图解法和单纯形法求解线性规划问题
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
运筹学(第五版)习题答案

运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max 12z x x =+51x +102x £50 1x +2x ³1 2x £4 1x ,2x ³0 (2)min z=1x +1.52x 1x +32x ³3 1x +2x ³2 1x ,2x ³0 (3)max z=21x +22x 1x -2x ³-1 -0.51x +2x £2 1x ,2x ³0 (4)max z=1x +2x 1x -2x ³0 31x -2x £-3 1x ,2x ³0 解:(1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-2 1x +2x +33x -4x £14 -21x +32x -3x +24x ³2 1x ,2x ,3x ³0,4x 无约束无约束(2)max kk z s p =11nmk ik ik i k z a x ===åå11(1,...,)mikk xi n =-=-=åik x ³0 (i=1(i=1……n; k=1,…,m) (1)解:设z=-z ¢,4x =5x -6x , 5x ,6x ³0 标准型:标准型:Max z ¢=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t . -41x +2x -23x +5x -6x +10x =2 1x +2x +33x -5x +6x +7x =14 -21x +32x -3x +25x -26x -8x +9x =2 1x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ³0 初始单纯形表: j c ® 3 -4 2 -5 5 0 0 -M -M i qB C B Xb 1x 2x 3x 5x6x7x 8x9x10x-M 10x 2 -4 1 -2 1 -1 0 0 0 1 2 0 7x14 1 1 3 -1 1 1 0 0 0 14 -M 9x2 -2 [3] -1 2 -2 0 -1 1 0 2/3 -z ¢4M 3-6M 4M-4 2-3M 3M-5 5-3M 0 -M 0 0 (2)解:加入人工变量1x ,2x ,3x ,…n x ,得:,得: Max s=(1/kp )1n i=å1m k =åik a ik x -M 1x -M 2x -…..-M n xs.t. 11mi ik k x x =+=å(i=1,2,3(i=1,2,3……,n) ik x ³0, i x ³0, (i=1,2,3(i=1,2,3……n; k=1,2….,m) M 是任意正整数是任意正整数 初始单纯形表:初始单纯形表: jc-M -M … -M 11k a p 12k a p… 1mk ap (1)n k a p 2n k a p …mnkapi qB C BXb 1x2x … n x11x12x … 1mx … 1n x2n x… nmx -M 1x1 1 0 … 0 1 1 … … 0 0 … 0 -M 2x 1 0 1 … 0 0 … … 0 0 … 0 … … … … … … … … … … … … … … … … -M n x 1 0 0 … 1 0 0 … 0 … 1 1 … 1 -s n M 0 0 … 0 11k a M p +12ka Mp + … 1mk a M p + (1)n k aM p +2n k a M p +…mnk a M p +1.3在下面的线性规划问题中找出满足约束条件的所有基解。
第一章线性规划-模型和图解法

a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
运筹学单纯形法的例题

可行域在x1+3x2=7与4x1+2x2=9之下__
3
.
05.07.2020
练习㈠用图解法
5
4 4x1+x2=9
3
2
1 (2.25,0)
0
1
2
3
4
5
6
7
4
.
05.07.2020
练习㈠. 单纯形表
1 31 0 7 4 20 1 9
填入第一个约束的数据.
填入第二个约束的数据.
5
.
05.07.2020
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解5.07.。2020
基变量列中_x_5_换为_x_1_,
改CB列,_-_M__换为_4__.
Excel
17
.
05.07.2020
练习㈢用图解法和单纯形法求 如下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≥ 7
s.t. 4x1 + 2x2 ≥ 9 x1 , x2 ≥ 0
可行域在直线 x1+3x2=7之上__
s.t. 4x1 + 2x2 -x4+x6=9
基引是进谁两?个这 理x“1里?,x人“2 ,工x-”3 如变,x4何量,x5处”,x6≥0
x5 ,x620
.
05.07.2020
练习㈢.用单纯形法
Max z=4x1+x2+0x3+0x4 -Mx5 –Mx6
运筹学复习考点
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60
•
整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
第二章 图解法与单纯形法
表1-4 XB
基变量 x1 x2
进基列 x3
bi /ai2,ai2>0 x4 b
将3化为1
(1)
θi 40 10
出 基 行
x3
x4
2
1 3
1
3 4
1
0 0
0
1 0
40
30
σj
x3
乘 以 1/3 后 得 到
5/3
0 1 0 0 1
1 0 0 3/5 -1/5
-1/3 1/3 -4/3 -1/5 2/5
x2
40
例题
2 x1 x2 40 x1 1.5x2 30
(15,10)
max Z 3x1 4x2 2 x1 x2 40
30
x1 1.5 x2 30 x1 0, x2 0
20
最优解X=(15,10) 最优值Z=85
10
O
10
20
30
40
x1
2.1 线性规划问题的图解法
θ M 20
0 λj
0 2 λj 1 2 λj
x5
x4 x2 x1 x2
1/3 1
3 1/3 1/3 1 0 0
1 2
0 1 0 0
5 1
17 5 -9 17/3
0 0
1 0 0 1/3
1 0
3 1 -2 1
20
75 20 25
25 60
1 0
28/9 -1/9 2/3 -98/9 -1/9 -7/3
1.通过图解法了解线性规划有几种解的形式 2.作图的关键有三点 (1)可行解区域要画正确 (2)目标函数增加的方向不能画错 (3)目标函数的直线怎样平行移动
线性规划问题的两种求解方式
线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
运筹学知识点
2020/9/14
47
(4)网络图中求关键路线的问题可表达为求解一个线性 规划模型;
正确。 (5)网络图中从一个事件出发如果存在多项作业,则其
中用时最长的一项作业必包含在该网络图的关键路线内。 错误。 (6)一项非关键路线上的作业在其最早开始于最迟结束
的时间段内均可任意安排。 错误。 (7)若一项作业的总时差为10d,说明任何情况下该项
A.必须为“-1”,其余变量系数为“0”; B.可取某一负的常数,其余变量系数为“0”; C.取值为零,其余变量系数为原目标函数中系数Cj值; D.为某一正的常数值,其余变量取值为“0”。 答案:D
2020/9/14
10
2020/9/14
11
2020/9/14
12
六、已知某线性规划问题单纯形法迭代时得到中间某两 步的单纯形表如下表所示,试将表中空白处的数字填上。
应于可行域的顶点。
2020/9/14
3
2020/9/14
4
• (7)单纯形法计算中,如不按最小比值原则选取换出变量, 则在下一个解中至少有一个基变量的值为负。
• 正确。 • (8)一旦一个人工变量在迭代中变为非基变量后,则该变
量及相应列的数字可以从单纯形表中删除,而不影响计算结 果。 • 正确。 • 人工变量一般是为取得对应的初始基基向量而引入的,它一 旦成为出基变量,其地位已被对应的入基变量取代,删除单 纯形表中该变量及相应列的数字,不影响计算结果。
2 26
每件产品的预期的利润 如下表:
单位产品利润/元 10 6 4
设备能力/台•h 100 600 300
2020/9/14
22
6 10 0
10 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图解法和单纯形法求解以下线性规划问题1。
1 图解法解线性规划问题只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下:(1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系。
由变量的非负性约束性可知,满足该约束条件的解均在第一象限内.(2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。
(3)画出目标函数等值线,并确定函数增大(或减小)的方向。
(4)可行域中使目标函数达到最优的点即为最优解。
然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大.1。
2 单纯形法解线性规划问题它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。
顶点所对应的可行解称为基本可行解。
单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。
因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
如果问题无最优解也可用此法判别。
单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解.②若基本可行解不存在,即约束条件有矛盾,则问题无解。
③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。
④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解.⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。
1.3 线性规划问题的标准化使用单纯形法求解线性规划时,首先要化问题为标准形式所谓标准形式是指下列形式:∑==nj j jx cz 1max⎪⎩⎪⎨⎧=≥==⋅⋅∑=),,2,1(0),,1(1n j x m i b x a t s jnj i j ij当实际模型非标准形式时,可以通过以下变换化为标准形式: ①当目标函数为∑==nj j jx cz 1min 时,可令Z ′=-Z ,而将其写成为∑=-='nj j j x c z 1min求得最终解时,再求逆变换Z=—Z ′即可。
②当s ·t ·中存在i n in i i b x a x a x a ≤+++ 2211形式的约束条件时,可引进变量⎩⎨⎧≥+++-=++0)(122111n n in i i i n x x a x a x a b x 便写原条件成为⎩⎨⎧≥=++++++0112211n in n in i i x b x x a x a x a 其中的x n +1称为松驰变量,其作用是化不等式约束为等式约束。
同理,若该约束不是用“≤”号连接,而是用“≥”连接,则可引进松驰变量⎩⎨⎧≥-+++=++0)(122111n in in i i n x b x a x a x a x 使原条件写成⎩⎨⎧≥=-++++01111n in n in i x b x x a x a2 单纯形法2.1 单纯形法的基本原理单纯形法迭代原理: (1) 确定初始可行解① 当线性规划问题的所有约束条件均为≤号时,松弛变量对应的系数矩阵即为单位矩阵,以松弛变量为基变量可确定基可行解。
② 对约束条件含≥号或=号时,可构造人工基,人为产生一个m ×m 单位矩阵用大M 法或两阶段法获得初始基可行解。
(2) 最优性检验与解的判别(目标函数极大型)① 当所有变量对应的检验数均非正时,现有的基可行解即为最优解。
若存在某个非基变量的检验数为零时,线性规划问题有无穷多最优解;当所有非基变量的检验数均严格小于零时,线性规划问题具有唯一最优解。
② 若存在某个非基变量的检验数大于零,而该非基变量对应的系数均非正,则该线性规划问题具有无界解(无最优解)。
③ 当存在某些非基变量的检验数大于零,需要找一个新的基可行解,基要进行基变换。
2。
1 确定初始可行解确定初始的基本可行解等价于确定初始的可行基,一旦初始的可行基确定了,那么对应的初始基本可行解也就唯一确定,为了讨论方便,不妨假设在标准型线性规划中,系数矩阵A中前m 个系数列向量恰好构成一个可行基,即A=(BN),其中B=(P1,P2,…Pm )为基变量x1,x2,…xm 的系数列向量构成的可行基,N=(Pm+1,Pm+2, …Pn)为非基变量xm+1,xm+2, …xn 的系数列向量构成的矩阵。
所以约束方程AX=b 就可以表示为B B N N X AX=(BN)=BX +NX =b X ⎛⎫⎪⎝⎭用可行基B的逆阵B-1左乘等式两端,再通过移项可推得:-1-1B N X =B b-B NX若令所有非基变量N X =0,则基变量-1B X =B b由此可得初始的基本可行解1B b X=0-⎛⎫⎪⎝⎭2.2 最优性检验假如已求得一个基本可行解1B b X=0-⎛⎫⎪⎝⎭,将这一基本可行解代入目标函数,可求得相应的目标函数值1-1B N B B b Z=CX=(C C )=C B b 0-⎛⎫ ⎪⎝⎭其中B 12m N m+1m+2n C =(c ,c ,c ), C =(c ,c ,c )分别表示基变量和非基变量所对应的价值系数子向量.要判定-1B Z=C B b 是否已经达到最大值,只需将-1-1B N X =B b-B NX 代入目标函数,使目标函数用非基变量表示,即:B B N N -1-1B B N N B N N NX Z=CX=(C C )X =C X +C X =C (B b-B NX )+C X ⎛⎫⎪⎝⎭m+1m+2-1-1B N N B m+1,m+1,n n x xC B b+σX C B b+(σσσ)x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭其中-1N N B m+1m+1n =C -C B N=(,,)σσσσ称为非基变量XN 的检验向量,它的各个分量称为检验数。
若σN 的每一个检验数均小于等于0,即σN ≤0,那么现在的基本可行解就是最优解。
2.3 解的判别定理1:最优解判别定理对于线性规划问题{}n maxZ=CX,D=X R /AX=b,X 0∈≥,若某个基本可行解所对应的检验向量-1N N B =C -C B N 0σ≤,则这个基本可行解就是最优解.定理2:无穷多最优解判别定理若1B b X=0-⎛⎫ ⎪⎝⎭是一个基本可行解,所对应的检验向量-1N N B =C -C B N 0σ≤,其中存在一个检验数σm+k=0,则线性规划问题有无穷多最优解.定理3:无最优解判别定理若1B b X=0-⎛⎫ ⎪⎝⎭是一个基本可行解,有一个检验数m+k 0σ>,但是-1m+k B P 0≤,则该线性规划问题无最优解。
2。
4 基本可行解的改进如果现行的基本可行解X不是最优解,即在检验向量-1N N B =C -C B N σ中存在正的检验数,则需在原基本可行解X的基础上寻找一个新的基本可行解,并使目标函数值有所改善。
具体做法是:(1)先从检验数为正的非基变量中确定一个换入变量,使它从非基变量变成基变量(将它的值从零增至正值).(2)再从原来的基变量中确定一个换出变量,使它从基变量变成非基变量(将它的值从正值减至零)。
由此可得一个新的基本可行解,由m+1m+2-1B m+1,m+1,n n x x Z C B b+(σσσ)x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭可知,这样的变换一定能使目标函数值有所增加。
2。
4。
1 换入变量的确定—最大增加原则把基检验数大于0的非基变量定为入基变量。
若有两个以上的σj >0,则选其中的σj 最大者的非基变量为入基变量。
从最优解判别定理知道,当某个σj >0时,非基变量x j 变为基变量不取零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基变量中去(称之为入基变量)。
若有两个以上的σj >0,则为了使目标函数增加得更大些,一般选其中的σj 最大者的非基变量为入基变量。
2。
4。
2 换出变量的确定—最小比值原则把已确定的入基变量在各约束方程中的正的系数除以其所在约束方程中的常数项的值,把其中最小比值所在的约束方程中的原基变量确定为出基变量。
即若lk lik ik i k a ba ab x =⎭⎬⎫⎩⎨⎧>=0|min则应令xl 出基。
其中bi 是目前解的基变量取值,aik 是进基变量xk 所在列的各个系数分量,要求仅对正分量做比,(这由前述作法可知,若aik ≤0,则对应的xi 不会因xk 的增加减值而成为出基变量)。
2.5 表格单纯形法在单纯形法的求解过程中,有下列重要指标:(1)每一个基本可行解的检验向量-1N N B σ=C -C B N ,根据检验向量可以确定所求得的基本可行解是否为最优解。
如果不是最优又可以通过检验向量确定合适的换入变量.(2)每一个基本可行解所对应的目标函数值 1B Z=C B b -,通过目标函数值可以观察单纯形法的每次迭代是否能使目标函数值有效地增加,直至求得最优目标函数为止.在单纯形法求解过程中,每一个基本可行解X都以某个经过初等行变换的约束方程组中的单位矩阵Ι为可行基。
当B=I时,B—1=I,易知:N N B σ=C -C N ,B Z=C b可将这些重要结论的计算设计成如下一个简单的表格,即单纯形表来完成:2。
6 大M法大M法首先将线性规划问题化为标准型。
如果约束方程组中包含有一个单位矩阵I,那么已经得到了一个初始可行基。
否则在约束方程组的左边加上若干个非负的人工变量,使人工变量对应的系数列向量与其它变量的系数列向量共同构成一个单位矩阵。
以单位矩阵为初始基,即可求得一个初始的基本可行解。
为了求得原问题的初始基本可行解,必须尽快通过迭代过程把人工变量从基变量中替换出来成为非基变量。
为此可以在目标函数中赋予人工变量一个绝对值很大的负系数-M。
这样只要基变量中还存在人工变量,目标函数就不可能实现极大化。
以后的计算与单纯形表解法相同,M只需认定是一个很大的正数即可。
假如在单纯形最优表的基变量中还包含人工变量,则说明原问题无可行解。
否则最优解中剔除人工变量的剩余部分即为原问题的初始基本可行解。
2.7 单纯形法程序设计完整的单纯形法的计算程序设计框图如下所示:图1 单纯形法程序框图3 应用实例 3.1 有最优解问题例1 求如下方程的最优解123451234123512345maxZ=5x 2x 3x x x x 2x 2x x 83x 4x x x 7 x ,x ,x ,x ,x 0++-++++=⎧⎪+++=⎨⎪≥⎩在命令行输入:>> A=[1 2 2 1 0;3 4 1 0 1];b=[8;7];c=[5 2 3 —1 1]; 〉〉 simplemethod(A ,b ,c); 即可得出结果: X =1.2000 0 3.4000 0 0 0 0 最大值为: z = 16.2000 迭代次数: i = 4程序结果与例题结果一致。