六年级奥数圆的组合图形的面积2
圆的组合图形的面积+(课件)人教版六年级上册数学+

④
5cm
方法六:重叠法
求阴影部分的面积
S阴 2S扇 S正
练习:(想一想:用什么方法计算阴影
部分的面积呢?)
2厘米
3厘米
6厘米
4厘米
10cm
6cm
4dm部分的面积
3
S阴 S圆 S正
4
r=5cm
方法二:补缺法
求阴影部分的面积
S 阴=S正 – S半圆
10m
方法三:割补法
求阴影部分的面积
①
r=5m
②
S阴= S三角形
方法四:平移法
求阴影部分的面积
①
②
5cm
10cm
S阴=S正
方法五:对称法
求阴影部分的面积
①
②
S阴=S大三+S小三
人教版六年级数学上册
圆的组合图形的面积
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
平行四边形的面积= 底×高
S=a×a
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
圆的面积:
S=
小学六年级奥数--面积计算(二)

二、精讲精练
练习3: 3.如图所示,AB=BC=8厘米,求阴影部分的面积。
二、精讲精练
【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。 【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还 原成长方形后(如图所示)。
I和II的面积相等。 因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的 两组三角形面积分别相等,所以
二、精讲精练
练习5: 4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。
谢谢观看
二、精讲精练 练习1: 1.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习1: 2.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练 练习3: 3.求下面各个图形中阴影部分的面积(单位:厘米)。
二、精讲精练
【例题2】求图中阴影部分的面积(单位:厘米)。 【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形 (如图所示)。
二、精讲精练
练习2: 3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
二、精讲精练
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影 部分的面积相等。求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相 等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于 长方形面积的一半(如图19-10右图所示)。所以 3.14×12×1/4×2=1.57(平方厘米)
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积 的一半。
3.14×-4×4÷2÷2=8.56(平方厘米) 答:阴影部分的面积是8.56平方厘米。
二、精讲精练
举一反三--六年级奥数面积计算(2)

14、如图,∠1=15度,圆的周长 是62.8厘米,平行四边形的面积为 100平方厘米。求阴影部分的面积 (得数保留两位小数)。
组合图形的面积(2)
15、如图所示,三角形ABC的面积是 31.2平方厘米,圆的直径AC=6厘米, BD∶DC=3∶1。求阴影部分的面积。
16、如图所示,求阴影部分的面积 (单位:厘米。得数保留两位小数)。
组合图形的面积(2)
17、如图所示,求阴影部分的面积 (单位:厘米。得数保留两位小数)。
18、如图所示,求阴影部分的面积(单位:厘米)。
6、计算下面图形中阴影部分的面积(单位:厘米)。
组合图形的面积(2)
7、计算下面图形中阴影部分的面积 ( (单位:厘米,正方形边长4)。
组合图形的面积(2)
9、如图,两圆半径都是1厘米,且 图中两个阴影部分的面积相等。求 长方形ABO1O的面积。
六年奥数——举一反三 面积计算(二)
组合图形的面积(2)
1、求图中阴影部分的面积(单位:厘米)。
2、求下面图形中阴影部分的面积(单位:厘米)。
组合图形的面积(2)
3、求下面图形中阴影部分的面积(单位:厘米)。
4、求下面图形中阴影部分的面积(单位:厘米)。
组合图形的面积(2)
5、求图中阴影部分的面积(单位:厘米)。
10、圆的周长为12.56厘米,AC两 点把圆分成相等的两段弧,阴影部 分(1)的面积与(2)的面积相等,求平 行四边形ABCD的面积。
组合图形的面积(2)
11、如图,直径BC=8厘米,AB=AC, D为AC的中点,求阴影部分的面积。
圆的组合图形面积及答案#

圆的组合图形面积姓名:【知识与方法】要解决与圆有关的题目,需要注意以下几点:1、熟练掌握有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
数学六年级-圆的组合图形面积计算

辅导讲义案例1:有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC为6cm,直径BC为8cm,直径AB为10cm.(1)将直径分别为AB、AC、BC所作的半圆面积分别记作S AB、S AC、S BC.分别求出三个半圆的面积。
(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC的面积之间的数量关系,并说明理由。
案例2:归纳总结以下基本图面积计算方法(1)扇形:扇形的面积=扇形中的弧长部分=扇形的周长(2)弓形面积:弓形面积=(3)“弯角”面积:如图:(4)“谷子”面积:如图:例题1:如图,直径AB为3厘米的半圆以A点为圆心逆时针旋转60°,使AB到达AC的位置,求图中的阴影部分的面积。
例题2:如图,三角形ABC是等腰直角三角形,腰AB长为4厘米,求阴影部分的面积?试一试:如图,三角形ABC是直角三角形,AC=20,阴影(1)的面积比阴影(2)的面积小23,求BC的长?例题3:如图,ABCD 是一个正方形,2ED DA AF ===,阴影部分的面积是多少?试一试:下图中,cm DC DB AD 10===,求阴影部分的面积.例题4:如图,ABCD是平行四边形,8cm∠=︒,高4cmCH=,弧BE、DF分DABAB=,30AD=,10cm别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,则阴影部分的面积为多少?(精确到0.01)例题5:如图所示,直角三角形ABC的斜边AB长为10厘米,60ABC∠=︒,此时BC长5厘米.以点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.试一试:如下图,Rt△CAB中,AB=3,AC=4,将它以A点为中心逆时针旋转60°,得到Rt△EAD,求阴影部分面积是多少?1.有8个半径为1的小圆,用它们圆周的一部分连成一个花瓣图形(如图阴影所示),图中黑点是这些圆的圆心,那么花瓣图形的面积是()(A)16(B)16π+(C)1162π+(D)162π+2.如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地,问这头羊能吃到草的草地面积是多少?(结果精确到0.01平方米)3.如图,已知正方形ABCD的边长为5,正方形CEFG的边长为3,求图中阴影部分的面积.(π为3.14)4.如图,ABCD是正方形,边长是8厘米,BE=4厘米,其中圆弧BD的圆心是C点,那么图中阴影部分的面积等于多少平方厘米?5.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.6.7.8.如图所示,已知半圆的直径AB=12,BC所对的圆心角∠CAB=30°,并且小阴影面积为3.26,求大阴影的面积.7.如图,正方形的边长为10,那么图中阴影部分的面积是多少?8.如图,矩形的长为4,宽为5,求阴影部分的面积?A BDCA1.如图是以边长为40米的正方形ABCD 的顶点A 为圆心,AB 长为半径的弧与以CD 、BC 为直径的半圆构成的花坛(图中阴影部分).小杰沿着这个花坛边以相同的速度跑了6圈,用去了8分钟,求(1)花坛(图中阴影部分)面积;(2)小杰平均每分钟跑多少米?2.某同学用所学过的圆与扇形的知识设计了一个问号,如图中阴影部分所示,已知图中的大圆半径为4,两个小圆半径均为2,求图中阴影部分的面积。
奥数圆面积计算六年级上册培优

奥数组合图形面积计算1:求出阴影部分的面积(单位:厘米)6×6×3.14×41 =9×3.14=28.26(平方厘米)2、求下面图形的阴影部分面积单位:厘米(1)6×6÷2=18(平方厘米)( 2)6×6=36(平方厘米)3、求出阴影部分的面积(单位:厘米)4×4×3.14×41-4×4÷2+4×2÷2 =12.56-8+4=8.56(平方厘米)4、求下列图形的阴影部分的面积(单位厘米)(1) 4×2=8(平方厘米) (2) 4×4÷2=8(平方厘米)5、两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO 1O 的面积。
3.14×12×41×2=1.57(平方厘米) 6、圆的周长为12.56厘米,AC 两点把圆周分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD 的面积。
12.56÷3.14=4(厘米) 22×3.14=12.56(平方厘米)7、直径BC=8厘米,AB=AC ,D 为AC 的中点,求阴影部分的面积。
8×4÷2÷2=8(平方厘米)3.14×42×41-4×4÷2=12.56-8=4.56(平方厘米) 8+4.56=12.56(平方厘米)8、求阴影部分的面积。
(单位:厘米)。
CD:DF=FE:EBD F ×FE=CD ×EB=6×4=24(平方厘米)9、求四边形ABCD 的面积。
(单位:厘米)7×7÷2-3×3÷2=24.5-4.5=20(平方厘米)10、BE 长5厘米,长方形AEFD面积是38平方厘米。
小学数学六年级奥数《圆和组合图形(2)》练习题(含答案)
小学数学六年级奥数《圆和组合图形(2)》练习题(含答案)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 . 2 1 27.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题E D C B A GF O D C A B 2 甲 乙11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率22) 取12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++= 5.204.1645=⨯=(厘米). 6. 6548(平方厘米). 如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为 ⌒61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米). 8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ, 解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r ,则①的面积为: 72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯, ②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1) 又9232=-x S ,于是有23184+-=S x ,解得S=6.14. 圆板的正面滚过的部分如右图阴影部分所求,它的面积为: )420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ 07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).D。
圆的面积2(组合图形的面积计算)
组合图形的面积计算
整理复习一
上页 下页 主页 退出
1、口算
3 =9
2
4 =16
2
0.5 =0.25
2
2π =6.28
9π
=28.26
25π =78.5
整理复习二
上页 下页 主页 退出
计算下列圆的面积。(列式计算)
(1)半径是3cm
(2)直径是2m
上页 下页 主页 退出
看一看,下面涂色部分哪个是环形
1
2
3
一个环形具有哪些特点?
上页 下页 主页 退出
(1)两个圆的圆心在同 一个点上 (同心圆)。 (2)两个圆间的距离处 处相等。
新
授 一
上页 下页 主页 退出
下图是王师傅加工的一个圆环这个铁片的面积吗?
大半圆面积减去 三角形面积
10cm
6cm
两个圆面积的差就是铁片的面积
外圆面积: 3.14×10 =314(平方厘米)
2
2 内圆面积: 3.14×6 =113.04(平方厘米)
圆环的面积:
314-113.04=200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
上页 下页 主页 退出
R
o
r
S环=S外-S内 2 2 S环= ∏R - ∏ r S环= ∏(R -r )
新 授 二
上页 下页 主页 退出
一扇窗户的形状由一个正方形和一个半圆形 组合而成(如下图)。这扇窗户的面积是多 少平方米?
窗户面积等于半圆面积与正方形面积的和
1.8米
基本练习二
上页 下页 主页 退出
说一说,下面各图形中涂色部分的面积怎样算?
六年级奥数-圆的组合图形的面积1省公开课获奖课件说课比赛一等奖课件
A
C
O
O
图3
B
图4
例3. 已知图5中,三角形ABC是等 腰直角三角形,BC=20厘米,DE 为圆旳一条直径。求图中阴影部分 旳面积。
A
D
EBFC图5ADE
B
F
C
图6
例4. 如图7,三角形ABC为等腰直 角三角形, 为直角,D是AB旳中点, AB=20厘米,圆弧GD、HD是分别 以A、B为圆心所作,求图中阴影部 分旳面积?( 取3.14)
O
D
C
A
B
考考你
4. 如下图,已知圆内正方形旳 面积是20平方厘米,求圆外接正 方形旳面积?
O
考考你
5.如下图,ABCD是正方形,AB= 10厘米。E是圆弧旳中点,求阴影 部分旳面积?
D
C
OE
A
B
GC
E
G
C
H
EF
A
D
B
图7
A(B) D
F HC
图8
考考你
1. 如图,已知正方形面积是18 平方厘米,求圆旳面积?
O
考考你
2. 如下图,已知圆旳面积是 9.42平方厘米,阴影部分旳面积 是多少平方厘米?
考考你
3. 如下图,圆旳周长是16.4厘 米,圆旳面积与长方形旳面积恰 好相等。阴影部分旳周长是多少 厘米?
计算一 种正六 边形旳 面积, 需要几 种数据?
计算一种正六边形旳面 积,需要几种数据?
例1. 一块正方形旳草地,边长 为4米,在两个相正确角上各有
一棵树,树上各拴一只羊,绳
子长4米,问两只羊都能吃到草 旳草地面积有多大?
图1
图2
例2.在圆内画一种最大旳正方 形,已知正方形旳面积是32平 方厘米,求圆旳面积?
六年级下册数学试题-奥数专题12:圆和组合图形(二)(含解析)全国通用
2 1 2 十二、圆和组合图形(2)年级 班 姓名 得分 一、填空题1.如图,阴影部分的面积是阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是阴影部分的面积是 .EDCB AG FO D CAB7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是那么花瓣图形的面积是 平方厘米.8.已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)2甲乙12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、CD 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米120ABCD12A B C a1OC B A E D———————————————答 案——————————————————————1. 6. 两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米). 3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米). 4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++= 5.204.1645=⨯=(厘米). 6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠, 又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米). 7. 19.1416.⌒E D C BAGF①②花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x⨯⨯⨯=⨯⨯ππ, 解得x=60. 10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米).11. 如图,小正方形的边长为2r,则①的面积为: 72227224122r r r r =⨯-⎪⎭⎫⎝⎛⨯⨯, ②的面积为222417272221r r r =-⎪⎭⎫⎝⎛⨯⨯,①和②的面积和为2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r . 12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S(1) 又9232=-x S ,于是有23184+-=S x ,解得S=6.③①②14. 圆板的正面滚过的部分如右图阴影部分所求, 它的面积为:)420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ 07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).ABCD12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
分析与解:连接CE,如下图,在三角形EGC中, 以GC边为底,三角形的高是DE,如果已知三角 F 形EGC的面积,知道三角形的底,就可以求出三 角形的高DE了。怎样求出三角形EGC的面积呢? 我们可以从三角形BEC中减去三角形BGC的面积。
D 3 G E
A
B
5
C
7
1 F 5 7 5 (7 3) 2 7.5 2
A D 10 C
B
考考你
4. 如下图,正方形ABCD的边长 为12厘米,CE=13厘米,求长方 形CMNE的周长?
N A E D DE,在 DEC 中,以DC为底,可计算出它的面 连接 积是 12 12 2 72 (平方厘米),同样在DEC 中,以 M EC为底,已知其面积是72平方厘米,又知底(CE)是 13厘米,可求出它的高,这个高就是长方形ECMN的宽。
B
C
先用四个圆的面积加上正方形的面积,再减去重合 的面积。重合部分是四个小扇形,这四个小扇形正 好可以拼成一个圆。
314 . 1 4 2 314 . 1 13.42
2 2 2
考考你
2. 图中长方形的面积是10平 方分米,那么阴影部分的面积是 多少平方分米?
O
O
考考你
3.正方形ABCD是以C为圆心,半径为 10的 圆内的最大正方形,如图,阴 影部分的面积是多少?
7.5 2 ( 7 3) 3 3 4
B
5
C
例4. 把一个圆形纸片沿着它的半径 平均分成若干份以后剪开,用它们拼 成一个面积不变的近似的长方形。这 个长方形的周长是16.56厘米,长方 形的宽与圆纸片的半径相等,这个圆 形纸片的面积是多少平方厘米?
考考你
1. 如图,正方形的边长是2米,四 个圆的半径都是1米,圆心分别是正 方形的四个顶点。求这个正方形和 四个圆盖住的面积是多少?
厘米
从上图中可以看出上底比下底少12厘米,上 底比下底少40%,用12厘米÷40%,求出梯形的 下底,又知延长后是正方形,说明梯形的高和 6厘米 下底加上6厘米是相等的,梯形的上底是30厘 米的60%,即18厘米,根据梯形面积公式可得:
(18 30) 36 2 864
例3. 已知ABCD是长方形,A、D、 E、F在一条直线上,AB=7,BC=5, DG=3,求DE的长?(单位:厘米)
CHale Waihona Puke 1 1 1 1 a 3 b 3 c 3 d 3 2 2 2 2 1 (a b c d ) 3 2 1 18 3 2 27 (平方厘米)
例2. 一个直角梯形,它的上底是 下底的60%,如果上底延长18厘 米,下底延长6厘米,就变成一个 正方形,原来直角梯形的面积是 多少平方厘米? 18
例1. 在四边形ABCD中有一点O, O到四条边垂线长都是3厘米,又知 四边形的周长是18厘米,求四边形 ABCD的面积是多少平方厘米?
A
B
O
已知O点到四边形的距离都是3厘米,连接OA、OB、OC、 OD,就把四边形ABCD分成了四个三角形,即三角形AOB、 D、DOA。如果设AB边为a厘米,BC边为b厘米,CD BOC、COD 边为c厘米,DA边为d厘米,那么上面四个三角形的面积分别 为,则四边形ABCD的面积为: