上极限和下极限(精选)
上_下极限三种定义的等价证明(精)

x n k
=ξ,则对一切k ∈N,成立inf n>n k
-1
{x n}≤x n k
≤sup n>n k
-1
{x n},对k →+∞取极限,得h ≤ξ≤H.其次证明,存
在{x n}的子列
{x n k
}与{x m k
},使得lim k →∞
x m k
=H,lim k →∞
x m k
=h.事实上,对ε1=1,
对每个n ∈N,由于有m>n,
使x m ∈-ε+ε),所以
-ε≤sup m ≥n
{x m}(n ≥1),
(1)
其次由于有[+ε,+∞)中只有{x n}的有限项,所以存在N,使得当n>N时,x n<+ε,因此当n>N时,
sup m ≥n
{x m}≤+ε(n>N).(2)
综合(1)(2)得到,当n>N时,-ε≤sup m ≥n
<εn=1,易
见lim k →∞
x n k
=b,即b ∈H 2,于是H 1哿H 2.综合以上两方
面,再由a和b的任意性知H 1=H2.故最大聚点即为
子极限中之的最大者,最小聚点即为子极限中的最小者,即定义1和定义2等价.
定理2定义1圯定义3.证明设为有界数列{x n}的最大聚点,则对坌ε>0,-ε+ε)中含有{x n}的无限多项,而在+ε,+∞)中只含有{x n}中有限多项.于是对坌ε>0,
βk=supn>k
{x n}=sup{x k+1,…,x k+i,…},
αk=infn>k
{,于是得到数列{βk}和数列{αk},显然数列{βk}是单调减少的,{αk}是单调增加的,所以这两个数列极限都存在,称{βk}的极限是{x n}的上极限,记作H,称{αk}的极限是{x n}的下极限,记作h.也就是
上极限和下极限

11.06.2020
上上极限与下极限的性质与判断方法 3 数列的上下极限的不等式性质 例( 3p175#2)
11.06.2020
上一页 下一页 主 页 返回 退出
22
二 上极限与下极限的性质与判断方法 3 数列的上下极限的不等式性质 例( 3p175#2)
11.06.2020
上一页 下一页 主 页 返回 退出
12
二 上极限与下极限的性质与判断方法 1 数列的上下极限的关系
证 明 : 设 lni m xn=A, lni m xn=A )
同理,小于A的项也至多只有有限多项, 从而(A,A)之外含数列至多有限项,
由数列极限的定义,得证。
11.06.2020
上一页 下一页 主 页 返回 退出
13
二 上极限与下极限的性质与判断方法 2 数列的上下极限的判断方法
若 {a n}{b n}之 一 收 敛 , 如 {b n}收 敛 , 则 ln i m a n+ln i m b nln i m ( a n+ b n ) ln i m ( a n+ b n ) ln i m a n+ln i m b n
11.06.2020
上一页 下一页 主 页 返回 退出
4
一 上极限与下极限的定义 3 数列的聚点的性质
11.06.2020
上一页 下一页 主 页 返回 退出
5
一 上极限与下极限的定义 4 数列的上下极限的定义
11.06.2020
上一页 下一页 主 页 返回 退出
6
一 上极限与下极限的定义 4 数列的上下极限的定义
11.06.2020
上一页 下一页 主 页 返回 退出
11.06.2020
上极限和下极限

n
n
聚点, 所以存在 { ynk },
lim
k
ynk
B.
又 { xnk } 有界,
故存在 { xnk } 旳一种收敛子列{ xnk j },
lim
j
xn
k
j
A.
前页 后页 返回
又因 xnk j ynk j ,
取 j 旳极限,便得A B. 因为 A 也是 { xn } 旳聚点, 它与{ xn } 旳最小聚点 A 理应满足
二、上(下)极限旳基本性质
由上、下极限旳定义, 立即得出:
定理7.5 对任何有界数列 { xn }, 有
lim
n
xn
lim
n
xn .
(1)
下面这个定理刻画了极限与上、下极限之间旳关
系.
定理7.6
有界数列 { xn } 存在极限旳充要条件是:
lim
n
xn
lim
n
xn .
(2)
前页 后页 返回
证
设
lim
lim
k
xnk
lim (
k
xnk
ak
)
lim
k
ak
A
,
即证得 A 也是 { xn}的一个聚点, 所以
同理可证 A E.
A E.
定义 2 有界数列 { xn } 旳最大聚点 A 与最小聚点 A 分别称为 { xn } 旳上、下极限, 记为
A
lim
n
xn
,
A lim xn.
n
前页 后页 返回
注 由定理 7.4 得知, 有界数列必有上、下极限. 这么, 上、下极限旳优越性就显现出来了: 一种 数列若有界, 它旳极限能够不存在, 此时想经过 极限来研究该数列往往是徒劳旳; 但是有界数列 旳上、下极限总是存在旳, 这为研究数列旳性质 提供了一种新旳平台.
非单调数列上极限和下极限

非单调数列上极限和下极限非单调数列是指数列中的元素不按照递增或递减的顺序排列的数列。
在数学中,我们常常研究数列的极限,即数列随着项数的增加而趋向的某个值。
而对于非单调数列来说,它的上极限和下极限并不总是存在,因此需要特殊的讨论和分析。
我们来定义非单调数列的上极限和下极限。
对于一个非单调数列,我们可以找到一个子数列,使得其中的元素递增或递减。
这样,我们定义非单调数列的上极限为这个递减子数列的极限,下极限为递增子数列的极限。
如果递减子数列不存在,则上极限为正无穷;如果递增子数列不存在,则下极限为负无穷。
对于一个非单调数列来说,它的上极限和下极限并不一定相等。
这是因为非单调数列的元素可以在趋近无穷大或无穷小的过程中,经历多次的递增和递减。
这种情况下,数列的上极限和下极限分别代表了数列趋近无穷大和无穷小时的极限值。
下面我们以一个具体的实例来说明非单调数列的上极限和下极限。
考虑数列{-1, 2, -3, 4, -5, 6, ...},其中正数项递增,负数项递减。
这个数列的递增子数列为{2, 4, 6, ...},其极限为正无穷;递减子数列为{-1, -3, -5, ...},其极限为负无穷。
因此,这个非单调数列的上极限为正无穷,下极限为负无穷。
在实际应用中,非单调数列的上极限和下极限具有一定的重要性。
它们可以用来描述数列的趋势和发展方向。
当上极限和下极限存在且相等时,说明数列趋向于一个确定的值;当上极限和下极限存在但不相等时,说明数列在不同的方向上趋向于不同的值;当上极限或下极限不存在时,说明数列的趋势不明确或者在趋向于无穷大或无穷小的过程中震荡不定。
为了更好地理解非单调数列的上极限和下极限,我们可以通过数列的图像来进行观察。
在数学软件或者绘图工具中,我们可以将数列的元素按照其在数轴上的位置绘制出来。
通过观察数列图像的变化,我们可以更加直观地理解数列的递增和递减过程,从而推测出数列的上极限和下极限的可能取值。
函数的上下限极限及应用

公元3世纪,我国古代杰出数学家刘徽成功地把极限思想应用于实践之中,其中最被人所熟知的方法是在计算圆的面积时所建立的“割圆术”。在近代数学许多分支中一些重要的概念与理论都是极限和连续函数概念的推广、延拓和深化。近年许多专家学者对函数极限的计算方法作了研究,并取得了一定的突破。房俊、李广民研究了用中值定理求函数极限的方法;曹学锋、孙幸荣讨论了利用无穷小量计算函数的极限。
刘永莉和石蕊在《函数极限的Stolz定理及其应用》【2】中将数列极限的Stolz定理推广到函数极限,并且用Stolz定理证明了L'Hospital法则,金少华、张建和宛艳萍在《求极限的若干方法》【3】中整理归纳了求取极限的多种方法,并给出了相应的证明,董仲超的《上、下限集的思考》【7】讨论了实变函数中上、下限集的定义,对数列极限和函数极限概念间的关系做了比较,冯适在《浅谈高等数学中极限定义的研究和应用》【8】中提出极限定义在高等数学中的实际应用,常瑞玲和郭新在《利用投影法选取积分的上、下限》【9】中对利用投影法求解函数上下限给出了详细的证明。
吕梁学院2019届毕业论文开题报告
(学生用表)
系(部):数学系专业:数学与应用数学班级:1501(专升本)
课题名称
函数的上下限极限及应用
指导教师
王小二李花花
学生
吴平
学号
201502022101
1.课题的来源及意义
极限理论在数学学科中是最基础、但却是最重要的内容之一,它以各种各样的形式出现,并贯穿于高等数学中。极限是数学中由常量到变量、有限到无限、近似到精确思想转变的重要概念,在整个现代数学中,极限理论是最基本的概念之一,是解决与处理数学问题的一种重要的数学思想和方法。
3.2研究内容
数列、函数上下极限的性质及其应用文献综述

文献综述数列、函数上下极限的性质及其应用一、前言部分极限的概念是数学分析中最基本的概念之一,也是高等数学中的一个最重要的理论部分.极限思想在数学中起着非常重要的作用.数学家拉夫纶捷夫曾说:“数学极限法的创造是对那些不能够用算术、代数和初等几何的简单方法来求解的问题进行了许多世纪的顽强探索的结果.” 极限思想 揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
借助极限思想,人们可以从有限认识无限,从直线形认识曲线形从不变认识变,从量变认识质变,从近似认识精确.极限思想是社会实践的产物.极限的思想可以追溯到古代,在我国春秋战国时期虽已有极限思想的萌芽.但从现在的史料来看,这种思想主要局限于哲学领域,还没有应用到数 学上,当然更谈不上应用极限方法来解决数学问题.直到公元3世纪,我国魏晋时期的数学 家刘徽在注释《九章算术》时创立了有名的“割圆术”.由于他所采用的圆的半径为1,这样 圆的面积在数值上即等于圆周率,所说刘徽成功地创立了科学的求圆周率的方法.刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边形,然后逐渐倍增边数,依次算出内接正6边形、正12边形、… 、直至562⨯(192)边形的面积。
他利用公式22n n r l s n ⋅=⋅(n l 为内接正n 边形的边长,2n s 为内接2n 边形的面积)来求正多边形的面积.他的极限思想是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失”.第一个创造性地将极限思想应用到数学领域.这种无限接近的思想就是后来建立极限概念的基础.刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用:古希腊人的穷竭 法也蕴含了极限思想,但由于希腊人“对无限的恐惧”,他们避免明显地“取极限”,而是借助于间接证法——归谬法来完成了有关的证明.到了16世纪,荷兰数学家斯泰文在考查三角形重心的过程中改进了古希腊人的穷竭法,他借助几何直观运用极限思想思考问题 ,放弃 了归谬法的证明.如此,他在无意中将极限发展成为一个实用概念.从这一时期开始,极限与微积分开始形成密不可分的关系,并且最终成为微积分的直接基础。
高三数学函数的极限

lim f (x) C .
x x0
注意:
(1)lim f (x) x x0
中x无限趋近于x0,但不包含x=x0即
x≠x0,所以函数f(x)的极限是a仅与函数f(x)在点x0附近
的函数值的变化有关,而与函数f(x)在点x0的值无关
(x0可以不属于f(x)的定义域)
(2)lim f (x) 是x从x0的两侧无限趋近于x0,是双侧极限,
1. 对于函数极限有如下的运算法则:
如果 lim f (x) A, lim g(x) B
而
x
lim f
x(0x)、
lim
极限, xx0
x x0
f (x)
都是x从x0的单侧无限趋近于x0,是单侧
显然 lim f (x) a lim f (x) lim f (x) a
xx0
xx0
xx0
;资质代办 /daiban/ 资质代办
f(x)无限趋近于一个常数a,就说a是函数f(x)在点x0处的
左极限,记作 lim f (x) a。
x
0
3.如果当x从点x0右侧(即x﹥x0)无限趋近于x0时,
函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处
的右极限,记作 lim f (x) a 。 x x0
4.常数函数f(x)=c在点x=x0处的极限有
第三节 函数的极限
高三备课组
函数极限的定义:
一般地,当自变量x的绝对值无限增大时,如果函
数 y f ( x ) 的值都无限趋近于一个常数a,就说
当x趋向于无穷大时,函数 y f ( x ) 的极限是a,
记作 limf (x) a x
数学分析7.3上极限和下极限

第七章 实数的完备性 3 上极限和下极限定义1:若在数a 的任一邻域内含有数列{x n }的无限多个项,则称a 为{x n }的一个聚点.注:点列(或数列)的聚点邻域中可以包含无限个相同的项;而点集(或数集)的聚点邻域中只能包含无限个不同的项。
定理7.4:有界点列(数列){x n }至少有一个聚点,且存在最大聚点与最小聚点.证:∵{x n }为有界数列,∴存在M>0,使得|x n |≤M ,记[a 1,b 1]=[-M,M]. 将[a 1,b 1]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 2,b 2],则[a 1,b 1]⊃[a 2,b 2],且b 2-a 2=21(b 1-a 1)=M. [a 2,b 2]含有{x n }中无穷多个项; 将[a 2,b 2]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 3,b 3],则 ∴[a 2,b 2]⊃[a 3,b 3],且b 3-a 3=21(b 2-a 2)=2M. [a 3,b 3]含有{x n }中无穷多个项; 依此规律,将等分区间无限进行下去,可得区间列{[a n ,b n ]}满足 [a n ,b n ]⊃[a n+1,b n+1],且b n -a n =2-n 2M→0 (n →∞),即{[a n ,b n ]}是区间套,且 每一个闭区间都含有{x n }中无穷多个项,而 其右边至多只有{x n }中有限多个项.由区间套定理,存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε), ∴U(ξ; ε)内含有{x n }中无穷多个项,∴ξ为{x n }的一个聚点. 若ξ为{x n }的唯一的聚点,则ξ同时为{x n }的最大聚点和最小聚点. 若{x n }有聚点ζ>ξ,则令δ=31(ζ-ξ)>0,在U(ζ,δ)内含有{x n }中无穷多个项, 且当n 充分大时,U(ζ,δ)将落在[a n ,b n ]的右边,矛盾。