两条直线的位置关系(高二文科数学第一轮复习)

合集下载

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系

高考数学一轮总复习教学课件第八章 平面解析几何第2节 两条直线的位置关系


过点(1, ),和 A,B 等距离的直线与 AB 平行,或过 AB 的中点 M,


所以所求直线的方程为 y- = (x-1)或 x=1,即 21x-28y-13=0 或 x=1.

考点三
对称问题
角度一
轴对称
[例3] 已知点A(0,2),直线l1:x-y-1=0,直线l2:x-2y+2=0.点A关于
则a=
2
,b=
-2
.
解析:将P(2,1)分别代入直线l1:x+ay-4=0与l2:bx-y+5=0的方程可
得a=2,b=-2.
5.两条平行线4x+3y-1=0与8x+6y+3=0之间的距离是


.
解 析 : 直 线 4x+3y-1=0 可 化 为 8x+6y-2=0, 直 线 8x+6y-2=0 与 直 线

B.

C.


D.



解析:由题意3(a-1)+1×(-a)=0,解得 a= .故选B.
3.已知点P(3,1)到直线l:x+ay-3=0的距离为
解析:由点到直线的距离公式得
|+-|
+



,则a=

±
=,解得 a=± .
.
4.若直线l 1 :x+ay-4=0与直线l 2 :bx-y+5=0的交点坐标是P(2,1),
斜率等于零.
(3)直线的一般式中有关结论记忆时要利用直线Ax+By+C=0
(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A),并结合

2022届高考数学一轮复习(新高考版) 第8章 两条直线的位置关系

2022届高考数学一轮复习(新高考版) 第8章  两条直线的位置关系

√A.6x-4y-3=0
C.2x+3y-2=0
B.3x-2y-3=0 D.2x+3y-1=0
解析 因为抛物线 y2=2x 的焦点坐标为12,0, 直线 3x-2y+5=0 的斜率为32, 所以所求直线 l 的方程为 y=32x-21,
化为一般式,得6x-4y-3=0.
4.已知三条直线2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能构成三 角形,则实数m的取值集合为
解析 由题意得,点 P 到直线的距离为|4×4-35×a-1|=|15-5 3a|. 又|15-5 3a|≤3,即|15-3a|≤15,解得 0≤a≤10,
所以a的取值范围是[0,10].
4.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则
29
|PQ|的最小值为__1_0___.
题型二 两直线的交点与距离问题
自主演练
1.已知直线y=kx+2k+1与直线y=-
1 2
x+2的交点位于第一象限,则实
数k的取值范围是__-__16,__12__.
解析
y=kx+2k+1, 由方程组y=-12x+2,
x=22-k+41k, 解得y=62kk++11.
(若 2k+1=0,即 k=-12,则两直线平行)
知识梳理
一、两条直线的平行与垂直 1.两条直线平行 (1)对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔ k1=k2 . (2)当直线l1,l2不重合且斜率都不存在时,l1∥l2. 2.两条直线垂直 (1)如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔ k1·k2=-1 . (2)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.

2021高考一轮复习 第二十七讲 两条直线的位置关系

2021高考一轮复习 第二十七讲 两条直线的位置关系

2021高考一轮复习第二十七讲两条直线的位置关系一、单选题(共10题;共20分)1.(2分)设不同直线l1:x−my+1=0,l2:(m−1)x−2y−2=0,则“ m=2”是“ l1//l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2分)若a,b为正实数,直线2x+(2a−3)y+2=0与直线bx+2y−1=0互相垂直,则ab的最大值为()A.32B.98C.94D.3√243.(2分)两平行直线kx+6y+2=0与4x−3y+4=0之间的距离为()A.15B.25C.1D.654.(2分)已知直线l经过点(1,﹣2)且与直线2x+3y=1垂直,则l的方程为()A.2x+3y+4=0B.2x+3y﹣8=0C.3x﹣2y﹣7=0D.3x﹣2y﹣1=05.(2分)已知m为实数,直线l1:mx+y−1=0,l2:(3m−2)x+my−2=0,若l1//l2,则实数m的值()A.2B.1C.1或2D.0或136.(2分)已知M(−2,3),N(6,2),点P在x轴上,且使得PM+PN取最小值,则点P的坐标为()A.(−2,0)B.(125,0)C.(145,0)D.(6,0)7.(2分)点P(2,3)到直线:ax+(a−1)y+3=0的距离d最大时,d与a的值依次为() A.3,-3B.5,2C.5,1D.7,18.(2分)直线l1:5x+12y+3=0与l2:10x+24y−7=0的距离为()A.14B.12C.113D.2139.(2分)已知直线l1:(m−4)x+4y+1=0和l2:(m+4)x+(m+1)y−1=0,若l1⊥l2,则实数m的值为()A.1或−3B.12或−13C.2或−6D.−12或2310.(2分)已知m,n,a,b∈R,且满足3m+4n=6,3a+4b=1,则√(m−a)2+(n−b)2的最小值为()A.√3B.√2C.1D.12二、多选题(共2题;共6分)11.(3分)若两条平行直线l1:x−2y+m=0与l2:2x+ny−6=0之间的距离是2√5,则m+n的可能值为()A.3B.-17C.-3D.1712.(3分)两直线(m+2)x−y+m=0,x+y=0与x轴相交且能构成三角形,则m不能取到的值有()A.−3B.−2C.−1D.0三、填空题(共8题;共10分)13.(2分)设直线l的方程为(a+1)x+y+2−a=0,则直线l经过定点;若直线l在两坐标轴上的截距相等,则直线l的方程为.14.(1分)已知直线l1:4x+2y−7=0和l2:2x+y−1=0,直线m分别与l1,l2交于A,B两点,则线段AB长度的最小值为.15.(1分)直线l1:x−1=0和直线l2:√3x−y=0的夹角大小是16.(1分)已知点A(2,1),点B(5,−1),则|AB|=.17.(1分)不论m取什么实数,直线(2m−1)x+(m+3)y−(m−11)=0都经过一个定点,则这个定点为.18.(1分)点P(−3,2,1)关于点Q(1,2,−3)的对称点M的坐标为.19.(1分)如果平面直角坐标系中的两点A(a−1,a+1) ,B(a,a)关于直线L对称,那么直线L 的方程为.20.(2分)已知直线l1:x−y+1=0与l2:x+ay+3=0平行,则a=,l1与l2之间的距离为四、解答题(共2题;共20分)21.(10分)已知直线l:kx−y+1+2k=0(k∈R)(1)(5分)证明:直线l 过定点;(2)(5分)若直线l交x轴负半轴于点A ,交y轴正半轴于点B,O为坐标原点,设△AOB 的面积为S,求S的最小值及此时直线l的方程.22.(10分)已知两条直线L1:ax−by+4=0和L2:(a−1)x+y−√2=0,求分别满足下列条件的实数a,b的值.(1)(5分)L1⊥L2,且L1过点(−3,−1);(2)(5分)L1//L2,且坐标原点到直线L2的距离为1.答案解析部分1.【答案】C【解析】【解答】当 m =2 时,代入两直线方程中,易知两直线平行,即充分性成立 l 1//l 2 时,显然 m ≠0 ,从而有 −2+m(m −1)=0 ,解得 m =2 或 m =−1 , 但当 m =−1 时,两直线重合,不合要求,故必要性成立. 故答案为:C【分析】根据两条直线平行的条件,求得m 的值,就可以判断是“ m =2 ”是“ l 1//l 2 ”的什么条件.2.【答案】B【解析】【解答】解:由直线 2x +(2a −3)y +2=0 与直线 bx +2y −1=0 互相垂直所以 2b +2(2a −3)=0 即 2a +b =3又a 、b 为正实数,所以 2a +b ≥2√2ab即 2ab ≤(2a+b 2)2=94,当且仅当a =34 ,b =32 时取“=”;所以 ab 的最大值为 98 .故答案为:B【分析】由两直线垂直求出 2a +b =3 ,再利用基本不等式求出 ab 的最大值.3.【答案】C【解析】【解答】解:因为直线 kx +6y +2=0 与 4x −3y +4=0 平行,所以 k =−8 ,将 4x −3y +4=0 化为 −8x +6y −8=0 , ∴两条平行线之间的距离d = |2+8|√8+6 = 1 ,故答案为:C.【分析】根据两条直线平行,计算k 的值,然后将直线化相等的系数,再利用两条平行线之间的距离公式即可得出.4.【答案】C【解析】【解答】由直线 l 与直线 2x +3y =1 垂直,则 k l ⋅(−23)=−1所以 k l =32,所以直线l的方程为:y−(−2)=32(x−1),整理可得3x−2y−7=0,故答案为:C【分析】根据两条直线垂直,斜率之积等于-1求出直线l的斜率,再由点斜式方程即可求解. 5.【答案】B【解析】【解答】解:当m=0时,两直线方程分别为y−1=0和−2x−2=0,不满足条件.当m≠0时,则l1//l2,∴3m−2m=m1≠−2−1,由3m−2m=m1得m2−3m+2=0得m=1或m=2,由m1≠−2−1得m≠2,则m=1,故答案为:B【分析】根据直线平行的等价条件,求出m的值;6.【答案】C【解析】【解答】如图,M关于x轴对称点是M′(−2,−3),M’和N在x轴两侧,则当M’N成一直线,此时,M’N与x轴交于P点,有PM+PN取最小值,此时,PM+PN=M′N,而直线M’N的方程为y−2−3−2=x−6−2−6,化简得,5x−8y−14=0,则直线M’N交x轴于P点,所以,P点坐标为(145,0)答案选:C【分析】作图,找到M关于x轴对称点是M′(−2,−3),连结M’N,求出M’N的方程,则M’N 与x轴交于P点,此时,PM+PN取最小值,且PM+PN=M′N,此时根据直线方程求出P点即可7.【答案】C【解析】【解答】 ∵ 直线 ax +(a −1)y +3=0 ,即 a(x +y)+(3−y)=0 ,∴ 直线 ax +(a −1)y +3=0 是过直线 x +y =0 和 3−y =0 交点的直线系方程, 由 {x +y =03−y =0,得 {x =−3y =3 , 可得直线 ax +(a −1)y +3=0 经过定点 Q(−3,3) , ∴ 当直线 ax +(a −1)y +3=0 与 PQ 垂直时, 点 P(2,3) 到直线 ax +(a −1)y +3=0 的距离最大, ∴d 的最大值为 |PQ|=√(2+3)2+(3−3)2=5 , 此时 PQ//x 轴,可得直线 ax +(a −1)y +3=0 斜率不存在,即 a =1 . 故答案为:C.【分析】将直线方程整理为 a(x +y)+(3−y)=0 ,可得直线 ax +(a −1)y +3=0 经过定点 Q(−3,3) ,由此可得当直线 ax +(a −1)y +3=0 与 PQ 垂直时 PQ 的长,并且此时点 P 到直线的距离达到最大值,从而可得结果.8.【答案】B【解析】【解答】因为直线 l 1:5x +12y +3=0 即 10x +24y +6=0 ,直线 l 2:10x +24y −7=所以由两条平行线间的距离公式可得: d =|6−(−7)|√10+24=1326=12故答案为:B【分析】将直线 l 1 的方程化为 10x +24y +6=0 ,然后用两条平行线间的距离公式求解即可.9.【答案】C【解析】【解答】∵直线 l 1:(m −4)x +4y +1=0 和 l 2:(m +4)x +(m +1)y −1=0 ,若 l 1⊥l 2 ,∴(m −4)(m +4)+4(m +1)=0 ,得 m 2+4m −12=0 ,解得 m =2 或 m =−6 , ∴实数 m 的值为 2 或 −6 . 故答案为:C .【分析】利用直线与直线垂直的性质直接求解.10.【答案】C【解析】【解答】点(m,n)为直线3x+4y=6上的动点,点(a,b)为直线3x+4y=1上的动点,√(m−a)2+(n−b)2的最小值可理解为两动点间距离的最小值,显然最小值即两平行线间的距离:d=9+16=1。

高考数学文优化方案一轮复习课件第8第二两条直线的位置关系苏教江苏专用

高考数学文优化方案一轮复习课件第8第二两条直线的位置关系苏教江苏专用

A
x1+2 x2+By1+2 y2+C=0,
+By+C2=0,则 l1 与 l2 的距离 d=___A_2_+__B_2__.
4.直线系
(1)与Ax+By+C=0平行的直线系为 _A_x_+__B__y+__C__′=__0__.
(2)与Ax+By+C=0垂直的直线系为 _B__x_-__A_y_+__C_′_=__0___.
(3)过两直线l1:A1x+B1y+C1=0,l2:A2x+ B2y+C2=0交点的直线系 _A__1x_+__B__1y_+__C__1+__λ_(_A_2_x_+__B_2_y_+__C_2_)=__0___.

xy00--32=1
,解得 A′(-4,-3).
由于反射光线经过点 A′(-4,-3)和 B(1,1), 所以反射光线所在直线的方程为 y-1=(x-1)·11+ +34,
即 4x-5y+1=0.
解方程组4x-5y+1=0 , x+ y+1=0
得反射点 P(-23,-13). 所以入射光线所在直线的方程为 y-3=(x-2)·23++3321, 即 5x-4y+2=0.
【思路分析】 判断直线的斜率是否存在 → 求斜率 →
直线平行或垂直的条件 → 字母系数的值
【解】 (1)法一:由 l1:2x+(m+1)y+4=0. l2:mx+3y-2=0. ①当 m=0 时, 显然 l1 与 l2 不平行. ②当 m≠0 时,l1∥l2, 需m2 =m+3 1≠-42.
解得 m=2 或 m=-3.∴m 的值为 2 或-3.
(2)可直接采用如下方法: 一般地,设直线l1:A1x+B1y+C1=0,l2: A2x+B2y+C2=0.l1∥l2⇔A1B2-A2B1=0,且 B1C2-B2C1≠0,或A1C2-A2C1≠0. 这种判定方法避开了斜率存在和不存在两种

高考数学第一轮知识点总复习 第二节 直线的位置关系

高考数学第一轮知识点总复习 第二节    直线的位置关系

举一反三
4. 已知A(7,-4)关于直线 的l 对称点为B(-5,6),则直线 的l方程是 ( )
A. 5x+6y-11=0
B. 6x-5y-1=0
C. 6x+5y-11=0
D. 5x-6y+1=0
解析 ∵AB的中点(1,1)在直线 上l ,

k AB
,即5 所求直线的斜率k=
6
,6
5
∴所求直线 的l 方程为y-1= 6(x-1),即6x-5y-1=0.
x0 x 3
又PP′的中点
Q
x
x0 2
,在y 2上y0 ,
l
∴ 3 x x0 2 y,… y…0 … 7……0 ………………………6′
2
2

y0
x0
3 x
y 2 x3
x0
2
, y
y0
7
0
x0
y0
5x 12 y 42 13
12x 5y 28 13
……………………………………………………………………..9′
l1 l2 k1k2 1
一般地,若直线 l1 : A1x B1y( C1不 全0 为A10,)B,1
直线 l2 : A2x B2 y( C2不 全0 为A20, B),2 则
A1C2 A2C1 0(或B1C2 B2C1 0)
l1 / /l2且 A1B2 A2B1 0
l1 l2 A1A2 B1B2 0
17 13
,… 1…332… ……………………...10′
反射光线过M(-1,2)和P′
17 13
,
32 13
根据直线的两点式方程,可得
反射光线所在的方程为29x-2y+33=0…………………………….12

2024届高考一轮复习数学课件(新教材人教A版):两条直线的位置关系

2024届高考一轮复习数学课件(新教材人教A版):两条直线的位置关系

√A.4
B.-4
C.1
D.-1
因为直线 2x+my+1=0 与直线 3x+6y-1=0 平行,所以23=m6 ≠-11, 解得 m=4.
教材改编题
3.直线x-2y-3=0关于x轴对称的直线方程为_x_+__2_y_-__3_=__0_.
直线 x-2y-3=0 的斜率为 k=12且与 x 轴交于点(3,0), 故所求直线的斜率为-12,且过点(3,0), 其方程为 y=-12(x-3), 即x+2y-3=0.
跟踪训练1 (1)(2023·襄阳模拟)设a,b,c分别为△ABC中角A,B,C所对
边的边长,则直线xsin A+ay+c=0与bx-ysin B+sin C=0的位置关系是
A.相交但不垂直 C.平行
√B.垂直
D.重合
由题意可知,直线 xsin A+ay+c=0 与 bx-ysin B+sin C=0 的斜率 分别为-sina A,sinb B, 又在△ABC 中,sina A=sinb B, 所以-sina A·sinb B=-1, 所以两条直线垂直.
(2)(2022·桂林模拟)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,
若l1⊥l2,则实数a的值是
√A.0或-1
B.-1或1
C.-1
D.1
由题意可知l1⊥l2,故2a+a(a-1)=0, 解得a=0或a=-1,经验证,符合题意.
思维升华
判断两条直线位置关系的注意点 (1)斜率不存在的特殊情况. (2)可直接利用直线方程系数间的关系得出结论.
命题点1 点关于点的对称问题
例 3 直线 3x-2y=0 关于点13,0对称的直线方程为
A.2x-3y=0 C.x-y=0

高考数学一轮总复习课件:两直线的位置关系


例1 (1)(2021·江西八校联考)已知直线l1:kx+y+3=0, l2:x+ky+3=0,且l1∥l2,则k的值为__-__1____.
【思路】 根据两直线平行列关于k的方程,解出k的值,然后 代入两直线方程进行验证是否满足l1∥l2,即可得出实数k的值.
【解析】 ∵直线l1:kx+y+3=0,l2:x+ky+3=0,且l1 ∥l2,
答案 (1)× (2)× (3)√ (4)× (5)×
=0.若2.l1∥(课l2本,习则题a的改值编为)已_-_知_12_直__线__l,1:若axl1+⊥yl+2,5则=a0的,值l2:为x-2y+7 _____2___.
3.直线y=kx-k-2恒过定点__(_1,__-__2)_.
解析 y=kx-k-2=k(x-1)-2.当x=1,y=-2时恒成立, ∴直线恒过定点(1,-2).
【解析】 要使点P到直线x-y-4=0有最小距离, 只需点P为曲线与直线x-y-4=0平行的切线的切点, 即点P为曲线上斜率为1的切线的切点,设P(x0,y0),x0>0, y=x2-lnx,y′|x=x0=2x0-x10=1,解得x0=1或x0=-12(舍去), 点P(1,1)到直线x-y-4=0的距离为|1-12-4|=2 2, 所以曲线y=x2-lnx上任一点到直线x-y-4=0的距离的最小 值为2 2.
【思路】 结合图形,根据点到直线的距离公式求解.
【解析】 (1)过点P的直线l与原点的距离为2,而点P的坐 标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条 件,
此时l的斜率不存在,其方程为x=2. 若斜率存在,设l的方程为y+1=k(x-2), 即kx-y-2k-1=0. 由已知得|-k22k+-11|=2,解得k=34. 此时l的方程为3x-4y-10=0.

2021高中数学一轮复习课件第八章 平面解析几何第二节 两直线的位置关系


+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,
所以-5-2+n=0,n=7.
答案:A
返回
2.已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满 足下列条件的a,b的值. (1)l1⊥l2,且l1过点(-3,-1); (2)l1∥l2,且坐标原点到这两条直线的距离相等.
解得-16<k<12.
返回
2.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一 点,则|PQ|的最小值为________. 解析:因为36=48≠-512,所以两直线平行, 将直线3x+4y-12=0化为6x+8y-24=0, 由题意可知|PQ|的最小值为这两条平行直线间的距离, 即|-6224+-852|=2190,所以|PQ|的最小值为2190. 答案:2190
解:(1)由已知可得l2的斜率存在, 且k2=1-a.若k2=0,则1-a=0,a=1. ∵l1⊥l2,直线l1的斜率k1必不存在,即b=0. 又∵l1过点(-3,-1),∴-3a+4=0,即a=43(矛盾), ∴此种情况不存在,∴k2≠0,即k1,k2都存在且不为0.
返回
∵k2=1-a,k1=ab,l1⊥l2,∴k1k2=-1,
所以3(2+λ)+4(3-3λ)=0,
所以λ=2,代入①式得所求直线方程为4x-3y+9=0.
[答案] (1)C (2)B (3)4x-3y+9=0
返回
[解题技法] 1.与两直线的位置关系有关的常见题目类型 (1)判断两直线的位置关系. (2)由两直线的位置关系求参数. (3)根据两直线的位置关系求直线方程.
有l1∥l2⇔ k1=k2 .
在判定两条直线平行或垂
②当直线l1,l2不重合且斜 直的情况时不要忽略了一

高考数学一轮复习专题训练—两直线的位置关系

两直线的位置关系考纲要求1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x2+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235 B .2310C .7D .72答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72. 3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·银川联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A .-2 B .-4 C .-6 D .-8答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1,∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12. ∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝⎛⎭⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝⎛⎭⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +1,解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa -1-1×2=0,a a 2-1-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23.法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2020·宁波期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A .6x -4y -3=0 B .3x -2y -3=0 C .2x +3y -2=0D .2x +3y -1=0(2)已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 (1)A (2)1解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.考点二 两直线的交点与距离问题【例2】 (1)(2020·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝⎛⎭⎫-32,-1 B.⎝⎛⎭⎫-∞,-32∪(-1,+∞) C.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-13,12(2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.答案 (1)D (2)[0,10]解析 (1)联立⎩⎪⎨⎪⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k2+k(k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(2021·贵阳诊断)与直线2x +y -1=0的距离等于55的直线方程为( ) A .2x +y =0 B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)C (2)5x +3y -1=0解析 (1)设与直线2x +y -1=0的距离等于55的直线方程为2x +y +m =0(m ≠-1), ∴|-1-m |22+12=55,解得m =0或m =-2. ∴与直线2x +y -1=0的距离等于55的直线方程为2x +y =0或2x +y -2=0. (2)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.考点三 对称问题角度1 点关于点对称【例3】 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】 一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2, 即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3--22--2=54, ∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). 角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x -4y +5=0 B .3x -4y -5=0 C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程. 解 (1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,即A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧ a =613,b =3013,即M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】 已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0. 法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】 已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4, b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0. 法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0. 三、垂直直线系方程【例4】 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).A 级 基础巩固一、选择题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2B .2- 2 C.2-1D .2+1答案 C解析 由题意得|a -2+3|1+1=1. 解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.2.(2021·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3 答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.3.已知直线l 过点(0,7),且与直线y =-4x +2平行,则直线l 的方程为( )A .y =-4x -7B .y =4x -7C .y =4x +7D .y =-4x +7 答案 D解析 过点(0,7)且与直线y =-4x +2平行的直线方程为y -7=-4x ,即直线l 的方程为y =-4x +7,故选D.4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0垂直,则ab 的最小值为() A .1 B .2 C .2 2 D .2 3 答案 B解析 由已知两直线垂直可得(b 2+1)-ab 2=0,即ab 2=b 2+1,又b >0,所以ab =b +1b .由基本不等式得b +1b ≥2b ·1b =2,当且仅当b =1时等号成立,所以(ab )min =2.故选B.5.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( )A.⎝⎛⎭⎫-45,85 B .⎝⎛⎭⎫-45,-85C.⎝⎛⎭⎫45,-85 D .⎝⎛⎭⎫45,85答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧ x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85.6.(2020·上海浦东新区期末)直线x -2y +2=0关于直线x =1对称的直线方程是( )A .x +2y -4=0B .2x +y -1=0C .2x +y -3=0D .2x +y -4=0答案 A解析 设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.7.(2021·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2--11-3=-32, ∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.8.(2020·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6 B .a =-3,b =16 C .a =3,b =-16D .a =-13,b =-6 答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上, 所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13. 二、填空题 9.(2021·南昌联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________.答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行, 将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 答案 25解析 因为k AB =5-11-4=-43,k DC =2--2-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S 四边形ABCD =|AB |·|AD |=1-42+5-12×0-42+-2-12=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52 答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3B .10C .14D .215 答案 B解析 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x +2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.故选B.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0, 此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0. 由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0. 综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,函数y =x 2-ln x 的导数y ′=2x -1x (x >0),令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为 2.。

高考数学一轮复习第8章解析几何第2讲两条直线的位置关系

第二讲 两条直线的位置关系知识梳理·双基自测 知识梳理知识点一 两条直线的位置关系平面内两条直线的位置关系包括__平行、相交、重合__三种情况. (1)两条直线平行对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2. 对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)两条直线垂直对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔__A 1A 2+B 1B 2=0__. 知识点二 两条直线的交点直线l 1和l 2的交点坐标即为两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.相交⇔方程组有__唯一解__; 平行⇔方程组__无解__; 重合⇔方程组有__无数个解__. 知识点三 三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=x 1-x 22+y 1-y 22.特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=x 2+y 2. (2)点P(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C|A 2+B 2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B2. 重要结论1.求解距离问题的规律运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线间的距离公式时,需先把两平行线方程中x,y 的系数化为相同的形式.2.对称问题的求解规律(1)中心对称:转化为中点问题处理.(2)轴对称:转化为垂直平分线问题处理.特殊地:点P(a,b)关于直线x +y +m =0对称的点坐标为(-b -m,-a -m),点P(a,b)关于直线x -y +m =0对称的点坐标为(b -m,a +m).双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两直线的斜率相等,则两直线平行,反之,亦然.( × )(2)如果两条直线l 1与l 2垂直,那么它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P(x 0,y 0)到直线y =kx +b 的距离为|kx 0+b|1+k2.( × ) (5)若点A,B 关于直线l :y =kx +b(k≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l上.( √ )题组二 走进教材2.(课本习题改编)过点(1,0)且与直线x -2y -2=0平行的直线方程是( A ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=03.(必修2P 110B 组T2)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( C ) A . 2 B .2- 2 C .2-1D .2+1[解析] 由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1-2. ∵a >0,∴a =-1+2. 题组三 走向高考4.(2020·高考全国Ⅲ)点(0,-1)到直线y =k(x +1)距离的最大值为( B ) A .1 B . 2 C . 3D .2 [解析] 解法一:由y =k(x +1)可知直线过定点P(-1,0),设A(0,-1),当直线y =k(x +1)与AP 垂直时,点A 到直线y =k(x +1)距离最大,即为|AP|=2,故选B .解法二:因为点(0,-1)到直线y =k(x +1)距离d =|1+k|k 2+1=k 2+2k +1k 2+1=1+2kk 2+1;∵要求距离的最大值,故需k >0;可得d =1+2k +1k≤2,当且仅当k =1时取等号,故选B .5.(2018·全国)坐标原点关于直线x -y -6=0的对称点的坐标为__(6,-6)__. [解析] 设坐标原点关于直线x -y -6=0的对称点的坐标为(a,b),则⎩⎪⎨⎪⎧b a ×1=-1a 2-b2-6=0,解得a =6,b =-6,∴坐标原点关于直线x -y -6=0的对称点的坐标为(6,-6).考点突破·互动探究考点一 两条直线平行、垂直的关系——自主练透例1 (1)(2021·高安期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( A )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)“m=3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(3)(2021·青岛调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( C ) A .2 B .-3 C .2或-3D .-2或-3(4)(多选题)等腰直角三角形斜边的中点是M(4,2),一条直角边所在直线的方程为y =2x,则另外两边所在直线的方程为( CD )A .3x +y -14=0B .x +2y -2=0C .x -3y +2=0D .x +2y -14=0[解析] (1)因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.(2)由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0,∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.(3)由题意知⎩⎪⎨⎪⎧m m +1=6,4m≠-4,解得m =2或-3.故选C .(4)设斜边所在直线的斜率为k,由题意知tan π4=2-k 1+2k =1,∴k =13,∴斜边所在直线方程为y -2=13(x -4),即x -3y +2=0,由⎩⎪⎨⎪⎧y =2x x -3y +2=0可知A ⎝ ⎛⎭⎪⎫25,45,∴A 关于M 的对称点B ⎝ ⎛⎭⎪⎫385,165,∴另一条直角边的方程为y -165=-12⎝ ⎛⎭⎪⎫x -385,即x +2y -14=0,故选C 、D .名师点拨(1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 〔变式训练1〕(1)(2021·吉林长春模拟)曲线f(x)=2sin x 在x =π3处的切线与直线ax +y -1=0垂直,则a =__1__.(2)(2012·浙江)设a ∈R,则“a=1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] (1)由题得f′(x)=2cos x,∴k =f′⎝ ⎛⎭⎪⎫π3=1.所以1×(-a)=-1,∴a =1. (2)l 1∥l 2⇔a 2+a -2=0⇔a =1或-2,∴a =1是l 1∥l 2的充分不必要条件.故选A . 考点二 两直线的交点、距离问题——师生共研例2 (1)两条垂直直线l 1:2x +y +1=0与l 2:ax +4y -6=0的交点到原点的距离为__2__.(2)已知点P(2,-1).①求过点P 且与原点的距离为2的直线l 的方程;②求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?③是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. (3)(2020·上海)已知直线l 1:x +ay =1,l 2:ax +y =1,若l 1∥l 2,则l 1与l 2的距离为__2__. [解析] (1)kl 1=-2,kl 2=-a 4,由l 1⊥l 2知-2×⎝ ⎛⎭⎪⎫-a 4=-1,∴a =-2,∴l 2:x -2y +3=0,由⎩⎪⎨⎪⎧2x +y +1=0x -2y +3=0得交点A(-1,1),∴|AO|=2.(2)①过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P(2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k(x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.②作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5=5.③由②可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.(3)直线l 1:x +ay =1,l 2:ax +y =1, 当l 1∥l 2时,a 2-1=0,解得a =±1;当a =1时l 1与l 2重合,不满足题意; 当a =-1时l 1∥l 2,此时l 1:x -y -1=0,l 2:x -y +1=0; 则l 1与l 2的距离为d =|-1-1|12+-12=2.名师点拨距离的求法(1)点到直线的距离:可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离:①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; ②利用两平行线间的距离公式.提醒:在应用两条平行线间的距离公式时,应把直线方程化为一般形式,且使x 、y 的系数分别相等. 〔变式训练2〕(1)(2021·西南名校联盟联考)设直线l 1:3x -y -1=0与直线l 2:x +2y -5=0的交点为A,则A 到直线l :x +by +2+b =0的距离的最大值为( C )A .4B .10C .3 2D .11(2)(多选题)已知两点A(3,2)和B(-1,4)到直线mx +y +3=0距离相等,则m 的值可以为( AC ) A .-6 B .-12C .12D .1(3)(2021·绵阳模拟)若P,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ|的最小值为( C )A .95B .185C .2910D .295[解析] (1)解法一:显然l 1与l 2的交点A(1,2),又直线l 过点B(-2,-1),∴所求最大距离为|AB|=32,故选C .解法二:显然l 1与l 2的交点为A(1,2),则A 到直线l 的距离d =|1+2b +2+b|1+b2=31+b 2+2b1+b2=31+2b 1+b2≤32(当且仅当b =1时取等号),故选C . (2)直线mx +y +3=0与直线AB 平行或过AB 中点,∴-m =4-2-1-3=-12,即m =12;AB 中点(1,3),∴m+3+3=0即m =-6,故选A 、C .(3)因为36=48≠-125,所以两直线平行,由题意可知|PQ|的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ|的最小值为2910. 考点三 对称问题——多维探究 角度1 线关于点的对称例3 (2021·河北五校联考)直线ax +y +3a -1=0恒过定点M,则直线2x +3y -6=0关于M点对称的直线方程为( D )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0[解析] 由ax +y +3a -1=0,可得y -1=-a(x +3),所以M(-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c≠-6),则|-6+3-6|4+9=|-6+3+c|4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0,故选D .另解:在直线2x +3y -6=0上取点A(0,2)、B(3,0),则A 、B 关于M 的对称点分别为A′(-6,0),B′(-9,2),又k A′B′=2-0-9--6=-23,故所求直线方程为y =-23(x +6),即2x +3y +12=0.故选D .角度2 点关于线的对称例4 (2021·长沙一模)已知入射光线经过点M(-3,4),被直线l :x -y +3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为__6x -y -6=0__.[解析] 设点M(-3,4)关于直线l :x -y +3=0的对称点为M′(a ,b),则反射光线所在直线过点M′,所以⎩⎪⎨⎪⎧b -4a --3=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N(2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. (代入法)当x =-3时,由x -y +3=0得y =0, 当y =4时,由x -y +3=0得x =1.∴M(-3,4)关于直线l 的对称点为M′(1,0).又k NM′=6-02-1=6,∴所求直线方程为y =6(x -1),即6x -y -6=0.[引申]本例中入射光线所在直线的方程为__x -6y +27=0__.[解析] N(2,6)关于直线l 的对称点N′(3,5),又k MN′=5-43--3=16,∴所求直线方程为y -4=16(x+3),即x -6y +27=0.角度3 线关于线的对称例5 (2021·合肥模拟)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( B )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0[解析] 解法一:因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x,y),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.解法二:在l 1上取两点A(0,-2),B(1,0),则A 、B 关于l 的对称点分别为A′(-1,-1),B′(1,0),∴k A′B′=0--11--1=12.∴l 2的方程为y -0=12(x -1),即x -2y -1=0.故选B .解法三:设P(x,y)是直线l 2上任一点,则P 关于直线l 的对称点为P′(y+1,x -1),又P′∈l 1,∴2(y +1)-(x -1)-2=0,即直线l 2的方程为x -2y -1=0.故选B .名师点拨对称问题的解法以光线反射为代表的很多实际问题,都可以转化为对称问题,关于对称问题,一般常见的有: (1)中心对称①点P(x,y)关于O(a,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧x′=2a -x ,y′=2b -y.②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称 ①点A(a,b)关于直线Ax +By +C =0(B≠0)的对称点A′(m ,n),则有⎩⎪⎨⎪⎧n -b m -a ×-AB=-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.特别地,当对称轴的斜率为±1时,可类比关于y =x 的对称问题采用代入法,如(1,3)关于y =x +1的对称点为(3-1,1+1),即(2,2).〔变式训练3〕已知直线l :2x -3y +1=0,点A(-1,-2).求: (1)(角度2)点A 关于直线l 的对称点A′的坐标;(2)(角度3)直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3)(角度1)直线l 关于点A(-1,-2)对称的直线l′的方程. [解析] (1)设A′(x ,y),由已知条件得 ⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上. 设对称点M′(a ,b),则 ⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3).又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x -46y +102=0. (3)设P(x,y)在l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y), ∵点P′在直线l 上,∴2(-2-x)-3(-4-y)+1=0, 即2x -3y -9=0.名师讲坛·素养提升 巧用直线系求直线方程例6 (1)求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R)恒过定点,并求出定点坐标;(2)求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.[解析] (1)证明:解法一:令m =0,则直线方程为 3x +y +1=0.再令m =1时,直线方程为6x +y +4=0.①和②联立方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,得⎩⎪⎨⎪⎧x =-1,y =2.将点A(-1,2)的坐标代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中,(m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1=(3-1-2)m 2+(-2+2)m +2+1-3=0, 故动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A .解法二:将动直线方程按m 降幂排列整理,得m 2(x -y +3)+m(2x +y)+3x +y +1=0,① 不论m 为何实数,①式恒为零, ∴有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点A(-1,2).(2)解法一:解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P(0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.解法二:设所求直线方程为4x +3y +m =0,将解法一中求得的交点P(0,2)代入上式可得m =-6, 故所求直线方程为4x +3y -6=0.解法三:设直线l 的方程为x -2y +4+λ(x+y -2)=0, 即(1+λ)x+(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.[引申]若将本例(2)中的“垂直”改为“平行”,则直线l 的方程为__3x -4y +8=0__.名师点拨1.确定方程含参数的直线所过定点的方法:(1)将直线方程写成点斜式y -y 0=f(λ)(x-x 0),从而确定定点(x 0,y 0).(2)将直线方程整理成关于参数的方程,由方程中各项系数及常数项为0确定定点.(3)给参数取两个不同值,再解直线方程构成的方程组,从而确定定点坐标.2.直线系的主要应用(1)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中A 1B 2-A 2B 1≠0,待定系数λ∈R .在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)过定点(x 0,y 0)的直线系方程为y -y 0=k(x -x 0)(k 为参数)及x =x 0.(3)平行直线系方程:与直线y =kx +b 平行的直线系方程为y =kx +m(m 为参数且m≠b);与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠C ,λ是参数).(4)垂直直线系方程:与直线Ax +By +C =0(A≠0,B≠0)垂直的直线系方程是Bx -Ay +λ=0(λ为参数).如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,那么可选用直线系方程来求解. 〔变式训练4〕(1)(2021·启东模拟)不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( D )A .⎝⎛⎭⎪⎫1,-12 B .(-2,0) C .(2,3) D .(9,-4)(2)与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程是__5x -12y +32=0或5x -12y -20=0__.[解析] (1)解法一:由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D .解法二:令m =1,则y =-4;令m =12,则-12x =-92,即x =9,∴直线过定点(9,-4),故选D . 解法三:将直线方程化为(2m -1)(y +a)=(1-m)(x +b),则⎩⎪⎨⎪⎧ a +b =-52a +b =-1,即⎩⎪⎨⎪⎧ a =4b =-9,∴y +4=1-m 2m -1(x -9),故直线过点(9,-4),故选D .(2)设所求直线的方程为5x-12y+c=0,则|c-6|52+122=2,解得c=32或-20,故所求直线的方程为5x-12y+32=0或5x-12y-20=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结反思:
设直线l1 : x my 6 0和直线l2: (m 2) x 3 y 2m 0
1、充分考虑斜率是否存在,即B是否为0;分类讨论思想
2、 l1
l2 A1 A2 B1B2 0
7
课堂检测:
1、过A(-2,m)和B(m,4)的直线与2x-y+1=0平行,则m=(
1 平行; 2 垂直;(3)相交
(1)注意斜率是否存在。
1 当a 0时,l1 : y x 2; l2 : x 1; 两直线相交 (1)解: 2 a 1 1 1 当a 0时,l1 : y x 2; l2 : y x ; 2 a a
a 1 1 1 即 ,2 当k1=k2,b1≠b2时, 2 a a
2015-2-6
10
(2)l1 : 3 x 4 y 5 0; l2 : 6 x 8 y 1 0
平行
(3)l1 : 3 x 4 y 5 0; l2 : 6 x 8 y 10 0 重合 (4)l1 : 2 x y 0; l2 : x 2 y 1 0 垂直
4
A.-8 B.0 C.2 D.10
B)
2、经过两条直线2x-3y+10=0和3x+4y-2=0的交点,且垂直
2x+3y-2=0 于直线3x-2y+4=0的直线方程是_______________________
1或-3 3、直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2垂直,a=_____
课前演练: 1、已知点P(1,1)和直线l:3x+4y-20=0,
3 x 4 y 7 0 则过点P且与l平行的直线方程为_________________;
4x 3 y 1 0 . 过点P且与l垂直的直线方程是__________________ Ax By C1 0(C1 C) 与直线Ax+By+C=0平行的直线方程可设为_______________`Fra bibliotek两条直线的
位置关系
2015-2-6 广东省开平市风采华侨中学刘学军 lxj45945@ 1
教学目标:
知识目标:通过直线斜率、直线一般式方程的的系数判 定两直线的位置关系。
情感目标:通过活动、质疑培养学生合作交流、 自主探究的数学学习习惯和反思意识 能力目标:感受探索性问题的研究方法,体 会分类讨论的思想方法 重点:两直线位置关系判定方法
Bx Ay C1 0 与直线Ax+By+C=0垂直的直线方程可设为_______________
2、(1)两直线ax+3y-2=0和4x+4y-1=0平行,则a= (2)若垂直呢?a=
3
-3
5
垂直 A1 A2 + B1B2 = 0
课内探究:
a为何值时, 直线l1 : a 1 x 2 y 4 0与直线l2 : x-ay-1 0 ☆例题:
垂直 (2)若两直线中有一条没有斜率而另一条斜率为0,则两直线_______
复习回顾:
2、将直线
Ax By C 0( A、B不同时为0)化为斜截式得:
B 0时,
B 0时,
(1)l1 : y 3; l2 : y 4;
A C y x B B C x A
平行
试一试:判断下列各组直线的位置关系:
2
复习回顾:
1、平面内两直线的几种位置关系: l1 : y = k1 x + b1 直 线 l 2 : y = k2 x + b 2
k1 = k2且b1 = b2 k1 = k2且b1 b2 k1 k2 = -1 k1 k2
特例: 平行或重合 (1)若两直线的斜率都不存在,则两直线_________________; 的 斜 率 存 在 的 前 提 下
4.已知点A(1,2),B(3,1)则线段AB的垂直平分线方程是 B A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=5
点与点对称
点与线对称
平行

两直线位置 关系

两种 关 系判断
k1 = k2
线与线对称
垂直
思想
A1A2 + B1B2 = 0
分类讨论
9
教学设计的指导思想
让数学知识更加贴近学生思维, 让数学教学为学生的发展服务。
(2)垂直时利用直线一般式方程的系数间关系避免讨论。
a 1或a=2 1 (2)解:(a 1) 1 (2) (a) 0 a
(3)解:讨论a是否为0
k1 k2即a 1且a 2
3
6
变式练习:
-1 时,两直线平行; 当m=_______ 3 时,两直线重合; 当m=_______ 1 当m=_______时,两直线垂直; 2
相关文档
最新文档