2x
1
r13
(x
2r12 )
2
r23
(x
1r12 )
2 y
1
r13
y
2
r23
y
0
1
r13
第七章 限制性三体问题
主讲教师:杏建军 2020年4月27日
授课内容
1. 限制性三体问题的拉格朗日解 2. 雅可比约束 3. 具体应用
1.1 三体问题的定义
天体力学术语 二体问题:研究两个天体相互吸引下的相对运动。 N体问题:研究N个天体相互吸引下的相互运动。 三体问题:研究三个天体相互吸引下的相互运动。 限制性三体问题:当其中一个天体质量相对其他两个天体 为小量,不会对其他两个天体运动造成影响的三体问题。
dt2 dt2
I
R
dtR
叉乘求积时,先写出各分量,运
d2r
dr
F
dt2
2ω dt
R
ωωr
R
m
算即得。
w=【0;0;w】 r=【x;y;z】
m FGr1m31r1 Grm 232 r2
dr/dt=[dx/dt;dy/dt;dz/dt]
1.2 限制性三体问题的动力学方程
&x&
2y&2x
1
r13
(x
2r12
1.3 拉格朗日解 地月系统5个拉格朗日点(以地球为坐标原点)
3 /2
1.3 本节作业
作业:计算地月系统5个拉格朗日点(地球为中心)
思考题:拉格朗日存在的力学原理?
d2r
dr
F
dt2
2ω dt
R
ωωr
R
m
向心加 速度
引力加 速度
ωωr F m
授课内容
1. 限制性三体问题的拉格朗日解 2. 雅可比约束 3. 具体应用
日-地-月系统为一个三体问题(研究月球运动问题) 地-月-探测器为一个限制性三体问题(研究月球探测)
1.2 限制性三体问题的动力学方程
m
m2 r
s
m1
& r&Grm 31rGm2
sr sr3
ss3
1.2 限制性三体问题的动力学方程
Body-Body-Rotation,BBR
iz
G(m1r132 m2)iz
动能
旋转 势能
势能
机械能
1 2v21 22(x2y2)1r 1 12r1 2C
2.2 零速度面
2(x2y2)2122+2Cv20
r1 r2
地月系统
2.2 零速度面
2.2 零速度面
2.3 算例
探测器在地月连线, 距离地面200 km的 高度加速
1 2v21 22(x2y2)1r 1 12r1 2C
相关文档
最新文档