数列求通项的方法(完整版本)

合集下载

求数列通项公式方法归纳(十种方法)

求数列通项公式方法归纳(十种方法)

求数列通项公式方法归纳(十种方法)求数列通项公式方法归纳一、公式法【例1】已知数列{an}满足,,求数列{an}的通项公式。

,则,故数列{是2222222aan323以1为首项,以为公差的等差数列,由等差数列的通项公式,得,2222231所以数列{an}的通项公式为。

22解:两边除以,得an二、累加法【例2】已知数列{an}满足,,求数列{an}的通项公式。

解:由得则212所以数列{an}的通项公式为。

【例3】在数列{an}中,,求通项公式an.解:原递推式可化为:1111n2,13 1n1314,……,1逐项相加得:1n. 故1n【例4】已知数列{an}满足,,求数列{an}的通项公式。

解:由得则所以【例5】已知数列{an}满足,,求数列{an}的通项公式。

解:两边除以,得则an3n2313,an3n13,故an3nan323 nn1313 na23 2a13a13313 233313 23311 因此an3 n23nn2n312n,则12.【例6】在数列中,且,求通项an.2【小练】:已知{an}满足1求{an}的通项公式。

*,已知{an}的首项,n()求通项公式。

an已知{an}中,,,求。

2三、累乘法类型型【例7】已知数列{an}满足,,求数列{an}的通项公式。

解:因为,,所以,则ana3a2a2a1,故n212所以数列{an}的通项公式为2【例8】已知数列{an}满足,,求{an}的通项公式。

解:因为所以用②式-①式得则①②故所以ana3a2n!2a2.③由,取得,则,又知,则,代入③得n!2。

3所以,{an}的通项公式为n!2.【例9】在数列中,,,求通项an.解:由条件等式an得,a2a111,得1n.练习:1、已知:13,{a}()求数列n的通项。

2、已知{an}中,an且求数列通项公式。

四、待定系数法型n【例10】已知数列{an}满足,,求数列的通项公式。

n解:设④将代入④式,得,等式两边消去2an,得代入④式得,两边除以5,得则⑤nnn由及⑤式得,则11nn,则数列{an是以n为首项,以2为公比的等比数列,则,故。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。

这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。

下面我们逐个讲解这些重要的方法。

递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。

这种方法有两种类型。

第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。

第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。

其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。

只要适合an=an-1+f(n)的形式,都可以使用累加法。

基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。

+f(n)。

因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。

它的基本书写步骤格式是:an=a1*f(2)*f(3)*。

*f(n)。

以上是数列通项公式的三种求法。

2.改写每段话:首先,我们来看等式左右两边的乘积。

左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列求通项公式完美版八种方法

数列求通项公式完美版八种方法

数列求通项公式的方法(八种方法)(一)由数列的前几项求数列的通项公式(观察法)1.(1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n=________.(2)数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式a n=________.解析:(1)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n=(-1)n1n(n+1).(2)数列{a n}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n=2n+1n2+1.答案:(1)(-1)n1n(n+1)(2)2n+1n2+1由数列的前几项求数列通项公式的策略根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.(二)由a n与S n的关系求通项a n(公式法)2.(2017·东营模拟)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.解析:(1)令n=1时,T1=2S1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,∴a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.1.规律方法已知S n求a n的3个步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.(三)由递推关系求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有:(1)形如a n +1=a n f (n ),求a n . (累乘法) (2)形如a n +1=a n +f (n ),求a n . (累加法)(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . (构造法一)(4)形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n . (取倒数法,构造二)命题点1 形如a n +1=a n f (n ),求a n3.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解析:因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .命题点2 形如a n +1-a n =f (n ),求a n4.在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. 解析:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2. 命题点3 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n5.在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式.解析:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n-1-1.1111()n n n n n n n n a pa qa a xa pa q x px q x a x p a x ++++=+===+⇒=+⇒-=-数列第一类型解释:代换 代入 原式命题点4 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n6.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解析:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).课堂练习 a n 与S n 的关系求通项a n (公式法)1.已知数列{}n a 的前n 项和为23nn S =-,则n a = .2.已知n S 是数列{}n a 的前n 项和,且11=a ,12n n na S +=.则n a = .3.数列{}n a 满足112n n S a =-,则n a = . 4.若数列{a n }的前n 项和为S n ,且满足S n =32a n -3,则数列{a n }的前n 项和S n 等于5.各项为正数的数列{}n a 满足2421n n n a S a =--(*n ∈N ),其中n S 为{}n a 前n 项和.(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式6.已知2a 、5a 是方程027122=+-x x 的两根,数列{}n a 是递增的等差数列,数列{}n b 的前n 项和为n S ,且n n b S 211-=(*∈N n ).求数列{}n a ,{}n b 的通项公式; 7.已知数列{}n a 的前n 项和为S n ,且312n n S a =-*()n ∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.8.数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ; ( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.9、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法)10、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列求通项的方法总结

数列求通项的方法总结

数列求通项的方法总结数列求通项的方法总结按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。

为大家总结数列求通项的方法,一起来看看吧!一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an解:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an 解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3 故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an解:在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan) 也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3 可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的`等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)例题1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.解:当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an解:即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-12、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1。

数列通项公式方法大全很经典

数列通项公式方法大全很经典

1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

数列求通项公式方法(大全)

数列求通项公式方法(大全)

求数列通项公式方法一、公式法(定义法)根据等差数列、等比数列的定义求通项( 、 ) 1、数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;2、已知数列}{n a 满足211,211=-=+n n a a a ,求数列{}n a 的通项公式;3、已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;4、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

d a a n n =--1q b b n n =-1二、累加法适用于: )(1n f a a n n +=+,如221++=+n a a n n 、nn n a a 21+=+等若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑1、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式;2、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;3、已知数列{}n a 满足nn a a a n n -+==+2111,21,求数列{}n a 的通项公式;三、累乘法适用于: n n a n f a )(1=+,即 若1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 1、已知数列{}n a 满足n n n a n a ⨯⋅+=+5)1(21,31=a ,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、连续迭代型:形如 an2 pan1 qan (其中 p,q 均为常数) 。先把原递推公式转化为
s t p an2 san1 t (an1 san ) 其中 s,t 满足 st q
2、设等比数列 an 1 f (n) ,公比为 4、比较系数求 1 , 2
3、列出关系式 an1 1 f (n 1) 2 [an 2 f (n)] 5、解得数列 an 1 f (n) 的通项公式
6、解得数列 an 的通项公式
为了方便同学们更好地掌握待定系数法求通项,以下再进行分类。 1)常数型。可转化为特殊数列{a n +k}的形式求解。一般地,形如 a n1 =p a n +q(p≠1,pq ≠0)型的递推式均可通过待定系数法对常数 q 分解法:设 a n1 +k=p(a n +k)与原式比较 系数可得 pk-k=q,即 k= 系数就行。 1、数列{a n }满足 a 1 =1, 3an1 an 7 0 ,求数列{a n }的通项公式。
2. 已知数列 {an } 满足 a1 2,
1 a n 1

1 2 ,求数列 an 的通项公式; an
3. 已知数列 {an } 满足 a1 2, an 3an1 (n 1) ,求数列 {an } 的通项公式;
4.已知数列 {an } 满足 a1 2,a2 4且an2 an an1 公式;
高中数学常见求数列通项的方法
一、公式法。即是题目说清楚该数列是等比或者等差数列时,直接套用公式。但是难点在 于,一旦给出的条件,不是具体的数字而是字母参数时,就是对个人运算能力的考验。 1.已知数列 {an } 满足 a1 2, an an1 1(n 1) ,求数列 {an } 的通项公式;
k 1
n
2、已知数列 {an } 满足 an1 an 2 3n 1 ,a1 3 ,求数列 {an } 的通项公式。
3、设数列 {an } 满足 a1 2 , an1 an 3 2
2 n1
,求数列 {an } 的通项公式
中档题: 1.(2008 江西文、理)在数列 an 中, a1 2, an 1 an ln 1 A. 2 ln n B. 2 n 1 ln n
1 1 a1 ……4 分 2 2
1 的等比数列……5 分, 2
an 的通项公式为 an
1 ( ) n 1 ……6 分. 2
( 3 ) 累 加 法 : 适 合 an 1 an f (n) 型 的 递 推 数 列 。 若 an1 an f (n) (n 2) , 则
a2 a1 f (1) a3 a2 f (2) an 1 an f (n)
基础题: 1、已知数列 {an } 满足 an1 an 2n 1 ,a1 1 ,求数列 {an } 的通项公式。 将式子列出后, 两边分别相加得 an 1 a1
f ( n)
2an1 2an S n S n1 0 ,即 2an1 2an an 0 , a n 1
又当 n 1 时, 2a2 S1 2 2a2 a1 2 0 , a 2 所以 an 是首项 a1 1 ,公比 q
1 a n ……3 分 2
、 0,a 0) 3)一次函数、二次函数或者混合型。 an1 pan an b ( p 1
解 法 : 这 种 类 型 一 般 利 用 待 定 系 数 法 构 造 等 比 数 列 , 即 令
an1 x(n 1) y p(an xn y) , 与 已 知 递 推 式 比 较 , 解 出 x, y , 从 而 转 化 为
解:将 an 3n 2an1 两边同除 3 ,得
n
1 、已知数列 an 中, a1
5 1 1 n 1 , a n 1 a n ( ) ,求 an 。 6 3 2
2、设数列 an 的前 n 项的和 S n
4 1 2 a n 2n 1 , n 1, 2,3, 求首项 a1 与通项 an ; 3 3 3
3、已知数列 {an } 满足 an1 2an 4 3n1,a1 1,求数列 an 的通项公式。
4、已知数列 {an } 满足 an1 2an 3n2 4n 5,a1 1,求数列 {an } 的通项公式。 解:设 an1 x(n 1)2 y(n 1) z 2(an xn2 yn z)
3、已知数列 an 满足 a1 4、已知 a1 3 , a n 1
2 n a n ,求 an 。 , a n 1 3 n 1 3n 1 a n (n 1) ,求 an 。 3n 2
三、待定系数法 解题基本步骤: 1、确定 f ( n)
适用于 an1 qan f (n) 型的递推数列
2、 (江门市 2013 届高三上学期期末)设数列 an 的前 n 项和为 S n , a1 1 ,且对任意正 整数 n ,点 (an1 , S n ) 在直线 2 x y 2 0 上. ⑴求数列 an 的通项公式; 解:因为点 (an1 , S n ) 在直线 2 x y 2 0 上,所以 2an 1 Sn 2 0 ……1 分, 当 n 1 时, 2an S n1 2 0 ……2 分,两式相减得
an 2a 1 an 2 a n 1 1 n 1 n n n 3 3n 1 3 3 3 an 2 2 2 1 设 bn n ,则 bn 1 bn 1 .令 bn t (bn 1 t ) bn bn 1 t 3 3 3 3 3 a 2 8 条件可化成 bn 3 (bn 1 3) , 数列 bn 3 是以 b1 3 1 3 为首项, t 3. 3 3 3 an 2 8 2 n 1 为公比的等比数列. bn 3 ( ) .因 bn n , 3 3 3 3 8 2 a n bn 3n 3n ( ( ) n 1 3) an 3n1 2n2 . 3 3 点评:递推式为 an1 pan q n1 (p、q 为常数)时,可同除 q n1 ,得 an1 p an a 从而化归为 an1 pan q (p、q 为常数)型. n 1 ,令 bn n n 1 q q q qn
1、已知数列 {an } 满足 an1 2an 3 5n,a1 6 ,求数列 an 的通项公式。 解:设 an1 x 5n1 2(an x 5n )
2. 已知数列 {an } 满足 an1 3an 5 2n 4,a1 1,求数列 {an } 的通项公式。 解:设 an1 x 2n1 y 3(an x 2n y)
2) 、指数型。 an1 pan q n 对于这种类型,方法往往是两边同时除以该指数幂,至于除 以多少,则是根据下标同步的原则来决定。 (其中 p,q 均为常数,( pq( p 1)(q 1) 0) ) 。 (或 an1 pan rqn ,其中 p,q, r 均为常数) 。解法:一般地,要先在原递推公式两边 同除以 q
C. 2 n ln n
1 ,则 an =( A ) n D. 1 n ln n
(4)累乘法:适合 an1 f (n)an 型的递推数列。

an1 a a a f (n) ,则 2 f (1),3 f (2), ,n 1 f (n) an a1 a2 an
2
(n N) ,求数列 an 的通项
二、两式相减法。若已知数列的前 n 项和 S n 与 an 的关系,求数列 an 的通项 an 可用公式

S1 n 1 求解。 此种类型, 往往先求 n=1 的情况, 得到基本的分数。 an Sn Sn 1 n 2 S n n 1 a 并且利用公式 an 求解时,要注意对 n 分类讨论,观察 1 是否满足 S n S n1 n 2 a 通项 n ,不满足就分开写,但若能合写时一定要合并.
an xn y是公比为 p 的等比数列。而对于更普遍的 an1 qan f (n)
型的递推数列,
都可以设等比数列 an 1 f (n) ,列出关系式 an1 1 f (n 1) 2 [an 2 f (n)] 比较系数求 1 , 2 ,解得数列 an 1 f (n) 的通项公式,再解得数列 an 的通项公式 例:设数列 an : a1 4, an 3an1 2n 1, (n 2) ,求 an .
n an1 a1 f (k ) a1 k 1
两边分别相乘得, 基础题:
1、 在数列 an 中,a1
1 n 1 1 , an an 1 (n 2) , 求数列 {an } 的通项公式。an = 2 n 1 n(n 1)
2、 已知数列 {an } 满足 an1 2(n 1)5n an,a1 3 ,求数列 {an } 的通项公式。
q ,从而构造出等比数列{a n +k}。不用硬记公式,学会对应 p 1
7 3 1 k 7 7 设 a n 1 k (a n k ) ,比较系数得 k 解得 k 3 3 3 4 7 1 7 7 3 ∴{ a n }是以 为公比,以 a1 1 为首项的等比数列 4 3 4 4 4 7 3 1 n 1 7 3 1 n 1 ∴ a n ( ) a n ( ) 4 4 3 4 4 3
n 1
,得:
an1 p an 1 a ) ,得: n 引 入 辅 助 数 列 bn ( 其 中 bn n n 1 q q q q qn
相关文档
最新文档