八年级数学上册分式的化简82

合集下载

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
ab2
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x

y x

c x

m y x
c
(2)
m 2abc

n 2bca

d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式

1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4

a
1
2
a2 -4 能分解 :
解:原式

(a

2a 2)(a

2)

(a

a2 2)(a
2)

2a (a 2) (a 2)(a 2)

2a a 2 (a 2)(a 2)

八年级数学上册第十五章《分式》知识点总结(2)

八年级数学上册第十五章《分式》知识点总结(2)

一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数C 解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0D解析:D【分析】 若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x +>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 3.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 4.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x -=+ A 解析:A【分析】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】 设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A .【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 5.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( )A .1B .12C .0D .4D 解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d ++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.7.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .75D 解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.8.22()-n b a(n 为正整数)的值是( ) A .222+nn b aB .42n n b aC .212+-n n b aD .42-n n b aB 解析:B【分析】根据分式的乘方计算法则解答.【详解】 2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< D 解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 二、填空题11.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 13.211a a a-+=+_________.【分析】先通分再分母不变分子相减即可求解【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:11a + 【分析】先通分,再分母不变,分子相减即可求解.【详解】222222211(1)11111111(1)(1)11a a a a a a a a a a a a a a a a a a a +--+=--=-=-==+++++++-++-故答案为:11a + 【点睛】 本题考查了分式加减运算的法则,熟记法则是解题的关键.14.223(3)a b -=______,22()a b ---=______.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.15.101()()2π-+-=______,011(3.14)2--++=______.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12=【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可.16.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.17.关于x 的方程53244x mx x x++=--无解,则m =________.3或【分析】分式方程无解即化成整式方程时无解或者求得的x 能令最简公分母为0据此进行解答【详解】解:方程两边都乘以(x-4)得整理得:当时即m=3方程无解;当时∵分式方程无解∴x-4=0∴x=4∴解得解析:3或174. 【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】解:方程两边都乘以(x-4)得,5(3)2(4)x mx x -+=-,整理,得:(3)5m x -=-当30m -=时,即m=3,方程无解;当30m -≠时,53x m =-, ∵分式方程无解,∴x-4=0,∴x=4, ∴543m =-, 解得,174m =. 故答案为:3或174. 【点睛】 本题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.18.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-.本题考查分式的化简求值,属于基础题.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y的取值【详解】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(30﹣x)元/件依题意得:80x=7030x解得:x=16,经检验x=16是原方程的解.∴30﹣x=14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y件,则购进乙种玩具(50﹣y)件,依题意得: 16y+14(50-y)≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y为非负整数,∴y取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.22.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.解析:(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能,理由【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.23.计算:(1)222221538x y y x ⎛⎫⋅ ⎪⎝⎭. (2)2222324424x x x x x x x ⎛⎫-+-÷ ⎪-+--⎝⎭. 解析:(1)256y ;(2)3x - 【分析】(1)先算乘方,再算乘法即可;(2)根据分式混合运算的法则进行计算即可.(1)原式224241598x y y x=⋅256y =; (2)()()()()22322222x x x x x x x ⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦ 31222x x x x ⎛⎫=-÷ ⎪---⎝⎭()3232x x x x -=⨯-=-- 【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.24.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 解析:(1)5x -;(2)19b ;(3)23x =【分析】 (1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.解析:这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 解析:21x x +-;52【分析】 先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x =代入计算,即可得到答案.【详解】解:原式=()()()22212211x x x x x x x +--+⨯=---; 当3x =时,原式=522331=-+. 【点睛】 本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算. 27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------. 解析:(1)111n n -+;(2)20202021;(3)7x =. 【分析】 (1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++. 故答案为:111n n -+.(2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =, 经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.28.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭. 解析:(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷=115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+ =2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +-- =222xy x y +; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅ =67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

【专题】分式化简求值(50题)一、解答题1.先化简,再求值:(1−1a 1)÷aa 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4aa 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a=π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3.5.先化简,再求值:a−1a 22a 1÷a−1a 1−1a−1,其中6.÷(3a 1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+),其中x =−2.8.先化简,再求值:)÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x2−xx2−6x9,其中x=2.10.先化简再求值:−1x)÷1x1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(xx−1−1),其中x=-212.2xx2x2−1,其中x=3.13.先化简,再代入求值:x2x−2·(4x+x−4),其中x2−2x−2=014.先化简,再求值:(1+1x−2)÷x−1x2−2x+4,其中x=6.15.÷a2−aba−2a b,其中a=2,b=﹣1.16.先化简,再求值:(xx1+1x−1)÷1x2−1,其中x是6的平方根.17.先化简,再求值:+1)÷−2x ,其中x =4.18.先化简,再求值:(1x 1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值:÷(x +2﹣5x−2 ),其中x = −12 .20.先化简,再求值:(2m 2−4m 2−1)其中m =(12)−1+(3.14−π)0.21.先化简 1a 1÷a a 22a 1 ,然后在0,1,-1中挑选一个合适的数代入求值. 22.÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 22a 1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a 2)2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.÷(1−3x 1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a 1 ÷(a ﹣1﹣ 2a−1a 1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值 30.先化简,再求值: −a−1a 2−4a 4)÷a−4a ,其中a 满足 a 2−4a +1=0 . 31.先化简,再求值:(1−2x−1)÷,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a 2)÷,其中a = 2−1+(π−2022)0 . 33.先化简,再求值 : (1−1a 1)÷aa 2−1 并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值: mm 2−9÷[(m +3)0+3m−3] ,其中 m =−2 . 35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简:÷ ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值. 37.先化简:x−3x 2−1⋅−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(aa2+9−4aa2−4)÷a−3a−2,其中a是已知两边分别为2和3的三角形的第三边长,且a是整数.39.先化简,再求值:+1−aa2−4a4)÷a−4a,并从0<a<4中选取合适的整数代入求值.40.先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab b2+ab−a),其中a=−2,b=13.41.先化简,再求值:(1+1x2)÷ x2−9x−3,其中x=﹣2.42.先化简x2−2xx2−4÷(x−2−2x−4x2),然后从-2,2,5中选取一个的合适的数作为x的值代入求值.43.先化简,再求值:(2a−4aa−2)÷a−4a2−4a4,其中a与2,3构成△ABC的三边长,且a为整数.44.有一道题:“先化简,再求值:(x−2x 2+4xx 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:÷−2x x 为不等式组2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a 1−a−1)÷,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值. 47.先化简,再求值: ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解. 48.先化简分式:(1﹣ xx−1 )÷ ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2x −1)÷x 2−1x 22x 1 ,其中x 的值从不等式组 −x ≤12x−1<4 的整数解中选取.50.有这样一道题:先化简再求值,÷x−1x2x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。

八年级数学上册《分式》知识点归纳

八年级数学上册《分式》知识点归纳

分 式一、概念:定义1:整式A 除以整式B ,可以表示成BA的形式。

如果除式..B .中含有分母.....,那么称BA为分式。

(对于任何一个分式,分母不为0。

如果除式B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

分式:分母中含有字母。

整式:分母中没有字母。

而代数式则包含分式和整式。

)定义2:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

定义3:分子和分母没有公因式的分式称为最简分式。

(化简分式时,通常要使结果成为最简分式或者整式。

)定义4:化异分母分式为同分母分式的过程称为分式的通分。

定义5:分母中含有未知数的方程叫做分式方程 定义6:在将分式方程变形为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种解通常称为增根。

二、基本性质:分式的基本性质:分式的分子与分母都.乘以(或除以)同.一个不等于零....的整式,分式的值不变。

三、运算法则:1、分式的乘法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;(用符号语言表示:b a ﹒d c =bdac)2、分式的除法的法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(用符号语言表示:b a ÷dc =b a ﹒cd =bcad) 分式乘除法的运算步骤:当分式的分子与分母都是单项式时: (1)乘法运算步骤是:①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分。

(2)除法的运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面. 最后的计算结果必须是最简分式或整式. 3、同分母分式加减法则是:同分母的分式相加减。

八年级数学上册专题七分式的化简求值习题新版新人教版

八年级数学上册专题七分式的化简求值习题新版新人教版
3.
−+
先化简,再求值:
÷




(−)

【解】原式=
÷
(−)



(−)


÷

(−)


,其中 a =4.
(−) −



· =
,当 a =4时,原式=
= .
(−) −



4. 已知实数 x , y 满足| x -3|+ y2-4 y +4=0,求代数式
【解】

+
−+

+
−+

÷
.
++

−(−)(+)
(+)
÷

·
++
+
(+)(−)
− +
+
(+)(−)
+

·

·
=-( a +1)=

(+)(−)

(+)(−)
- a -1.
类型2 化简求值——直接代入型
人教版 八年级上
第十五章 分式
专题七 分式的化简求值
类型1 直接化简
1.



[2023南通]计算:
· -
.
−+









【解】
· -

· -


−+

分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)

精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。

部编数学八年级上册专题01运算能力课之分式的化简求值综合专练(解析版)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题01运算能力课之分式的化简求值综合专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.(2021·山西八年级期末)先化简:221a a +-÷(a +1)+22121a a a --+,然后让a 在-1、1、5三个数中选一个合适的数代入求值.【答案】31a a +-;当a =5时,原式值为2【分析】先化除法为乘法,然后利用提取公因式、完全平方公式、平方差公式进行因式分解,通过约分对已知分式进行化简,最后代入求值.【详解】解:原式()()()()221111213111111a a a a a a a a a a a ++-++=´+=+=-+----由题意可知:21010210a a a a -¹ìï+¹íï-+¹î解得a ≠±1. 所以当a =5时,原式=5325-1+=.【点睛】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.2.(2021·辽宁阜新市·八年级期末)(1)因式分解:22()9()a x y b y x -+-.(2)解不等式组10213(1)x x x ì-<ïíï-£+î.(3)先化简,再求值:2244111x x x x x x -+æö+¸ç÷---èø,其中5x =.【答案】(1)()(3)(3)x y a b a b --+;(2)22x -£<;(3)11,23x -【分析】(1)先提公因式,再用公式法因式分解;(2)分别解不等式①②,再求不等式组的解集;(3)先化简分式,再将x 的值代入求解【详解】(1)原式()2222()9()()9a x y b x y x y a b =---=--()(3)(3)x y a b a b =--+(2)10213(1)x x x ì-<ïíï-£+î①②由①得,2x <,由②得,2x ³-,∴原不等式组解集为22x -£<.(3)原式2211(2)x x x x --æö=´ç÷--èø2(2)(1)1(2)x x x x ----=´--12x =-当5x =时,原式11523==-.【点睛】本题考查了多项式的因式分解,解一元一次不等式组,分式的化简求值,熟练运用以上知识是解题的关键.3.(2021·甘肃)先化简,再求值:22242244x x x x x -æö-¸ç÷--+èø,请在2-、0、2中选择一个适合的x 的值,代入求值.【答案】42x -+;-2【分析】把括号内通分,把除法转化为乘法约分化简,然后取一个使原分式有意义的数代入计算.【详解】解:原式2224244224x x x x x x x --+æö=-×ç÷---èø2242(2)2(2)(2)x x x x x x ---æö=×ç÷-+-èø24(2)(2)(2)(2)x x x x --=×-+-42x =-+,∵当x =2或-2时原分式无意义,∴x =0,∴原式4202=-=-+.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.4.(2021·安徽七年级期末)先化简,再求值:25(3)(222x x x x +--¸++,其中x =4.【答案】33x x -+,17【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出答案即可.【详解】解:25(3)(222x x x x +--¸++=2(2)(2)522(3)x x x x x -+-+++g 2292=2(3)x x x x -+++g ()()2332=2(3)x x x x x +-+++g 3=3x x -+,当x =4时,原式=4343-+=17.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则,正确进行化简是解题关键.5.(2021·安徽七年级期末)先化简,再求值:21(1)11x x x x --¸++,其中x 是16的算术平方根.【答案】11x --,1-3.【分析】先求出x 的值,再运用分式的四则混合运算法则进行化简,将x 的值代入计算即可.【详解】解:4,∴x =4.21(1)11x x x x --¸++=111()11(1)x x x x x x ++-×++-=11(1)x x x x x +-×+-=11x --.当x =4时,原式=11x --=11413-=--.【点睛】本题主要考查了算术平方根、分式的化简求值,正确的运用分式的四则混合运算法则进行化简是解答本题的关键.6.(2021·安徽七年级期末)观察以下等式:①111112212-==´;②111123623-==´;③1111341234-==´…,按以上规律解决下列问题:(1)第⑤个等式是 .(2)探究:111122334++´´´…+1(1)n n ´+= (用含的等式表示);(3)计算:若111133557++´´´+…1(21)(21)n n -´+=1633,求n 的值.【答案】(1)1115656-=´;(2)1n n +;(3)16【分析】(1)根据规律写出第5个等式即可;(2)根据规律裂项相消即可;(3)根据(2)的规律整理出n 的方程,解出n 值即可.【详解】解:(1)根据规律可知,第⑤个等式是1115656-=´故答案为:1115656-=´;(2)由规律可得,()1111111111111223341223341n n n n ++=-+-+-++-´´´´++L L 111n =-+1nn =+故答案为:1n n +;(3)∵11111323æö=-ç÷´èø,111135235æö=-ç÷´èø,111157257æö=-ç÷´èø∴可以得到()()1111212122121n n n n æö=-ç÷-´+-+èø∴()()11111335572121n n ++´´´-´+1111111112335572121n n æö=-+-+-++-ç÷-+èøL 111221n æö=-ç÷+èø21n n =+∵()()111116133557212133n n ++=´´´-´+∴162133n n =+解得n =16,经检验n =16,是该分式方程的解,故n 的值为16.【点睛】本题主要考查了数字的变化规律,利用规律化简分式是解题的关键.7.(2021·山东八年级期末)先化简再求值:2222a b ab b b a ab æö+--¸ç÷èø,已知4a b =-.【答案】2a b -,-2【分析】先将括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把4a b =-代入计算即可就求出值.【详解】解:原式222=()22()a b ab ab a a b a b +-×-2()2a b a a a b-=×-2a b -=. ∵4a b =-,∴a -b =-4.∴原式=-2.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解题的关键.8.(2021·无锡市天一实验学校八年级期中)先化简再求值:23331111x x x x x -¸--++,其中2x =-.【答案】()11x x +,12【分析】先把除法化为乘法,再进行约分,然后算分式的减法,再代入求值,即可求解.【详解】解:原式=()3(1)111(1)31x x x x x x -+×-+-+=111x x -+=()()111x x x x x x +-++=()11x x +,当x =-2时,原式=()1221-´-+=12.【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分是解题的关键.9.(2021·安徽)先化简,再求值(1﹣22221m m m +++)÷(11m -),其中m =2.【答案】1m m +,23【分析】根据分式的混合运算法则把原式化简,把m 的值代入计算即可.【详解】解:22211121m m m m +æöæö-¸-ç÷ç÷++èøèø222122121m m m m m m m æö++---æö=¸ç÷ç÷++èøèø221121m m m m m æö--=¸ç÷++èø()()()21111m m mm m +-=-+g 1mm =+把2m =代入上式中原式221213m m ===++【点睛】本题考查分式的化简求值.注意运算顺序和约分法则.还需注意分式的分母不能为0.10.(2021·云南)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一 填空 在以上化简步骤中,其中有一步是根据分式的基本性质:“分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变,”对分式进行通分.这是第__________步;任务二 订正 请写出该分式化简的正确过程;任务三 求值 当114x -æö=ç÷èø时,求该分式的值.【答案】任务一:三;任务二:见解析;任务三:12-【分析】任务一:根据分式的基本性质即可判断;任务二:依据分式的加减运算法则计算可得;任务三:将x 的值化简代入计算即可.【详解】解:任务一:以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质,故答案为:三;任务二:解:原式2(3)(3)21(3)2(3)x x x x x +-+=-++32132(3)x x x x -+=-++2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+ 26212(3)x x x ---=+ 726x =-+.任务三:解:当11()44x -==时,原式71=2462=--´+.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.11.(2021·苏州市景范中学校九年级二模)先化简,再求值:2222(1)32111x x x x x x x x ++-¸--+--,其中1x =+.【答案】31x -【分析】根据分式的运算法则进行化简,然后将x 的值代入原式即可求出答案.【详解】解:原式=22(1)(1)3(1)(1)(1)1x x x x x x x x ++-¸--+--=22(1)(1)(1)3(1)(1)1x x x x x x x x ++--´--+-=311x x x x ----=31x x x -+-=31x -;当1x =时,原式=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.(2021·山东)化简和化简求值(1)21(11a a a a+¸--;(2)先化简2221(21)11x x x x x x -+¸++-+,再从-1,0,1中选择合适的x 值代入求值.【答案】(1)a -(2)11x -;当0x =时,原式1=-【分析】(1)先将括号里通分计算,再算除法;(2)先运用通分法则计算括号内部分,然后将除法转换为乘法计算化简后,挑一个使分式有意义的值代入计算即可.【详解】解:(1)原式11=(+)11(1)a a a a a a -¸---1(1)1a a a ´--=a =-;(2)原式2221(1)()11(1)(1)x x x x x x x -+=-+++-g 1111x x x +=+-g ,11x =-,由分式可知:1x ¹±,当0x =时,原式1=-.【点睛】本题主要考查分式的化简求值以及分式有意义的条件,熟练掌握分式的混合运算法则是解答本题的关键.13.(2021·江苏八年级期末)化简或解方程:(1)化简:21442a a a+--;(2)先化简再求值:222()111a a a a a ++¸+--,其中a 1.(3)解分式方程:11322x x x -=---.【答案】(1)124a +;(2)31a +;(3)原方程无解.【分析】(1)先把分式的分母分解因式,再通分,最后根据同分母的分式相加的法则求出答案即可;(2)先算括号内的加法,把除法变成乘法,算乘法,最后代入求出答案即可;(3)方程两边都乘以x ﹣2得出方程1=x ﹣1﹣3(x ﹣2),求出方程的解,再进行检验即可.【详解】解:(1)解:原式=()()()12222a a a a -+--,=()()()22222a a a a -++-,=()()2222a a a -+-,=()122a +,=124a +;(2)222()111a a a a a ++¸+--解:原式=()()221111a a a a a a éù+-+×êú++-êúëû,=()()()()()21211111a a a a a a a a éù-+-+×êú+-+-êúëû,=()()3111a a a a a -×+-,=31a + ,当a 1- (3)11322x x x -=---,解:方程两边都乘以x ﹣2,得1=x ﹣1﹣3(x ﹣2),解得:x =2,检验:当x =2时,x ﹣2=0,所以x =2是增根,即原方程无解.【点睛】本题主要考查分式化简求值和解分式方程,解决本题的关键是要熟练掌握分式化简求值和解分式方程的方法.14.(2021·湖北八年级期末)先化简,再求值:2222b b a a b a b ab bæö-¸ç÷--+èø,其中a =,b1.【答案】2,3b a b-【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:2222b b a a b a b ab bæö-¸ç÷--+èø=()()()()2b a b b b a b a b a b a +-+´+-=ab a b b a -´=2b a b-当a时,3===.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键,代值计算要仔细.15.(2021·福建莆田二中)先化简,再求值:(1﹣2a a a +)÷22121a a a -++,其中2a =.【答案】1a a -,2【分析】利用通分,因式分解,运算法则细心计算即可.【详解】解:原式=()()()222111a a a a a a a a +-+-¸++=()()()()221·111a a a a a a +++-=1a a -,当2a =时,原式2221==-.【点睛】本题考查了分式的化简,熟练运用分式的通分,因式分解,约分进行化简是解题的关键.16.(2021·河南八年级期末)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务:22112221x x x x x ---+++=2(1)(1)12(1)(1)x x x x x +---++…第一步=1112(1)x x x x ---++…第二步=2(1)12(1)2(1)x x x x ---++…第三步=2(1)(1)2(1)x x x ---+…第四步=2212(1)x x x ---+…第五步=322x x -+…第六步任务一:填空:(1)以上化简步骤中,第一步进行的运算是 .A .整式乘法B .因式分解(2)以上化简步骤中,第 步是进行分式的通分,通分的依据: .(3)第 步开始出现错误,这一步错误的原因: .任务二:请直接写出该分式化简后的正确结果,并从不等式组211102x x +³ìïí-+>ïî的解集中选择一个合适的整数作为x 的值,代入求值;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】任务一:(1)B ;(2)四,分式的基本性质;(3)五,去括号没有变号;任务二:122x x -+,12-或0;任务三:分式化简时需要注意分母的取值不为零.【分析】任务一:分式化简的要先因式分解,再通分;任务二:解不等式组,求得解集,选取合适的值,代入计算即可;任务三:在运算时,去括号要注意变号,代入求值时,注意分母的取值.【详解】解:(1)第一步进行因式分解,故选:B ;(2)第四步分式通分,通分根据分式的基本性质,故答案为:四,分式的基本性质;(3)第五步出现错误,原式2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+,在去括号时符号错误,故答案为:五,去括号没有变号;任务二:22112221x x x x x ---+++2(1)(1)1(1)2(1)x x x x x +--=-++1112(1)x x x x --=-++2(1)12(1)2(1)x x x x --=-++2(1)(1)2(1)x x x ---=+2212(1)x x x --+=+122x x -=+,解不等式组2 1 110 2x x +³ìïí-+>ïî①②,由①得,x ≥﹣1,由②得,x <2,∴不等式组的解集为﹣1≤x ≤2,∵x ≠﹣1,∴x 可以取0,1,当x =0时,原式=12-,当x =1时,原式=0;任务三:分式化简时需要注意分母的取值不为零.【点睛】本题考查了分式的化简,解不等式组,熟练掌握分式化简的方法,掌握分式的基本性质,注意分母的取值不为零的情况是解题的关键.17.(2021·贵州八年级期末)先化简,再求值:(x ﹣2122x -+)42x x -¸+,其中x =5.【答案】﹣x ﹣4,﹣9.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算即可.【详解】解:(x ﹣2122x -+)42x x -¸+()()22122x x x -+-=+•24x x +-2162x x -=+•24x x +- ()()442x x x +-=+•()24x x +-- =﹣(x +4)=﹣x ﹣4,当x =5时,原式=﹣5﹣4=﹣9.【点睛】本题主要考查分式的化简求值,解题关键是掌握分式的混合运算顺序和运算法则.18.(2021·湖南师大附中博才实验中学八年级期末)先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.【答案】1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+æö-¸ç÷+++èø,=()22112x x x x -+×+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.19.(2021·浙江七年级期末)先化简,再求值:x y xy -÷(x y y x-),其中x =12,y =﹣13.【答案】1x y+,6【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:原式=22x y x y xy xy--¸=22x y xy xy x y --g =()()x y xy xy x y x y -+-g =1x y+,当x =12,y =﹣13时,原式=116=6.【点睛】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则进行计算,本题属于基础题型.20.(2021·辽宁八年级期末)先化简,再求值:2211121x x x x x---¸++,其中3x =.【答案】11x +,14【分析】根据分式的运算法则及运算顺序进行化简,再代入求值即可.【详解】解:2211121x x x x x---¸++()()()211111x x xx x +-=-×-+11=-+x x 11+-=+x x x 11x =+,当3x =时,原式131=+14=.【点睛】此题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.21.(2021·四川成都市·九年级期末)先化简,再求值:232a a a --÷(a +2﹣52a -),其中a 2+3a ﹣1=0.【答案】213a a +,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】解:原式=()()()225322a a a a a a +---¸--=()()()()23233a a a a a a --´-+-=()13a a +=213a a +,∵a 2+3a ﹣1=0,∴a 2+3a =1,则原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(2021·山西临汾市·八年级期中)计算:(1)101(1)12p -æö--+-ç÷èø(2)2241611a a a a a æö--+¸ç÷--èø,其中2a =-.【答案】(1(2)14a -+,12-【分析】(1)利用零指数幂,负正数指数幂,绝对值的性质化简计算即可;(2)先将括号内的分式通分计算,同时将除法转化为乘法,约分化简计算即可;【详解】解:(1)原式211=-+-=(2)原式24(1)(4)(4)111a a a a a a a a æö--+-=+¸ç÷---èø411(4)(4)a a a a a --=×-+-14a =-+.当2a =-时,原式11242=-=--+.【点睛】本题主要考查实数的混合运算及分式的混合运算,熟练运用零指数幂,负整数指数幂及绝对值的运算性质和分式的混合运算法则计算是解题的关键.23.(2021·重庆实验外国语学校八年级期末)化简求值:232228323y x x y x x y x y x xy y x yæö+-+¸×ç÷+++-èø,其中x y =【答案】x y x +-,﹣1【分析】先利用完全平方公式和提取公因式法和平方差公式分解因式,然后根据分式的运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:2322283·23y x x y x x y x y x xy y x yæöæö+-+¸ç÷ç÷+++-èøèø()()22222383x x y y x y x x y x yx y éù+æö-+=¸êç÷+-+èøêúëûg ()()2222933x y y x x x y x x y x y +-=++-g g ()()()()223333y x y x x y x x y x x y x y+-+=++-g g x yx +=-把x =,y =原式=﹣1﹣y x =﹣1【点睛】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握分式的混合运算的相关方法.24.(2021·辽宁鞍山市·八年级期中)已知2m =2121m m m -+-的值.【答案】3【分析】结合m 值先化简分式,再将m 的值代入化简后的式子求解即可.【详解】2121m m m -+-2(1)1m m -=-11(1)m m m m -=---.Q 2m =110m \-=<,\原式1121123m m =-+===.【点睛】本题考查了分式的化简,二次根式的性质,分母有理化,正确的计算是解题的关键.25.(2021·辽宁葫芦岛市·八年级期中)给出以下式子:224114422x x x x x x æö-+-¸ç÷-+-+èø,先简化,然后从1-,2,2+【答案】22x x +-,2x =+1【分析】先根据分式的运算法则及运算顺序进行化简,再将使原式有意义的未知数的值代入计算即可.【详解】解:原式()()()22212212x x x x x x éù+-+=-×êú-+-êúëû212221x x x x x ++æö=-×ç÷--+èø1221x x x x ++=×-+x 2x 2+=-,由题意得,20x -¹,20x +¹,10x +¹,∴2x ¹,2x ¹-,1x ¹-,∴当2x =+原式==1=【点睛】本题考查了分式的化简求值和二次根式的化简求值,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(2021·河南南阳市·八年级期中)已知a 2+a =1,求代数式221312442a a a a a a a +---¸++++的值.【答案】222a a +-,-2【分析】先根据分式的运算法则进行化简,然后整体代入21a a +=即可求解.【详解】解:原式=()22122123a a a a a a +-+-´+-+=()()213221a a a a a +--++-=()()221321a a a a --++-222a a =+-21a a +=Q \原式2212==--【点睛】本题考查分式的化简求值,掌握整体代入思想是解题的关键.27.(2021·胶州市初级实验中学九年级一模)(1)计算:212111a a a a a +æö-+¸ç÷++èø(2)解不等式组:235123x x x -³-ìïí+<ïî(3)关于x 的方程()21310m x x ++-=有两个实数根,求m 的取值范围【答案】(1)2a a +;(2)不等式组的解集为3x >;(3)m 的取值范围为134m £且1m ¹-.【分析】(1)由分式的加减乘除混合运算进行化简,即可得到答案;(2)分别求出每个不等式的解集,然后取公共部分,即可得到答案;(3)根据根的判别式0D ³,即可求出m 的取值范围.【详解】解:(1)212111a a a a a +æö-+¸ç÷++èø=211111(2)a a a a a a æö-++´ç÷+++èø=211(2)a a a a a +´++=2a a +;(2)235123x x x -³-ìïí+<ïî①②解不等式①,得1x ³-;解不等式②,得3x >;∴不等式组的解集为3x >;(3)∵关于x 的方程()21310m x x ++-=有两个实数根,∴()()234110m D =-´+´-³,∴134m £;当10m +=,即1m =-时,原方程是一元一次方程,只有一个解,不符合题意;∴1m ¹-;∴m 的取值范围为134m £且1m ¹-.【点睛】本题考查了分式的加减乘除混合运算,分式的化简,解不等式组,一元二次方程根的判别式,解题的关键是熟练掌握运算法则,正确的进行计算.28.(2021·浙江七年级期末)按条件求值:①若分式52x +的值是整数,求非负整数x 的值.②已知分式321x x -+可以写成531x -+,利用上述结论解决;若分式234x x--表示一个整数,求整数x 的值.③化简:235222x x x x x x -æö¸+-¸ç÷--èø,再从0,2±,3±五个数中,选择一个你最喜欢的数代入并求值.【答案】①3;②3或5或9或-1;③13x +,1【分析】①根据分式的值是整数可得x +2=±5,从而求出x ;②将分式变形为524x ---,参照①中方法即可求出x ;③首先通分,计算括号里面分式的减法,然后再计算括号外的除法,化简后,再根据分式有意义的条件确定x 的值,然后代入x 的值即可.【详解】解:①分式52x +的值是整数,∴x +2=±5,∴x =3或x =-7,∵x 为非负整数,∴x =3;②234x x--=()42384x x --+--=524x ---,∴x -4=±1或±5,∴x =3或5或9或-1;③235222x x x x x x -æö¸+-¸ç÷--èø=()2345222x x x x x x x -æö-¸-¸ç÷---èø=()23922x x x x x x --¸¸--=()()()321233x x x x x x x--´´-+-=13x +∵x 不能取0,3,2,-3,∴x =-2时,原式=123-+=1.【点睛】此题主要考查了分式的化简求值,关键是掌握分式的除法和减法计算法则,正确把分式进行化简.29.(2021·山西八年级期中)阅读材料,完成任务.一道习题引发的思考小明在学习第16章《分式》时,遇到了一道习題,并对有关内容进行了研究:习题再现:己知12a a +=,求221a a+的值;解题过程:解:2112,4,a a a a æö+=\+=ç÷èøQ 221124a a a a \+×+=,即22124a a++=,2212a a \+=.通过以上的解题思路,小明可以总结出论:已知形如n mx a x ±=(m ,n 为常数,我们可以利用完全平方公式计算求出2222n m x x +的值.任务:(1)请你帮小明计算2222n m x x+的值;(2)①若131(0)2b b b -=>,求22194b b +的值;②在①的基础上,求132b b+的值.【答案】(1)22a mn -;(2)①4;.【分析】(1)根据阅读材料中的方法配成完全平方式即可求解;(2)①根据阅读材料中的方法将多项式变形,求出值即可;②对132b b +两边平方后,利用①的结论计算即可.【详解】解:(1)∵n mx a x +=(m ,n 为常数,0mn ¹),∴2222222222n n m n n m x m x x x x mx x x+=+-+××2()2n mx mn x=-+22a mn =-;(2)①∵131(0)2b b b -=>,∴222211211993232244b b b bb b b b -´×´+×+=+21(3)32b b=-+13=+4=;②222111(3)923224b b b b b b+=+´´+221934b b=++43=+7=,∵0b >,∴132b b+=.本题考查了配方法的应用,分式的化简求值,利用完全平方公式:a2±2ab+b2=(a±b)2配方是解题关键.。

八年级上数学化简求值计算题

八年级上数学化简求值计算题一、整式化简求值类。

1. 化简求值:(2x + 3y)^2-(2x + y)(2x - y),其中x=(1)/(3),y = - (1)/(2)。

- 解析:- 先化简式子:- 利用完全平方公式(a + b)^2=a^2+2ab + b^2展开(2x + 3y)^2得4x^2+12xy+9y^2。

- 利用平方差公式(a + b)(a - b)=a^2 - b^2展开(2x + y)(2x - y)得4x^2-y^2。

- 则原式4x^2 + 12xy+9y^2-(4x^2 - y^2)=4x^2+12xy + 9y^2 -4x^2+y^2=12xy+10y^2。

- 再代入求值:- 当x=(1)/(3),y = - (1)/(2)时,- 原式=12×(1)/(3)×(-(1)/(2))+10×(-(1)/(2))^2- =-2 + 10×(1)/(4)=-2+(5)/(2)=(1)/(2)。

2. 化简求值:(x - 2y)^2+(x + 2y)(x - 2y)-2x(x - y),其中x = 3,y=-1。

- 解析:- 化简式子:- 利用完全平方公式展开(x - 2y)^2得x^2-4xy + 4y^2。

- 利用平方差公式展开(x + 2y)(x - 2y)得x^2-4y^2。

- 展开2x(x - y)=2x^2-2xy。

- 则原式=x^2-4xy+4y^2+x^2 - 4y^2-2x^2 + 2xy=-2xy。

- 代入求值:- 当x = 3,y=-1时,原式=-2×3×(-1)=6。

3. 化简求值:(3a + b)(3a - b)-(2a - b)^2,其中a = 1,b = 2。

- 解析:- 化简式子:- 利用平方差公式展开(3a + b)(3a - b)得9a^2 - b^2。

- 利用完全平方公式展开(2a - b)^2得4a^2-4ab + b^2。

15.1.2 分式的基本性质 初中数学人教版八年级上册课件


(3)原式=
10m 3n
3a (2)原式= 7b
新知讲解 二 分式的约分
x2 xy x2
(x
y

x


x2 2x x 2
想一想:
(x2 xy) x x2 x
x x
y
(x2
xx 2x)
x
1 x2
联想分数的约分,由例1你能想出如何对分式进行约分?
与分数约分类似,关键是要找出分式的分子与分母的最简公分母.
A A C , A A C(C 0). B BC B BC
其中A,B,C是整式.
典例分析
例1 填空:看分母如何变化,想分子如何 变化.看分子如何变化,想分母如何变化.
想一想:(1)中 为什么不给出x ≠0, 而(2)中却给出 了b ≠0?
(1)x3 xy
(x2 ), y
3x2 3xy 6x2
知识要点 约分的定义
像这样,根据分式的基本性质,把一个分式的分子与分母的公 因式约去,叫做分式的约分.
经过约分后的分式 x y ,其分子与分母没有公因.像这 2x
样分子与分母没有公因式的式子,叫做最简分式.
分式的约分,一般要约去分子和分母所有的公因式,使所得的 结果成为最简分式或整式.
议一议
在化简分式 5xy 时,小颖和小明的做法出现了分歧:
x (
2
x) y(x
0);
(2) 1

a
), 2a b

2ab b2 ) (b
0).
ab
a 2b
a2
a 2b
想一想: 运用分式的基本性质应注意什么? (1)“都” (2) “同一个” (3) “不为0”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档