隐函数导数存在定理
隐函数的求导公式(11)

z Fy y Fz
5z4
4
z3 xz3
3
yz 2
代入,同样可得 2z xy
15( 0 , 0 )
例7:设由F ( x y, y z, z x) 0确定z z( x, y),求
z , z 及dz x y
解:法一:令G(x,y,z) F(x y,y z,z x)
G
' x
F1'
F3'
v v( x, y),它们满足条件u0 u( x0 , y0 ) ,v0 v
( x0 , y0 ),并有
Fx Fv
u 1 (F ,G) Gx Gv , x J ( x,v) Fu Fv
Gu Gv
20
v 1 (F ,G) Fu Fx Fu Fv x J (u, x) Gu Gx Gu Gv u 1 (F ,G) Fy Fv Fu Fv , y J ( y,v) Gy Gv Gu Gv v 1 (F ,G) Fu Fy Fu Fv . y J (u, y) Gu Gy Gu Gv
dz z (dx z dy)
zx
y
法二:对方程 x ln z ln y两边微分 z
zdx xdz z2
dz z
dy y
整理可得
dz z (dx z dy)
z x
y9
例 5 设z f ( x y z, xyz),求z ,x ,y . x y z
思路:
把z 看成 x, y 的函数对x 求偏导数 z , x
• 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
• 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。
5 第五节 隐函数的求导公式 (定理 两个方程确定两个一元隐函数 定理 两个方程确定两个二元隐函数

x 2 y 2 z 2 1, z xy
确定了
1 x2 1 x2 和 , 它们是连续函数, 且有连续 z x 1 x2 1 x2 2x
1 x
3 2 2
1 x
2
, z x
x4 2x2 1
1 x
3 2 2
, 满足
2
1 x
4
解
x
47 6 7 47 5, y 2 . 3 4 3 4 7 6 7 6
例 (补) (1) (2)
x 2 y 2 z 2 1, 设 求 z xy.
y x 和 zx ; x 2 y 2 z 2 1, 在点 0, 1, 0 附近所确定的隐 z xy
x 2 y 2 z 2 1, z xy
在点 P x0 , y0 , z0 的某一邻域
内能够唯一确定一对连续且有连续导数的函数 y y x 和
z z x , 它们满足 y0 y x0 , z0 z x0 . 在 x 2 y 2 z 2 1 的两边对 x 求导, 则 x yy x zz x 0 , 从而 yy x zz x x . 在 z xy 的两边对 x 求导, 则 z x y xy x , 从而 xy x z x y .
x0 , y0 , z0
2 y 2z x 1 x , y
0 0 , z0
2 y0 2 x0 z0 0
(这等价于 x0 , y0 , z0 1, 0, 0 , 1, 0, 0 . 理由是: 因
x0 y0 z0 0 , 故 2 y0 2 x0 z0 2 2
隐函数求导法则(课堂PPT)

b1 b2
a1b2 a2b1
0 ,则方程组有唯一解:
c1 b1
a1 c1
; 。 x c2 b2 b2c1 b1c2
F F
J
(F ,G) (u, v )
u G
v G
u v
在点 P( x0 , y0 , u0 , v0 )不等于零,则方程组 F ( x, y, u, v) 0、 G( x, y, u, v) 0
在点 P( x0 , y0 , u0 , v0 )的某一邻域内恒能唯一确定一 组连续且具有连续偏导数的. 函数u u( x, y),
设函数 F(x, y, z) 在点 P(x0, y0, z0 ) 的某一邻域 内有连续的偏导数,且 F (x0, y0, z0 ) 0 ,
Fz (x0 , y0, z0 ) 0 ,则方程 F(x, y, z) 0 在点
P(x0 , y0 , z0 ) 的某一邻域内恒能唯一确定一个 连续且具有连续偏导数的函数 z f (x, y),
二阶导数 :
Fy
d2y dx2
( Fx ) ( Fx ) d y x Fy y Fy d x
xy x
FxxFyFy2FyxFx
FxyFyFy2Fy
yFx
(Fx Fy
)
FxxFy22FxF yF y3xFyFyyFx2
.
4
法2
d2y dx2
d ( Fx ) d x Fy
(FxxFxyddyx)FyFy2Fx(FyxFyyddyx)
一、一个方程的情形 二、方程组的情形 三、小结
.
1
一、一个方程的情形
1 . F (x ,y)0
隐函数存在定理 1 设函数 F(x, y) 在点 P(x0, y0 ) 的某一邻域内具有
高等数学@9.5隐函数的求导法则

x x
x 2 z
2z x 2
(2 z) x z x
(2 z)2
(2 z) x x
2 z (2 z)2
(2 z)2 x2 (2 z)3 .
例3 设 x =x(y,z)、 y =y(x,z)、 z =z(x,y) 都是由方程 F(x,y,z)=0所确定的具有连续偏导数的函数,
Fz
y) z
x z x
x
y
z y
z Fz
y ( y) zz
Fz
zFz Fz
z
练习题
1.求方程 z3 3xyz a3 确定隐函数z=z(x,y) 的偏导数
2. 设 z=z(x,y) 是由方程 f (x+y, y+z, z+x)=0
所确定的隐函数,求 z , z x y
解 设 F x y z, G x2 y2 z2 1
Fx 1, Fy 1, Fz 1, Gx 2x, Gy 2 y, Gz 2z,
J
Fx Gx
Fy Gy
1
2x
1 2y
2( y x)
dx 1 Fz dz J Gz
Fy Gy
11 J 2z
F dx F dy F dz 0, x y z
则方程F(x,y,z)=0在该邻域 内恒能唯 0,
连续且具有连续偏导数的
dz Fx dx Fy dy
函数 z = f (x, y)它满足条件
Fz
Fz
z0=f(x0, y0), 并有
1 J
x y
u v
vx x2
第16章隐函数存在定理

隐函数存在定理
• 第一节 隐函数存在定理
函数相关
一、F(x,y)=0 情形
定理 1 设函数 F ( x , y )满足: (1) 在区域D :| x x | a,| y x | b上,F , F 连续; (2) F ( x0 , y0 ) 0, ( 3) F y ( x 0 , y 0 ) 0 ,
Fx Gx u 1 (F ,G ) Fu x J ( x, v ) Gu
Fv Gv , Fv Gv
Fu Fx v 1 (F ,G ) Gu G x x J ( u, x )
Fy u 1 (F ,G ) Gy y J ( y, v ) Fv Gv
0 0 x y
则(1)方程 F ( x , y ) 0 在点 P ( x0 , y0 )的某一邻域内唯 一确定一个函数 y f ( x ) ,它满足条件 y0 f ( x0 ), (2)y=f(x)在 x 0 邻域内连续 (3) y=f(x)在 x 0 邻域内具有连续导数,且
dy F ( x, y) . dx F ( x, y)
存在,具有对各变元的连续偏导数.那么
D( y1 , y2 ,, yn ) D( x1 , x2 ,, xn ) 1. D( x1 , x2 ,, xn ) D( y1 , y2 ,, yn )
这个性质可以看做反函数导数公式 的拓广.
dy dx 1 dx dy
于是,在( x0 , y0 ,0)附近,曲面必与平面相交, 其交线是唯一的,并且还是一条z=0面上的 光滑曲线。
1 2 n
(1)在区域D :| x x | a ( i 1,2,...,n), | y y | b
0 i i 0
6-8 隐函数存在定理概要

的z f ( x, y), 满足z0 f ( x0 , y0 ),F ( x, y, f ( x, y)) 0 z Fy Fx z 且 x F y Fz z
注意:定理1可推广到n个自变量的情况: 由F ( x1 , , xn , y ) 0确定的隐函数y f ( x1 , x2 , xn ) 满足条件时,有
Fxk y x k F y
例4
z z 已知 x y z 4z 0, 求 2 、 x x y
2
2
2
2
2
解一:利用定理2 解 令 F ( x , y , z ) x 2 y 2 z 2 4z 则
Fx 2 x,
Fy 2 y ,
Fz 2z 4
x y z 1
2 2 2
可解出
或
z 1 x2 y2 z 1 x2 y2
隐函数
隐函数存在定理1
设F ( x , y )在点P ( x0 , y0 )的某邻域内满足: F F 1. , 连续 x y
2.F ( x0 , y0 ) 0 但Fy( x0 , y0 ) 0. 则F ( x , y ) 0 在某邻域内 唯一确定一个 具有连续导数
Fx Gx u 1 (F , G ) Fu x J ( x, v ) Gu Fv Gv , Fv Gv
Fu Fx v 1 (F , G ) Gu G x x J (u, x )
Fy u 1 (F , G ) Gy y J ( y, v ) Fu v 1 (F , G ) Gu y J (u, y ) Fv Gv Fy Gy
的y f ( x ), 满足y0 f ( x0 ),F ( x, f ( x )) 0
第五节 隐函数的求导公式
等式两端同时对 x 求偏导, 得
F x 1 +F y 0 +Fz 0 + Fu
在Fu 0的条件下 解得 ,
u x
=0
u x
u z
Fx Fu
类似可得
u y
Fy Fu
Fz Fu
例题:见课本例2-5
Fy Gy Fv Gv
二、隐函数的求导法
下面,总假设隐函数存在且可导, 在此前提下来讨论
求隐函数的导数或偏导数的方法。 1、一个方程的情形 (1) F ( x , y ) 0 设该方程确定了函数: y y( x )即 F [ x , y( x )] 0 等式两端同时对 x 求导, 得
在F y 0的条件下 解得 ,
Fv Gv Fv Gv
Fu v x 1 ( F , G ) J ( u, x ) Gu Fu Gu
Fx Gx Fv Gv
Fy u y 1 ( F , G ) J ( y, v ) Gy Fu Gu
Fv Gv Fv Gv
(3)
Fu v y 1 ( F , G ) J ( u, y ) Gu Fu Gu
Fx 1 + F y
dy
+ Fz
dz
0
dx dz + Gz 0 dx
即 Fy dx
dy
+ Fz + Gz
dz dx dz dx
Fx
G dy y dx
Fy Gy Fz Gz
Gx
在
0的条件下 解得 ,
Fz Gz Fz Gz Fx Fz Gz Fz Gz
五节隐函数求导法则
P( x0 , y0 , z0 ) 的某一邻域内恒能唯一确定一个 单值连续且具有连续偏导数的函数 z f ( x, y)
,它满足条件 z0 f ( x0 , y0 ) 并有:
z Fx x Fz
z Fy y Fz
例3 设x2 y2 z2 4z 0 ,求2z . x 2
解 令 F (x, y, z) x2 y2 z2 4z,
,且偏导数所组成的函数行列式(或称雅可比式)
F F
J
(F ,G) (u, v )
u G
v G
u v
在点 P( x0 , y0 , u0 ,v0 ) 不等于零,则方程组 F ( x, y,u,v) 0 G( x, y,u,v) 0
在点 P( x0 , y0 , u0 ,v0 )的某一邻域内恒能唯一确定一 组单值连续且具有连续偏导数的函数 u u( x, y), v v( x, y) ,它们满足条件 u0 u( x0 , y0 ) , v0 v( x0 , y0 ) ,并有
二、方程组的情形
F ( x, y,u,v) 0 G( x, y,u,v) 0
隐函数存在定理 3 设 F ( x, y, u,v),G( x, y, u,v) 在
点 P( x0 , y0 , u0 ,v0 ) 的某一邻域内有对各个变量的连续 偏导数,且 F ( x0 , y0 , u0 ,v0 ) 0 ,G( x0 , y0 , u0 ,v0 ) 0
某一邻域内恒能唯一确定一个单值连续且具有连续
导数的函数y f ( x),它满足条件 y0 f ( x0 ), 并
有
dy Fx . dx Fy
隐函数的求导公式
例1 验证方程x2 y2 1 0在点(0,1) 的某邻 域内能唯一确定一个单值可导、且x 0时 y 1 的隐函数y f ( x),并求这函数的一阶和二阶导 数在x 0 的值. 解 令 F (x, y) x2 y2 1
隐函数求导的详细解析(实例分析)
第五节 隐函数的求导法则教学目的:使学生掌握隐函数存在定理,掌握隐函数的求导法则 教学重点:一个方程的隐函数的求导法则教学过程:一、一个方程的情形隐函数存在定理1设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy -=. 求导公式证明: 将y =f (x )代入F (x , y )=0, 得恒等式F (x , f (x ))≡0,等式两边对x 求导得0=⋅∂∂+∂∂dxdy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得yx F F dx dy -=. 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值. 解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dy y x -=-=, 00==x dx dy ;332222221)(yy x y y y x x y y y x y dx y d -=+-=---='--=,1022-==x dx yd .隐函数存在定理还可以推广到多元函数. 一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数.隐函数存在定理2设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有z x F F x z -=∂∂, z y F F yz -=∂∂. 公式的证明: 将z =f (x , y )代入F (x , y , z )=0, 得F (x , y , f (x , y ))≡0,将上式两端分别对x 和y 求导, 得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y . 因为F z 连续且F z (x 0, y 0, z 0)≠0, 所以存在点(x 0, y 0, z 0)的一个邻域, 使F z ≠0, 于是得z x F F x z -=∂∂, z y F F yz -=∂∂. 例2. 设x 2+y 2+z 2-4z =0, 求22xz∂∂. 解 设F (x , y , z )= x 2+y 2+z 2-4z , 则F x =2x , F y =2z -4,z x z x F F x z z x -=--=-=∂∂2422, 3222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂. 二、方程组的情形在一定条件下, 由个方程组F (x , y , u , v )=0, G (x , y , u , v )=0可以确定一对二元函数u =u (x , y ), v =v (x , y ), 例如方程xu -yv =0和yu +xv =1可以确定两个二元函数22y x y u +=, 22y x x v +=. 事实上, xu -yv =0 ⇒u y x v =⇒1=⋅+u y x x yu ⇒22y x y u +=, 如何根据原方程组求u , v 的偏导数?隐函数存在定理3设F (x , y , u , v )、G (x , y , u , v )在点P (x 0, y 0, u 0, v 0)的某一邻域内具有对各个变量的连续偏导数, 又F (x 0, y 0, u 0, v 0)=0, G (x 0, y 0, u 0, v 0)=0, 且偏导数所组成的函数行列式:vG u Gv F u F v u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),( 在点P (x 0, y 0, u 0, v 0)不等于零, 则方程组F (x , y , u , v )=0, G (x , y , u , v )=0在点P (x 0, y 0, u 0, v 0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数u =u (x , y ), v =v (x , y ), 它们满足条件u 0=u (x 0, y 0), v 0=v (x 0, y 0), 并有vu v u v x vx G G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1, vu v u x u x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1, vu v u v y v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1, vu v u y u y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1.隐函数的偏导数:设方程组F (x , y , u , v )=0, G (x , y , u , v )=0确定一对具有连续偏导数的 二元函数u =u (x , y ), v =v (x , y ), 则 偏导数x u ∂∂, x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定; 偏导数y u ∂∂, y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定.例3 设xu -yv =0, yu +xv =1, 求x u ∂∂, xv ∂∂, y u ∂∂和y v ∂∂. 解 两个方程两边分别对x 求偏导, 得关于x u ∂∂和xv ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v xu y x v y x u x u , 当x 2+y 2 ≠0时, 解之得22y x yv xu x u ++-=∂∂, 22y x xv yu x v +-=∂∂. 两个方程两边分别对x 求偏导, 得关于y u ∂∂和yv ∂∂的方程组 ⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x , 当x 2+y 2 ≠0时, 解之得22y x yu xv y u +-=∂∂, 22yx yv xu y v ++-=∂∂. 另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx , 即⎩⎨⎧--=+-=-vdx udy xdv ydu udx vdy ydv xdu . 解之得 dy yx yu xv dx y x yv xu du 2222+-+++-=, dy yx yv xu dx y x xv yu dv 2222++-+-=. 于是 22yx yv xu x u ++-=∂∂, 22y x yu xv y u +-=∂∂, 22y x xv yu x v +-=∂∂, 22yx yv xu y v ++-=∂∂. 例 设函数x =x (u , v ), y =y (u , v )在点(u , v )的某一领域内连续且有连续偏导数, 又0),(),(≠∂∂v u y x . (1)证明方程组⎩⎨⎧==),(),(v u y y v u x x 在点(x , y , u , v )的某一领域内唯一确定一组单值连续且有连续偏导数的反函数u =u (x , y ), v =v (x , y ).(2)求反函数u =u (x , y ), v =v (x , y )对x , y 的偏导数.解 (1)将方程组改写成下面的形式⎩⎨⎧=-≡=-≡0),(),,,(0),(),,,(v u y y v u y x G v u x x v u y x F , 则按假设 .0),(),(),(),(≠∂∂=∂∂=v u y x v u G F J 由隐函数存在定理3, 即得所要证的结论.(2)将方程组(7)所确定的反函数u =u (x , y ),v =v (x , y )代入(7), 即得⎩⎨⎧≡≡)],(),,([)],(),,([y x v y x u y y y x v y x u x x , 将上述恒等式两边分别对x 求偏导数,得⎪⎩⎪⎨⎧∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=xvv y x u u y x v v x x u u x 01. 由于J ≠0, 故可解得v y J x u ∂∂=∂∂1, uy J x v ∂∂-=∂∂1. 同理, 可得v x J y u ∂∂-=∂∂1, ux J y v ∂∂=∂∂1.。
隐函数存在定理概要
在这样的条件下,显然在点( x0 , y0 ,0)的附近,曲面 z F ( x
, y) 必与平面相交,其交线是唯一的,并且又是一条光滑的
曲线 y f ( x) (在 z 0 平面上).
F ( x, y ) x 2 y 2 1 0
在几何上,它表示一个单位圆,容易知道,它在 (0,1) 这一点 及其某个邻域内唯一地确定了一个函数
y 1 x2 ,
这个函数在 x 0 的近旁连续,并具有连续导数.同样在
(0,1) 这一点及其某个邻域内也唯一地确立了一个函数
y 1 x2 ,
面,现在的问题是, 在什么条件下这一联立方程有解, 亦
即在什么条件下,曲面 z F ( x, y) 与平面相交,其交线是唯 一的并且又是光滑( x, y) 是光滑曲面, 定 理的条件 (2) 又表明曲面在 z 0 平面上有一个交点( x0 , y0 ,0) 定理的条件 (3) 告诉我们,曲面在交点 ( x0 , y0 ,0) 处沿 y 轴方 向看,曲面是单调的(若 Fx ( x0 , y0 ) 0 则它是单调增加的,若
例 考察方程
F ( x, y ) x 2 y 2 1 0
二、多变量情形
上段所讨论的问题可以推广到多变量情形.其证明 方法与上述相仿,我们只把结论叙述如下: 定理2 若函数 F ( x1 , x2 ,, xn ; y ) 满足以下条件:
(1) 在区域 D : xi xi( 0 ) ai , y y ( 0) b (i 1,2,, n)
1 隐函数存在定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隐函数导数存在定理
隐函数导数存在定理,也称为隐函数存在定理,是微积分中一个关于隐函数求导的重要定理。
该定理给出了在什么条件下,隐函数的导数存在以及如何求解的方法。
隐函数导数存在定理的内容如下:
设函数F(x,y)在点(x0, y0)的某一邻域内具有连续的偏导数,并且F(x0, y0)≠0,Fy(x0, y0)≠0。
那么在点(x0, y0)的某一邻域内,方程F(x, y) = 0能唯一确定一个连续且具有连续导数的函数,这个函数满足条件y = f(x)。
在实际应用中,这个定理可以帮助我们求解隐函数的导数。
根据定理,我们可以先求解方程F(x, y) = 0以得到隐函数y = f(x),然后利用求得的隐函数求其导数。
求解隐函数导数的方法如下:
1. 根据隐函数存在定理,求解方程F(x, y) = 0,得到隐函数y = f(x)。
2. 对隐函数y = f(x)求导,得到dy/dx = Fx(x, f(x)) / Fy(x, f(x))。
需要注意的是,隐函数导数存在定理的应用范围有限,要求函数F(x, y)在点(x0, y0)的某一邻域内具有连续的偏导数,并且F(x0, y0)≠0,Fy(x0, y0)≠0。
在这些条件下,隐函数的导数才能唯一确定。