二次函数与几何图形综合题类型5探究角度数量关系的存在性问题试题
压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似)-2023年中考

2023年中考数学压轴题专项训练压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似三角形)题型一:二次函数与等腰三角形存在性问题例1.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.题型二:二次函数与直角三角形存在性问题例2.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B 的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.题型三:二次函数与等腰直角三角形存在性问题例3.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.题型四:二次函数与相似三角形存在性问题例4.(2023•宜兴市一模)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C,连接BC、AC.(1)求二次函数的函数表达式;(2)设二次函数的图象的顶点为D,求直线BD的函数表达式以及sin∠CBD的值;(3)若点M在线段AB上(不与A、B重合),点N在线段BC上(不与B、C重合),是否存在△CMN 与△AOC相似,若存在,请直接写出点N的坐标,若不存在,请说明理由.一.解答题(共20小题)1.(2023•绥宁县模拟)如图,一次函数y=12x+2与x轴,y轴分别交于A、C两点,二次函数y=ax2+bx+c的图象经过A、C两点,与x轴交于另一点B,其对称轴为直线x=−3 2.(1)求该二次函数表达式;(2)在y轴的正半轴上是否存在一点M,使以点M、O、B为顶点的三角形与△AOC相似,若存在,求出点M的坐标,若不存在,请说明理由;(3)在对称轴上是否存在点P,使△P AC为等腰三角形,若存在,求出点P的坐标;若不存在,请说明理由.2.(2023•泗阳县校级一模)如图,二次函数y=ax2+bx+4与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C.(1)求函数表达式及顶点坐标;(2)连接AC,点P为线段AC上方抛物线上一点,过点P作PQ⊥x轴于点Q,交AC于点H,当PH =2HQ时,求点P的坐标;(3)是否存在点M在抛物线上,点N在抛物线对称轴上,使得△BMN是以BN为斜边的等腰直角三角形,若存在,直接写出点M的横坐标;若不存在,请说明理由.3.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.4.(2023•崂山区开学)如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4).与x轴交于点B,C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c(a≠0)的表达式;(2)判断△ABC的形状,并说明理由;(3)如图2,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(4)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.5.(2023•泰山区校级一模)已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,求出此时点N的坐标,并说明理由;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.(2023•灞桥区校级二模)如图,二次函数y=−12x2−x+4的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)若点P在抛物线对称轴上,且在x轴上方,当△PBC为等腰三角形时,求出所有符合条件的点P 的坐标.7.(2023春•仓山区校级期中)如图抛物线y=﹣x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求二次函数的解析式及顶点P的坐标;(2)过定点(1,3)的直线l:y=kx+b与二次函数的图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.8.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.9.(2023•广水市模拟)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B',E',当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.是否存在点M使△PBC为直角三角形,若存在,请直接写出点M的坐标,若不存在,请说明理由.10.(2023•江油市模拟)抛物线y=ax2+114x−6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.11.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数的表达式;(2)点M为一次函数下方抛物线上的点,△ABM的面积最大时,求点M的坐标;(3)设一次函数y=0.5x+2的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.12.(2023•儋州一模)如图,在直角坐标系中有Rt△AOB,O为坐标原点,A(0,3),B(﹣1,0),将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=ax2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.13.(2023•保亭县一模)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.14.(2022秋•蔡甸区期末)如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.15.(2023•二道区校级一模)已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.(1)求a、b的值;(2)如图1,M为∠APC内一点,且PM=1,E,F分别为边P A和PC上两个动点,求△MEF周长的最小值;(3)若△P AC是直角三角形,求点C的坐标.16.(2023•靖江市一模)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴交于点A,与y轴交于点(0,−32),顶点为C(﹣1,﹣2).(Ⅰ)求该二次函数的解析式;(Ⅱ)过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(Ⅲ)当p+q≥﹣2时,试确定实数p,q的值,使得当p≤x≤q时,p≤y≤q.17.(2023•泰山区一模)二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y 轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.18.(2023•东营区一模)如图,已知二次函数的图象与x轴交于A(1,0)和B(﹣3,0)两点,与y轴交于点C(0,﹣3),直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E.(1)求抛物线的解析式;(2)如图1,点M在AE下方的抛物线上运动,求△AME的面积最大值;(3)如图2,在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由.19.(2023•铁西区模拟)如图①,已知抛物线y=mx2﹣3mx﹣4m(m<0)的图象与x轴交于A、B两点(A 在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴交于点E,且OC=2OE.(1)求出抛物线的解析式;(2)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,若△MCN与△BQM相似,请求出Q的坐标;(3)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M',是否存在点Q,使得M'恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.20.(2023•东胜区模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣2,0),B(4,0),C(0,8)三点,点P是直线BC上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC的面积最大,求此时P点坐标及△PBC面积的最大值;(3)在y轴上是否存在点Q,使以O,B,Q为顶点的三角形与△AOC相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。
中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线与x 轴相交于原点和点()4,0A ,在第一象限内与直线y x =交于点B ()5,5,抛物线的顶点为C 点.(1)求抛物线的解析式和顶点C 的坐标;(2)点()3,M m 在抛物线上,连接MO MB ,,求MOB △的面积;(3)抛物线上是否存在点D ,使得DOB OBC ∠=∠?若存在,求出所有点D 的坐标;若不存在,请说明理由. 2.综合与探究如图,已知抛物线238y x bx c =-++与x 轴相交于()4,0A -,B 两点(点A 在点B 的左侧),与y 轴相交于点()0,3C ,连接AC .(1)求该抛物线的解析式及对称轴;(2)若过点B 的直线与抛物线相交于另一点D ,当ABD BAC ∠=∠时,求直线的解析式; (3)在(2)的条件下,当点D 在x 轴下方时,连接AD ,此时在y 轴左侧的抛物线上存在点P ,使23BDP ABD S S =△△,请直接写出所有符合条件的点P 的坐标.3.如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点()0,2C -,2OC OA =和1tan 2ABC ∠=.直线l :()0y kx n k =+>与抛物线交于M ,N 两点(点M 在点N 的左边).(1)求抛物线的解析式,并写出顶点坐标;(2)当直线l BC ∥时,若MON △的面积被y 轴分成的两个三角形的面积比为1:4时,求n 的值; (3)当0n =时,试在抛物线上找一定点P ,使得90MPN ∠=︒,求P 点坐标以及点P 到MN 的最大距离. 4.如图①,抛物线2y ax bx =+的顶点为()2,4D -.(1)求抛物线的解析式;(2)连接OD ,P 为x 轴上的动点,当AOD ∠与PDO ∠互余时,求点P 的坐标;(3)如图①,点M ,N 都在抛物线上,点M 位于第四象限,点N 位于第二象限,连接MN 分别交x 轴,y 轴于点E ,F ,连接OM ON 、,求证:若NOF MOE ∠=∠,则直线MN 经过一定点.5.如图,在平面直角坐标系中,抛物线2=23y x x --交x 轴于A B 、两点(点A 在点B 的左边),交y 轴于点C .(1)直接写出、、A B C 三点的坐标;(2)若抛物线上有一点,45D ACD ∠=︒,求点D 的坐标.(3)如图2,点P 是第一象限抛物线上一点,过点P 的直线(0)y mx n n =+<与抛物线交于另一点Q ,连接AP AQ 、,分别交y 轴于M N 、两点,若2OM ON ⋅=,探究,m n 之间的数量关系,并说明理由.6.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .①抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ①连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.7.如图,已知(2,0),(3,0)A B -,抛物线24y ax bx =++经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一点,点P 的横坐标为m .过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN BC ⊥,垂足为点N .(1)求抛物线的函数表达式;(2)请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得290BCO PCN ∠+∠=︒?若存在,请直接写出m 的值;若不存在,请说明理由.8.如图1,已知抛物线233y ax bx =++,与x 轴交于点()2,0A -,点()6,0B 与y 轴交于点C ,抛物线的顶点为M ,其对称轴与x 轴交于Q 点.(1)抛物线解析式为______,顶点M 的坐标为______; (2)判断MAB 的形状,并说明理曲;(3)如图2,点P 是线段MQ 上的一个动点(点P 与点M 、点Q 不重合),连结PA 和PB ,过点B 作BD AP ⊥,射线BD 交射线AP 于点D ,交抛物线于点E ;过点E 作EF AB ⊥,垂足为点F ,EF 交射线BP 于点G . ①当ABD ①EBF 时,请求出此时点P 的坐标; ①当135APB ∠=︒时,请你直接写出BFEG的值. 9.如图1,二次函数y =ax 2+bx +c 的图象交x 轴于点A (﹣1,0),B (3,0),交y 轴于点C (0,﹣3),直线l 经过点B .(1)求二次函数的表达式和顶点D 的坐标; (2)如图2,当直线l 过点D 时,求①BCD 的面积;(3)如图3,直线l 与抛物线有另一个交点E ,且点E 使得①BAC ﹣①CBE >45°,求点E 的横坐标m 的取值范围;(4)如图4,动点F 在直线l 上,作①CFG =45°,FG 与线段AB 交于点G ,连接CG ,当①ABC 与①CFG 相似,且S △CFG 最小时,在直线l 上是否存在一点H ,使得①FHG =45°存在,请求出点H 的坐标;若不存在,请说明理由.10.如图,已知抛物线2y ax bx c =++经过(1,0),(2,0),(0,2)A B C -三点,点D 在该抛物线的对称轴l 上.(1)求抛物线的表达式;(2)若DA DC =,求ADC ∠的度数及点D 的坐标;(3)若在(2)的条件下,点P 在该抛物线上,当PBC DAB ∠=∠时,请直接给出点P 的坐标. 11.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点1tan 3APC ∠=,求点P 的坐标;(3)当点P 是抛物线上第一象限上的点1tan 3APC ∠=,直接写出点P 的坐标为______.12.如图,平面直角坐标系中,抛物线24y x nx =-++过点()4,0A -,与y 轴交于点N ,与x 轴正半轴交于点B .直线l 过定点A .(1)求抛物线解析式;(2)连接AN ,BN ,直线l 交抛物线于另一点M ,当①MAN =①BNO 时,求点M 的坐标;(3)过点(),1T t -的任意直线EF (不与y 轴平行)与抛物线交于点E 、F ,直线BE 、BF 分别交y 轴于点P 、Q ,是否存在t 的值使得OP 与OQ 的积为定值?若存在,求t 的值,若不存在,请说明理由.13.抛物线y =ax 2+c (a <0)与x 轴交于A 、B 两点,顶点为C ,点P 在抛物线上,且位于x 轴上方.(1)如图1,若P (1,2),A (-3,0). ①求该抛物线的解析式;①若D 是抛物线上异于点P 一点,满足①DPO =①POB ,求点D 的坐标; (2)如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OE OFOC+是否为定值?若是,试求出该定值;若不是,请说明理由.14.如图1,直线y =ax ²+4ax +c 与x 轴交于点A (-6,0)和点B ,与y 轴交于点C ,且OC =3OB(1)直接写出抛物线的解析式及直线AC 的解析式;(2)抛物线的顶点为D ,F 为抛物线在第四象限的一点,直线AF 解析式为123y x =--,求①CAF -①CAD 的度数.(3)如图2,若点P 是抛物线上的一个动点,作PQ ①y 轴垂足为点Q ,直线PQ 交直线AC 于E ,再过点E 作x 轴的垂线垂足为R ,线段QR 最短时,点P 的坐标及QR 的最短长度.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.参考答案:1.(1)24y x x =- ()2,4 (2)15(3)点D 的坐标为(7,21)或1313,39⎛⎫⎪⎝⎭;2.(1)233384y x x =--+,对称轴为直线=1x -(2)3342y x =-+或3342y x =-;(3)322222⎛⎫--- ⎪ ⎪⎝⎭,或12362262⎛⎫+--- ⎪ ⎪⎝⎭, 3.(1)213222y x x =-- (2)149n =(3)()3,2P - 134.(1)24y x x =-(2)()20,或()20-,5.(1)()1,0A -,()3,0B 和()0,3C - (2)()4,5D (3)23n m =-6.(1)-1;6 (2)①存在,5172+或5332+或5332-;①1317,66⎛⎫- ⎪⎝⎭;237,66⎛⎫- ⎪⎝⎭7.(1)222433y x x =-++(2)22655PN m m =-+,当32m =时,有最大值910(3)存在 74m =8.(1)233334y x x =-++和()2,43; (2)①MAB 为等边三角形 (3)①432,3⎛⎫ ⎪ ⎪⎝⎭;①12BF EG =.9.(1)二次函数的表达式为y =x 2﹣2x ﹣3,顶点D 的坐标为(1,﹣4) (2)2(3)﹣23<m <2(4)存在,点H 的坐标为:(65,185)或(95,185)10.(1)22y x x =-++(2)90ADC ∠=︒,点D 的坐标为11,22⎛⎫⎪⎝⎭(3)点P 的坐标为()1,2或15,24⎛⎫- ⎪⎝⎭11.(1)2=23y x x -- (2)点P 的坐标为()9,0 (3)点P 的坐标为()4,512.(1)234y x x =--+ (2)250,39⎛⎫- ⎪⎝⎭或266,525⎛⎫ ⎪⎝⎭(3)存在,4t =-13.(1)①21944y x =-+;①(-1,2)或(133,229-)(2)OE OFOC+是定值,定值为2.14.(1)抛物线的解析式为y =-12x ²-2x +6,直线BC 的解析式为y =x +6 (2)45°(3)点P 的坐标为(-2+10,3)或(-2-10,3),QR 的最短长度为3215.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或53224y x -+=+或53224y x --=+.。
二次函数角度存在性问题综合练习

二次函数角度存在性问题综合练习x2−34x−3与x轴交于A,B两点,与1.如图,在平面直角坐标系中,抛物线y=38y轴交于点C,且点A在点B的右侧,连接AC,BC.(1)求直线AC的解析式;(2)如图,点P是直线AC下方抛物线上的一个动点,连接PA,PC,点M和点N是直线AC上的两个动点(点M在点N的下方),且MN=5,连接BM,PN,当S△PAC2=3时,求BM+MN+PN的最小值;(3)将该抛物线沿CA方向平移使得新抛物线与x轴的左交点恰好是点A,与x 轴的右交点记为点D.点Q是新抛物线上的一个动点,当∠ODA+∠OBC=90°时,直接写出所有符合条件的点Q的坐标.2.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0)和B(3,0)两点,与y轴交于点C(0,3),点P是直线BC下方的抛物线上一动点.(1)求抛物线的解析式;(2)过点P作PE⊥x轴于点F,作PE⊥BC于点E,求22PE+12PP的最大值及此时点P的坐标;(3)将该抛物线向右平移1个单位得到新抛物线,点A′为点A的对应点,点B′为点B的对应点,平移后的抛物线与y轴交于点C′,在平移后的抛物线上是否存在一点M使∠MA′B′=∠OB′C′,若存在求出点M的坐标,并写出其中一个的求解过程.3.如图,抛物线y=ax2+2ax+c经过B(1,0),C(03,3)两点,与x轴交于另一点A,点D 是抛物线的顶点.(1)求抛物线的解析式及点D的坐标;(2)如图1,点E在抛物线上,连接DE并延长交x轴于点F,连接BD,若△BDF 是以BD为底的等腰三角形,求点E坐标.(3)如图2,连接AC、BC,在抛物线上是否存在点M,使∠ACM=∠BCO,若存在,求出M点的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c与x轴交于A(3,0),B(1,0)两点,与y 轴交于点C.且有OA=OC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,使得△ACP是以AC为底的等腰三角形,求出点P的坐标;(3)在(2)的条件下,若点Q在抛物线的对称轴上,并且有∠AQC=1∠APC,2直接写出点Q的坐标.5.如图,在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于点A(-1,0)和点B(4,0),与y轴交于点C,连接BC,过点A作AD∥BC交y轴于点D,连接BD.(1)求二次函数的表达式;(2)如图1,点P在第一象限内的抛物线上,连接PB、PC,当四边形BPCD的面积最大时,求出此时点P的坐标以及S四边形BPCD的最大值;(3)如图2,将抛物线先向左平移3个单位,再向上平移1个单位得到新抛物线,若新抛物线与y轴交于点E,连接AE、BE,点M在新抛物线的对称轴上,满足:∠EBM+∠AEO=∠OEB,请直接写出点M的坐标.。
(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题类型 1二次函数与相似三角形的存在性问题1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点.(1)求这条抛物线的解析式;(2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值;(3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点E.(1)求抛物线的解析式;(2)当 DE= 4 时,求四边形CAEB 的面积;(3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点.(1)求抛物线的解析式;(2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似?(3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.类型 2二次函数与平行四边形的存在性问题1. (2014 ·靖曲 )如图,抛物线y=ax2+bx+ c 与坐标轴分别交于A(- 3, 0), B(1, 0), C(0, 3)三点, D 是抛物线顶点, E 是对称轴与 x 轴的交点.(1)求抛物线的解析式;(2)F 是抛物线对称轴上一点,且1,求点 O 到直线 AF 的距离;tan∠ AFE =2(3)点 P 是 x 轴上的一个动点,过P 作 PQ∥ OF 交抛物线于点Q,是否存在以点O, F, P,Q 为顶点的平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.2. (2013 ·明昆 )如图,矩形 OABC 在平面直角坐标系 xOy 中,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上, OA= 4, OC=3,若抛物线的顶点在 BC 边上,且抛物线经过 O,A 两点,直线 AC 交抛物线于点D .(1)求抛物线的解析式;(2)求点 D 的坐标;(3)若点 M 在抛物线上,点 N 在 x 轴上,是否存在以点A,D ,M,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.3. (2015 昆·明西山区二模 )如图,抛物线 y= x2- 2x-3 与 x 轴交于 A、B 两点 (A 点在 B 点左侧 ) ,直线l 与抛物线交于A、 C 两点,其中 C 点的横坐标为 2.(1)求 A、B、 C 三点的坐标;(2)在抛物线的对称轴上找到点P,使得△ PBC 的周长最小,并求出点P 的坐标;(3)点 G 是抛物线上的动点,在 x 轴上是否存在点 F ,使 A、C、F 、G 为顶点的四边形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由.类型 3二次函数与直角三角形的存在性问题1. (2015 ·南云 )如图,在平面直角坐标系中,抛物线y= ax2+ bx+ c( a≠0)与 x 轴相交于A、 B 两点,与y 轴相交于点C,直线 y= kx+n( k≠ 0)经过 B、 C 两点,已知 A(1, 0), C(0, 3),且 BC=5.(1)分别求直线BC 和抛物线的解析式(关系式 );(2)在抛物线的对称轴上是否存在点P,使得以 B、C、P 三点为顶点的三角形是直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由.2. (2015 ·贡自 )如图,已知抛物线y= ax2+ bx+ c(a≠0) 的对称轴为x=- 1,且抛物线经过A(1, 0),C(0, 3)两点,与x 轴交于点 B.(1)若直线 y=mx+ n 经过 B、 C 两点,求线段BC 所在直线的解析式;(2)在抛物线的对称轴x=- 1 上找一点M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出此点M的坐标;(3)设点 P 为抛物线的对称轴x=- 1 上的一个动点,求使△BPC 为直角三角形的点P 的坐标.3. (2015 益·阳 )已知抛物线 E 1: y = x 2 经过点 A(1, m),以原点为顶点的抛物线E经过点 B(2, 2),点2 A 、 B 关于 y 轴的对称点分别为点A ′,B ′.(1)求 m 的值及抛物线E 2 所表示的二次函数的表达式;(2)如图,在第一象限内,抛物线E 1 上是否存在点 Q ,使得以点 Q 、B 、 B ′为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图, P 为第一象限内的抛物线E 1 上与点 A 不重合的一点,连接OP 并延长与抛物线E 2 相交于点P ′,求△ PAA ′与△ P ′BB ′的面积之比.类型 4二次函数与等腰三角形的存在性问题1. (2015 ·东南黔 )如图,已知二次函数y 1=- x2+134x+c 的图象与x 轴的一个交点为A(4,0) ,与 y 轴的交点为 B,过 A、 B 的直线为y2= kx+b.(1)求二次函数y1的解析式及点 B 的坐标;(2)由图象写出满足y1<y2的自变量x 的取值范围;(3)在两坐标轴上是否存在点P,使得△ ABP 是以 AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.- 10 -2.如图,抛物线与x 轴交于 A, B 两点,直线y=kx- 1 与抛物线交于A, C 两点,其中A(- 1, 0),B(3, 0),点 C 的纵坐标为- 3.(1)求 k 值;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使得△ ACP 是以 AC 为底边的等腰三角形?如果存在,写出所有满足条件的点 P 的坐标;如果不存在,请说明理由.3.(2015 ·明官渡区二模昆)如图,已知抛物线y=ax2+ bx+ c(a≠0)交于 x 轴于 A(- 1,0) ,B(5,0)两点,与 y 轴交于点C(0, 2).(1)求抛物线的解析式;(2)若点 M 为抛物线的顶点,连接BC、 CM 、BM ,求△ BCM 的面积;(3)连接 AC,在 x 轴上是否存在点P,使△ ACP 为等腰三角形;若存在,请求出点P 的坐标;若不存在,请说明理由.类型 5二次函数与图形面积问题1.(2014 ·明昆 )如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(- 2,0),B(4,0)两点,与 y 轴交于点 C.(1)求抛物线的解析式;(2)点 P 从 A 点出发,在线段AB 上以每秒 3 个单位长度的速度向 B 点运动,同时点Q 从 B 点出发,在线段 BC 上以每秒 1 个单位长度的速度向 C 点运动.其中一个点到达终点时,另一个点也停止运动.当△ PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△ PBQ 的面积最大时,在BC 下方的抛物线上存在点K,使 S△CBK∶ S△PBQ= 5∶ 2,求 K 点坐标.2.(2015 云·南二模 )如图所示,抛物线 y= ax2+ bx(a< 0)与双曲线 y=k相交于点 A、B,点 A 的坐标为x(- 2, 2),点 B 在第四象限内,过点 B 作直线 BC∥x 轴,直线 BC 与抛物线的另一交点为点C,已知直线BC 与 x 轴之间的距离是点 B 到 y 轴的距离的 4 倍,记抛物线的顶点为 E.(1)求双曲线和抛物线的解析式;(2)计算△ ABC 与△ ABE 的面积;(3)在抛物线上是否存在点 D ,使△ ABD 的面积等于△ABE 的面积的8 倍?若存在,请求出点 D 的坐标;若不存在,请说明理由.类型 6 二次函数与最值问题1. (2015 ·明盘龙区一模昆)如图,对称轴为直线x= 2 的抛物线经过A(-1, 0), C(0, 5)两点,与x 轴另一交点为B,已知 M(0, 1), E(a, 0),F(a+ 1, 0),点 P 是第一象限内的抛物线上的动点.(1)求抛物线的解析式;(2)当 a= 1 时,求四边形MEFP 的面积最大值,并求此时点P 的坐标;(3)若△ PCM 是以点 P 为顶点的等腰三角形,求 a 为何值时,四边形PMEF 周长最小?请说明理由.2. (2013 ·溪玉 )如图,顶点为 A 的抛物线 y=a(x+ 2)2-4 交 x 轴于点 B(1, 0),连接 AB,过原点 O 作射线OM ∥ AB ,过点 A 作 AD∥ x 轴交 OM 于点 D,点 C 为抛物线与 x 轴的另一个交点,连接 CD .(1)求抛物线的解析式(关系式 );(2)求点 A,B 所在的直线的解析式(关系式 );(3)若动点 P 从点 O 出发,以每秒 1 个单位长度的速度沿着射线OM 运动,设点P 运动的时间为t 秒,问:当 t 为何值时,四边形ABOP 分别为平行四边形?(4)若动点 P 从点 O 出发,以每秒 1 个单位长度的速度沿线段OD 向点 D 运动,同时动点Q 从点 C 出发,以每秒 2 个单位长度的速度沿线段CO 向点 O 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t 秒,连接PQ.问:当 t 为何值时,四边形CDPQ 的面积最小?并求此时PQ 的长.类型 7二次函数与根的判别式问题1. (2015 ·阳衡 )如图,顶点M 在 y 轴上的抛物线与直线y= x+ 1 相交于 A、 B 两点,且点 A 在 x 轴上,点 B 的横坐标为2,连接 AM 、 BM .(1)求抛物线的函数关系式;(2)判断△ ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?类型 8二次函数与圆1.(2015 ·明盘龙区二模昆)如图,已知以E(3 ,0)为圆心,以 5 为半径的⊙ E 与 x 轴交于点A, B 两点,与 y 轴交于 C 点,抛物线y= ax2+ bx+ c 经过 A, B, C 三点,顶点为 F .(1)求 A, B, C 三点的坐标;(2)求抛物线的解析式及顶点 F 的坐标;(3)已知 M 为抛物线上一动点(不与 C 点重合 ).试探究:①使得以A,B, M 为顶点的三角形面积与△ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点 F ,试判断直线MF 与⊙ E 的位置关系,并说明理由.2. (2015 ·靖曲 )如图,在平面直角坐标系xOy 中,直线l ⊥ y 轴于点 B(0,- 2), A 为 OB 的中点,以 A为顶点的抛物线 y= ax2+ c(a≠0)与 x 轴分别交于 C、D 两点,且 CD= 4.点 P 为抛物线上的一个动点,以 P 为圆心, PO 为半径画圆.(1)求抛物线的解析式;(2)若⊙ P 与 y 轴的另一交点为E,且 OE= 2,求点 P 的坐标;(3)判断直线l 与⊙ P 的位置关系,并说明理由.。
中考数学 考点系统复习 第三章 函数 第八节 二次函数与几何综合题

如解图 1,连接 OP,
则 S△PBC=S△OPC+S△OPB-S△OBC,
1
1
1
=2·OC·xp+2·OB·yp-2·OB·OC
=12×3×32+12×4×7156-12×4×3
=485,
45 ∴△PBC 的面积为 8 .
(3)①∵在△OBC 中,BC<OC+OB, ∴当动点 E 运动到终点 C 时,另一个动点 D 也停止运动,
(1)求 A,B,C 三点的坐标(用数字或含 m 的式子表示); (2)已知点 Q 在抛物线的对称轴上,当△AFQ 的周长的最小值等于152时,
求 m 的值. 解:(1)由 x2-(m+1)x+m=0 得 x=m 或 1, ∴A(m,0),B(1,0),
∴对称轴为直线 x=m+2 1,∴Cm+2 1,0.
(3)将点 D 向左平移 3 个单位,向上平移 1 个单位得到点 D′(-2,-a), 如解图,
作点 F 关于 x 轴的对称点 F′,则点 F′的坐标为(0,a-1),当满足条 件的点 M 落在 F′D′上时,由图象的平移知 DN=D′M,故此时 FM+ND 最小,理由:
∵FM+ND=F′M+D′M=F′D′=2 10为最小,
∴当点 F,Q,B 三点共线时,FQ+AQ 最小,此时△AFQ 的周长最小,如 解图.
∵△AFQ 的周长的最小值为152, ∴FQ+AQ 的最小值为75,即 BF=75. ∵OF2+OB2=BF2, ∴1-m2+1=4295,∴m=±15. ∵-1<m<0,∴m=-15.
类型二:二次函数与面积 问题
OT OE TE ∴△ETO∽△OEB,∴EB=OB=OE, ∴OE2=OB·TE,∴3TE=2455=95, 解得 TE=35, ∴OT= BE5=65,∴E53,-65,
二次函数综合--角度存在性问题

二次函数综合--角度存在性问题【题型解读】二次函数综合中的角度问题是大部分地区全卷的压轴题,具有较好的区分度和选拔功能,此类试题不仅可以考查二次函数与平面几何的基础知识,还可以考查数形结合、分类讨论等数学思想方法,以及阅读理解能力、收集处理信息能力、运用数学知识探究问题的能力等.解题关键是,充分挖掘题目中的隐含条件,构造角,利用解直角三角形或相似进行计算求解.【主要类型】1.相等角的存在性,主要形式为基于动点构造某个角使其与特定已知角相等2.二倍角的存在性,主要形式为基于动点构造某个角使其等于特定已知角的2倍3.半角的存在性,主要形式为基于动点构造某个角使其等于特定已知角的一半【方法总结】角度存在性问题主要解题突破口在于构造相关角,主要有以下几种构造方法:⑴构造相等角的方法1利用平行线的性质或者等腰三角形的性质构造相等角2利用相似三角形构造相等角⑵构造二倍角的方法⑶构造半角的方法【典型例题】1.如图,已知直线BC的解析式为y=﹣x+3,与x轴,y轴交于点B,C.抛物线y=ax2+bx+3过A(﹣1,0),B,C三点,D点为抛物线的顶点,抛物线的对称轴与x轴交于点E,连接BD,CD.(1)求二次函数及直线CD的解析式;(2)点P是线段CD上一点(不与点C,D重合),当△BCP的面积为时,求点P的坐标.(3)点F是抛物线上一点,过点F作FG⊥CD交直线CD于点G,当∠CFG=∠EDB 时,请直接写出点F的坐标.2.如图,已知二次函数y=ax2+x+b的图象经过点A(﹣3,0)和点B(0,4),∠BAO 的平分线分别交抛物线和y轴于点C,D.点P为抛物线上一动点,过点P作x轴的垂线交直线AC于点E,连接PC.(1)求二次函数的解析式;(2)当以点P,C,E为顶点的三角形与△ADO相似时,求点P的坐标;(3)设点F为直线AC上一点,若∠BFD=∠ABO,请直接写出点F的坐标.3.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.4.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过AB两点,与x轴的另一个交点为C.(1)直接写出点A和点B的坐标.(2)求抛物线的解析式.(3)D为直线AB上方抛物线上一动点.①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;②是否存在点D,使得∠DBA的度数恰好是∠BAC的2倍?如果存在,直接写出点D的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+4(a≠0)经过点A(﹣8,0)、B(2,0),与y轴交于点C,点D是AB中点,连接CD.点P是抛物线上一点.(1)求a、b的值;=S△CDO,求点P的横坐标;(2)若S△CDP(3)过点P作直线CD的垂线,垂足为E,若∠CPE=∠CDO,求点P的横坐标.。
二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
北师版九年级数学下册作业课件 第二章 二次函数 专题训练(七) 二次函数与几何图形的综合

1 2
x-2=-2,∴
16a-2+c=0, 点A(-4,0),点C(0,-2),∴ c=-2,
解得 a=14, c=-2,
∴抛物线的表达
式为y=14 x2+12 x-2
(2)显然∠PMC≠90°,∴可分如下两种情况讨论:①当∠MPC=90°时,PC∥x
轴,∴yP=yC=-2,即
1 4
xP2+
1 2
xP-2=-2时,解得xP=-2或0(舍去),∴此时点
解:(1)根据题意可知抛物线的表达式为 y=-2 (x+1)(x-5),即 y=-2 x2+8 x+10
9
999
(2) ∵y=-2 x2+8 x+10 =-2 (x-2)2+2,∴点 C(2,2),可设点 P(2,m),∴
9 99
9
易得直线 BP 的函数表达式为 y=-13
mx
+5 3
m.又∵CE⊥PB,∴易得直线 CE 的函数表达
【思路点拨】(2)先设出点D的坐标为(m,am2+bm+c),则可用字母m表示出 点F的坐标,进而可用m表示出线段DF的长,再结合二次函数的性质即可求出线段 DF长度的最大值;(3)根据Rt△DFG中DF与DG的关系可表示出DG的长.
a-b+c=0, 16a+4b+c=0
a=-12, b=32,
解:(1)根据题意,得 c=2,
,解得 c=2, ∴该抛物线的函数表达
式为 y=-1 x2+3 x+2 22
(2)易得直线 BC 的函数表达式为 y=-1 x+2,设点 D(m,-1 m2+3 m+2),
2
2
2
0<m<4,则点 F(m,-1 m+2),∴DF=-1 m2+3 m+2-(-1 m+2)=-1 m2+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型5 探究角度数量关系的存在性问题
1.(2015·南宁)在平面直角坐标系中,已知A ,B 是抛物线y =ax 2(a>0)上两个不同的点,其中A 在第二象限,B
在第一象限.
(1)如图1所示,当直线AB 与x 轴平行,∠AOB =90°,且AB =2时,求此抛物线的解析式和A ,B 两点的横坐标的乘积;
(2)如图2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,A ,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;
(3)在(2)的条件下,如图3,若直线y =-2x -2分别交直线AB ,y 轴于点P ,C ,直线AB 交y 轴于点D ,且∠BPC =∠OCP,求点P 的坐标.
解:(1)设直线AB 与y 轴交于点E ,
∵AB 与x 轴平行,根据抛物线的对称性有AE =BE =1.
∵∠AOB =90°,∴OE =12
AB =1. ∴A(-1,1),B(1,1).
把x =1,y =1代入y =ax 2,得a =1,
∴抛物线的解析式为y =x 2,A ,B 两点的横坐标的乘积为x A ·x B =-1.
(2)x A ·x B =-1为常数,过点A 作AM⊥x 轴于点M ,BN ⊥x 轴于点N ,
∴∠AMO =∠BNO=90°.
∴∠MAO +∠AOM=∠AOM+∠BON=90°.
∴∠MAO =∠BON.∴△AMO∽△ONB.
∴AM ON =OM BN
,即OM·ON=AM·BN. 设A(x A ,y A ),B(x B ,y B ),
∵A(x A ,y A ),B(x B ,y B )在y =x 2图象上,
∴y A =x 2A ,y B =x 2B .∴-x A ·x B =y A ·y B =x 2A ·x 2B .
∴x A ·x B =-1为常数.
(3)设A(m ,m 2),B(n ,n 2),由(2)可知mn =-1.
设直线AB 的解析式为y =kx +b ,联立⎩
⎪⎨⎪⎧y =kx +b ,y =x 2,得x 2-kx -b =0. ∵m ,n 是方程的两个根,∴mn =-b.∴b=1.
∵直线AB 与y 轴交于点D ,则OD =1.
易知C(0,-2),OC =2,∴CD =OC +OD =3.
∵∠BPC =∠OCP,∴PD =CD =3.
设P(a ,-2a -2),过点P 作PG⊥y 轴于点G ,则PG =-a ,GD =OG -OD =-2a -3.
在Rt △PDG 中,由勾股定理得:PG 2+GD 2=PD 2,
即(-a)2+(-2a -3)2=32,整理得5a 2+12a =0,解得a =0(舍去)或a =-125
. 当a =-125时,-2a -2=145
,
∴P(-125,145
).
2.(2016·河南)如图1,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4).抛物线y =23
x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,经过点P 作x 轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m
(1)求抛物线的解析式;
(2)当△BDP 为等腰直角三角形时,求线段PD 的长;
(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.
解:(1)由直线y =-43x +n 过点C(0,4),得n =4,
∴y =-43x +4.
当y =0时,0=-43x +4,解得x =3,∴A(3,0).
∵抛物线y =23x 2+bx +c 经过点A(3,0),B(0,-2).
∴⎩⎪⎨⎪⎧
0=23×32+3b +c ,-2=c.∴⎩⎪⎨
⎪⎧
b =-43,
c =-2.
∴抛物线的解析式为y =23x 2-43x -2.
(2)∵点P 的横坐标为m ,
∴P(m ,23m 2-43m -2),D(m ,-2).
若△BDP 为等腰直角三角形,则PD =BD.
①当点P 在直线BD 上方时,PD =23m 2-43m.
(ⅰ)若点P 在y 轴左侧,则m<0,BD =-m.
∴23m 2
-43m =-m ,
∴m 1=0(舍去),m 2=12(舍去).
(ⅱ)若点P 在y 轴右侧,则m>0,BD =m.
∴23m 2-43m =m ,∴m 3=0(舍去),m 4=72.
②当点P 在直线BD 下方时,m>0,BD =m ,PD =-23m 2+43m.
∴-23m 2+43m =m ,∴m 5=0(舍去),m 6=12.
综上,m =72或12
. 即当△BDP 为等腰直角三角形时,PD 的长为72或12
. (3)P 1(-5,45+43),P 2(5,-45+43
), P 3(258,1132
). 【提示】∵∠PBP′=∠OAC,OA =3,OC =4,
∴AC =5,∴sin ∠PBP ′=45,cos ∠PBP ′=35
. ①当点P′落在x 轴上时,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′.
图1 图2 图3 如图1,ND ′-MD′=2,即35(23m 2-43m)-(-45
m)=2. 如图2,ND ′+MD′=2,即35(23m 2-43m)+45m =2. ∴P 1(-5,45+43),P 2(5,-45+43); ②当点P′落在y 轴上时,如图3,过点D′作D′M⊥x 轴,交BD 于点M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N ,∠DBD ′=∠ND′P′=∠PBP′ ∵P ′N =BM ,即45(23m 2-43m)=35
m. ∴P 3(258,1132
).。