4坐标系中的旋转变换(2011年)
4坐标系中的旋转变换(2016年)

1. (2016 广西河池市) 】.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3).将线段OA 绕原点O 逆时针旋转30°,得到线段OB ,则点B 的坐标是( )A .(0,2)B .(2,0)C .(1,―3)D .(―1,3)答案:】.答案A逐步提示作AC ⊥x 轴于点C ,根据勾股定理求出OA 的长,根据正切的概念求出∠AOC 的度数,再根据旋转变换即可得解.详细解答解:过点A 作AC ⊥x 轴于点C .∵点A 的坐标为(1,3),∴OC =1,AC =3.∴OA =12+ (3)2=2.∵tan ∠AOC =AC OC=3,∴∠AOC =60°.∴将线段OA 绕原点O 逆时针旋转30°得到线段OB 时,点B 恰好在y 轴上.∴点B 的坐标是(0,2) .故选择A.解后反思本题通过作垂线,将点的坐标转化为线段的长度,应用勾股定理求斜边的长,应用特殊角的三角函数值求出特殊角的度数,再根据旋转的方向和角度确定所求点的位置,最后写出其坐标.关键词 图形旋转的特征、特殊角三角函数值的运用、点的坐标20160926210454015732 4 坐标系中的旋转变换 选择题 基础知识 2016/9/262. (2016 广西贺州市) 】.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A (﹣2,5)的对应点A ′的坐标是( )A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)答案:】.考点坐标与图形变化-旋转.分析由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.解答解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.点评本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键。
苏教版选修4《极坐标系中的旋转变换》说课稿

苏教版选修4《极坐标系中的旋转变换》说课稿引言《极坐标系中的旋转变换》是苏教版选修4中的一篇数学课文,本篇课文通过介绍极坐标系中的旋转变换,旨在帮助学生理解极坐标系的概念及其在几何图形中的应用。
通过本课文的学习,学生将能够掌握极坐标系中的旋转变换的基本概念、方法和相关运算,并能够运用所学知识解决实际问题。
一、学情分析本节课内容适用于高中数学选修课程,学生已经掌握了直角坐标系和极坐标系的基本概念及其转换关系。
对于旋转变换这一概念,学生可能有一些模糊的认识,但他们已经学习了平面向量相关内容,对于向量的旋转有一定的了解。
因此,本课将通过对比向量的旋转和极坐标系中的旋转变换,帮助学生更深入地理解极坐标系中的旋转变换。
二、教学目标通过本节课的学习,学生将能够: 1. 理解极坐标系中的旋转变换的概念; 2. 掌握极坐标系中的旋转变换的基本方法;3. 能够运用极坐标系中的旋转变换解决几何问题;4. 培养学生的逻辑思维和几何推理能力。
三、教学重点与难点1. 教学重点•极坐标系中的旋转变换的概念和基本方法;•运用极坐标系中的旋转变换解决几何问题。
2. 教学难点•极坐标系中的旋转变换与向量的旋转的比较;•运用极坐标系中的旋转变换解决复杂的几何问题。
四、教学过程步骤一:导入与引入(5分钟)1.引导学生回顾直角坐标系与极坐标系的基本概念及其转换关系;2.提问:在直角坐标系中,我们学过向量的旋转,那在极坐标系中是否也存在旋转变换?3.引入本节课的话题:我们今天要学习的是《极坐标系中的旋转变换》。
步骤二:学习与讲解(20分钟)1.讲解极坐标系中的旋转变换的概念与基本方法:–给出旋转变换的定义:极坐标系中,以原点为中心,逆时针旋转一个角度θ,得到的新坐标称为旋转变换;–引导学生进行基本的旋转变换操作,帮助理解旋转变换的方法和过程;–通过实例演示,让学生掌握极坐标系中的旋转变换的基本运算规则。
2.比较向量的旋转和极坐标系中的旋转变换:–将直角坐标系中的向量旋转和极坐标系中的旋转变换进行对比,帮助学生更好地理解两者之间的关系和差异。
旋转四元数坐标系变换

旋转四元数坐标系变换引言:在三维空间中,我们经常需要进行坐标系的变换,以便描述物体在不同坐标系下的位置和姿态。
旋转四元数是一种常用的表示旋转的数学工具,它能够简洁、高效地描述三维空间中的旋转变换。
本文将介绍旋转四元数的基本原理和应用,以及如何利用旋转四元数进行坐标系的变换。
一、旋转四元数的定义与性质1.1 定义旋转四元数是一种四维复数,通常表示为q = a + bi + cj + dk,其中a、b、c、d均为实数,i、j、k为虚数单位。
旋转四元数具有四个分量,分别对应于一个三维旋转的轴和角度。
其中,a为实部,表示旋转角度的余弦值;b、c、d为虚部,表示旋转轴的三个分量。
1.2 性质旋转四元数具有以下性质:(1)单位化:旋转四元数的模长为1,即|q| = 1。
这是为了保证旋转四元数的归一性,使其能够准确表示旋转变换。
(2)共轭:旋转四元数的共轭定义为q* = a - bi - cj - dk,即虚部取相反数。
共轭用于表示旋转的逆变换。
(3)乘法:旋转四元数的乘法是非交换的,即q1q2 ≠ q2q1。
旋转四元数的乘法可以用于将两个旋转变换合成为一个旋转变换。
(4)逆元:旋转四元数的逆元定义为q-1 = q*/|q|2,即共轭除以模长的平方。
逆元用于表示旋转的逆变换。
二、旋转四元数的应用2.1 旋转变换旋转四元数可以用于表示三维空间中的旋转变换。
对于一个给定的旋转四元数q,可以通过与向量v的乘法操作,实现将向量v绕旋转轴q的旋转。
2.2 坐标系变换利用旋转四元数,我们可以方便地进行坐标系的变换。
假设有两个坐标系A和B,坐标系A与坐标系B之间存在一个旋转变换,我们可以通过旋转四元数来描述这个变换。
具体步骤如下:(1)定义旋转四元数q,表示坐标系A到坐标系B的旋转变换。
(2)将坐标系A的原点Oa表示为旋转四元数的形式,即Oa = 0 + i0 + j0 + k0。
(3)将坐标系A的一个单位向量Va表示为旋转四元数的形式,即Va = 0 + i1 + j0 + k0。
坐标系中的变换

坐标系中的变换
坐标系中的变换是指在二维或三维坐标系中,通过某些操作将原始坐标系中的点映射到新的坐标系中的点的过程。
常见的坐标系变换包括平移、旋转、缩放、镜像等操作。
其中平移是指将所有点都沿着某个方向移动一定的距离,旋转是指将所有点绕着某个点旋转一定的角度,缩放是指将所有点沿着某个方向缩放一定的比例,镜像是指将所有点沿着某个轴对称。
坐标系变换在计算机图形学中有着广泛的应用,如图像的旋转、缩放、平移等操作都是通过坐标系变换实现的。
在数学中,坐标系变换也是一个重要的概念,它被广泛应用于线性代数、微积分等领域。
需要注意的是,坐标系变换不仅可以应用于二维或三维坐标系,也可以应用于更高维度的坐标系。
此外,坐标系变换还可以通过矩阵运算来实现,这种方法更为高效和灵活。
- 1 -。
《旋转作图与坐标系中的旋转变换》PPT课件 人教版九年级数学上册

转后点D与点 B 重合.
设点E的对应点为点E'. 因为旋转后的图形与旋转前的
图形全等,所以∠ABE'=∠ADE=90°,BE'=DE.
因此,在CB的延长线上取点E',使BE'=DE,则
△ABE'为旋转后的图形.
A
D
A
D
E
E
B
C
E′ B
C
E点的对应点E′,还可以用其他方法确定吗?
方法一:由∠EAE′=90°,
知识点一 用旋转的知识作图
例 如图,E是正方形ABCD中CD边上任意
一点,以点A为中心,把△ADE顺时针旋转90°,
画出旋转后的图形.
A
D
想一想:本题中作图
E
的关键是什么?
确定点E的对应点E' B
C
解:因为点A是旋转中心,所以它的对应点是 点A .
正方形ABCD中,AD=AB,∠DAB=90°,所以旋
旋转180° 后的图形 如图所示.
A'
A
B
4. 如图,△ABC中,∠C=90°. (1)将△ABC绕点B逆时针旋转 B
90°,画出旋转后的三角形;
(2)若BC=3,AC=4,点A旋转后
的对应点为A,求A'A的长.
C
A
【教材P63习题23.1 第9题】
解:(1)△A'BC'即为所求.
(2)∵△ABC中,∠C=90°,BC=3,AC=4.
R·九年级上册
23.1 图形的旋转
第2课时 旋转作图与 坐标系中的旋转变换
复习回顾
定义
在一个平面图形绕平面内某一点O转动 一个角度,叫做图形的旋转.
旋转作图与坐标系中的旋转变换(经典导学案)

《23.1.2旋转作图与坐标系中的旋转变换》一、学习目标1.能按要求作出简单平面图形旋转后的图形.2.能通过图形的旋转设计图案.二、导学指导与检测导学导学检测及课堂展示阅读教材第60页例题完成右边的学习内容1.教材第60页例题自学参考提纲:①因为A是旋转中心,所以A点的对应点是.②根据正方形的性质:AD=AB,∠OAB=90°,所以点D的对应点是.③因为旋转前、后的两个图形全等,所以本例根据三角形全等的判定方法.作出△ADE的对应图形为..④E点的对应点E′,还有别的方法作出来吗?(1)作一个图形旋转后的图形,关键是作出对应点,并按原图的顺序依次连接各对应点.(2)在△ABC中,AB=AC,P是BC边上任意一点,以点A为中心,取旋转角等于∠BAC,把△ABP 逆时针旋转,画出旋转后的图形.三.巩固诊断一、基础巩固(70分)1.(10分) 将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A B C D2.(10分) 数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁3.(10分) 如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.4.(20分) 分别画出△ABC 绕点O 逆时针旋转90°和180°后的图形.5.(20分)把图中的△ABC 作下列旋转:(1)以C 为中心,把这个三角形顺时针旋转60°;(2)在△ABC 外任取一点O 为中心,把这个三角形顺时针旋转120°.二、综合应用(20分)6.(10分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,将△ABC 旋转到△A′B′C 的位置,其中A′、B′分别是A 、B 的对应点,且点B 在斜边A′B′上,直角边CA′交AB 于点D ,则旋转角等于( )A.70°B.80°C.60°D.50°7.(10分)右图中的风车图案,可以由哪个基本的图形,经过什么样的旋转得到?ABCC三、拓展延伸(10分)8.(10分) 如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上,求旋转角α(0°<α<180°)的度数.四、堂清、日清记录堂清日清今日之事今日毕日积月累成大器课堂反思:。
坐标旋转公式

坐标旋转公式是一种重要的数学公式,它可以用来描述物体在空间坐标系内的旋转运动。
它可以帮助我们准确地表达空间中物体的旋转情况,并且可以用来计算物体的空间坐标位置。
坐标旋转公式的基本原理是,以原点为中心,以某条轴为轴心,沿着该轴旋转一定的
角度,然后将原来的坐标系的三个坐标轴向量旋转一定的角度,就可以表示物体在旋转后
坐标系下的新坐标位置。
坐标旋转公式的基本形式是三维旋转矩阵R,它表示一个由三个坐标轴组成的坐标系,经过旋转后,变换成另外一个坐标系,它的表达形式是:
R=cosθ -sinθ 0
sinθ cosθ 0
0 0 1
其中,θ表示旋转角度,R表示旋转矩阵,经过旋转后,三个坐标轴的坐标位置就发
生了变化。
坐标旋转公式是空间几何的基本概念,它可以用来表达物体在空间上的旋转运动,及
求解物体在空间中的坐标位置。
它的应用非常广泛,可以应用在机器人控制、空间探测、
机械设计等领域中。
图形在坐标系中的旋转

旋转的定义:
在平面内,将一个图形绕着一个定点沿某个方向转 动一个角度,得到另一个图形的变换,这样的图形变换 称为旋转。
中心对称的定义:
在平面内,将一个图形绕着某一定点旋转180度, 得到另一个图形,那么,我们就说这两个图形关于这个 点成中心对称.
一、复习提问:
旋转的性质:
1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的角
转对称图形,这个定点就是旋转中心.
中心对称图形定义: 如果一个图形绕一个点旋转180°后,能和 原来的图形互相重合,那么这个图形叫做中心对 称图形;这个点叫做它的对称中心.
二. 简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
图形的旋转的作图: 先画圆,再连结作角,最后截取.
B
例 2 教材习题变式题在平面直角坐标系中,△ABC 的顶点坐 标是 A(-7,1),B(1,1),C(1,7).线段 DE 的端点坐标是 D(7, -1),E(-1,-7).
(1)试说明如何平移线段 AC,使其与线段 ED 重合; (2)将△ABC 绕坐标原点 O 逆时针旋转,使 AC 的对应边为 DE, 请直接写出点 B 的对应点 F 的坐标; (3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点 O 逆时针 旋转 90°,画出旋转后的图形.
;绕着原点逆时针旋转360°,则点A的对应点A4的坐
标是(_-__2_,__1____).
应用巩固 第2课时 图形在坐标系中的旋转变换
2.已知:如图,E(-4,2),F(-1,-1),以
O为中心,把△EFO旋转180°,则点E的对应点
E′的坐标为(____4_,__-___2___).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (2011 甘肃省天水市) 如图,在平面直角坐标系中,O 为原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为(1,1).
(1)若将正方形ABCD 绕点A 顺时针方向旋转90°,点B 到达点1B ,点C 到达点1C ,点D 到达点1D ,求点111,,B C D 的坐标;
(2)若线段1AC 的长度..与点1D 的横坐标...的差.
恰好是一元二次方程210x ax ++=的一个根,
求a 的值.
答案:解:(1)由已知111(21)(40)(32)B C D -,
,,,,
(2)由勾股定理得:AC =
则3)是方程2
10x ax ++=的一根,
设另一根为0x ,则0x 3)=1.
03x ==
3)3)]a ∴=-+=-
另解:2
3)3)10a a ++==,
20110905104308812749 4 坐标系中的旋转变换 复合题 解决问题 2011-09-05
2. (2011 黑龙江省牡丹江市) AOBC 在平面直角坐标系中的位置如图所示,60AOB =∠,
12AO AC ==,,
AOBC O 把绕点逆时针旋转,使点A 落在y 轴上,则旋转后点C 的对应点C ′的坐标为_____________.
答案:3,2)(3,2)--或
20110824144100171200 4 坐标系中的旋转变换 填空题 数学思考 2011-08-24
3. (2011 宁夏回族自治区) 如图,ABO △的顶点坐标分别为()()()142100A B O ,、,、,,如果将ABO △绕点O 按逆时针方向旋转90°,得到A B O △′′,那么点A ′、B ′的对应点的坐标是( )
A . ()()4211A
B --′,、′, B.()()4112A B --′,、′,
C.()()4111A B --′,、′, D.()()
4212A B --′,、′,
答案:B
20110818094327187062 4 坐标系中的旋转变换 选择题 双基简单应用 2011-08-18
4. (2011 辽宁省本溪市) 菱形OCAB在平面直角坐标系中的位置如图所示,点O的坐标是
,.若把菱形(00)
,,点A在y轴的正半轴上,点P是菱形对角线的交点,点C坐标是(33)
OCAB绕点A逆时针旋转90°,则点P的对应点P 的坐标是_____________.
,
答案:(36)
20110817095913921537 4 坐标系中的旋转变换填空题解决问题2011-08-17。