1.1(随机试验与样本空间)
概率统计-习题及答案-(1)

习题一1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合:(1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A 表示:平均得分在80分以上。
(2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和;设事件A 表示:第一颗掷得5点;设事件B 表示:三颗骰子点数之和不超过8点。
(3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。
(4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A 表示:至多只要投50次。
(5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。
1.2 在分别标有号码1~8的八张卡片中任抽一张。
(1)写出该随机试验的样本点和样本空间;(2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。
试将下列事件表示为样本点的集合,并说明分别表示什么事件?(a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。
1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来:(1)A 发生; (2)A 不发生,但B 、C 至少有一个发生;(3)三个事件恰有一个发生; (4)三个事件中至少有两个发生;(5)三个事件都不发生; (6)三个事件最多有一个发生;(7)三个事件不都发生。
1.4 设}10,,3,2,1{Λ=Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件:(1)B A ; (2))(BC A 。
1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。
1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。
1.1-1.2 随机试验 样本空间、随机事件

S4 {1, 2, 3, 4, 5, 6}.
E5: 记录某公共汽车站某日
上午某时刻的等车人数.
S5 {0, 1, 2, }.
E6:在一批灯泡中任意抽取一只,测试它的寿命.
S6 : {t | t 0}
E7: 考察某地区一昼夜最高和最低气温.
S7 {( x , y ) T0 x y T1 }.
概率论的基本概念
第一节 随机试验
重点: 概率论的主要研究对象; 随机试验的概念
一、自然界所观察到的两类现象
1. 确定性现象
在一定条件下必然发生的现象 称为确定性现象. 实例
“太阳从东边升起”,
“水从高处流向低处”, “同性电荷必然互斥”,
特征
2. 随机现象
实例1 “在相同条件下掷一枚均匀的硬币, 观察正反两面 发生的情况”. 结果有可能:发生正面、反面.
的结果有一定的规律性——称为统计规律性.
定义 在个别试验中其结果呈现出不确定性,在大量重复 试验中其结果又具有统计规律性的现象,称为随机现象.
特征
说明
研究对象 ——概率论就是研究随机现象统计规律性的一
门数学学科.
研究方法 ——将随机试验的结果数量化.
样本空间(集合)、概率、随机变量(函数)等.
二、随机试验(Experiment )
数。
E 4 :抛一枚骰子,观察出现的点数。
E 5 :记录某城市 120 急救
电话台一昼夜接到的呼唤次数。
在一批灯光中任意抽 E6 : 取一只,测试它的寿命。
E 7 :记录某地一昼夜的最高气温和最低气温。
定义: 随机试验是指具有以下三个特征的试验:
1. 可以在相同的条件下重复地进行; 可重复性 2. 每次试验的可能结果不止一个,并且能事先明确试 可知性 验的所有可能结果;
概率论与数理统计教程

1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
1、包含关系 若事件 A 出现, 必然导致 B 出现 则称事件 B 包含事件 A,记作B A 或 A B.
特别地 若事件A包含事件B,而且事件B包含 事件A, 则称事件A与事件B相等,记作 A=B.
2.两事件的和与并
“二事件 A, B至少发生一个”也是一个事件, 称为事件 A 与事件B的和事件.记作A B,显然 A B {e | e A或e B}.
若事件 A 、B 满足 A B 且 AB .
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
五、随机事件的关系及运算
(1)、随机事件间的关系
设试验 E 的样本空间为 , 而 A, B, Ak (k 1,2,)是 的子集.
推广:
N元情形
n
推广 称 Ak 为n个事件 A1, A2 ,, An 的积事件,
k 1
即A1, A2 ,, An同时发生;
概率论与数理统计教案随机变量及其分布

概率论与数理统计教案-随机变量及其分布教学目标:1. 理解随机变量的概念及其重要性。
2. 掌握随机变量的概率分布及其性质。
3. 学会计算随机变量的期望值和方差。
教学内容:第一章:随机变量的概念1.1 随机试验与样本空间1.2 随机变量及其定义1.3 随机变量的分类第二章:随机变量的概率分布2.1 离散型随机变量的概率分布2.2 连续型随机变量的概率分布2.3 随机变量概率分布的性质第三章:随机变量的期望值3.1 离散型随机变量的期望值3.2 连续型随机变量的期望值3.3 期望值的性质及其计算方法第四章:随机变量的方差4.1 离散型随机变量的方差4.2 连续型随机变量的方差4.3 方差的性质及其计算方法第五章:随机变量的不确定性度量5.1 标准差与协方差5.2 变异系数与相关系数5.3 不确定性度量在实际应用中的意义教学方法:1. 采用讲授法,系统讲解随机变量及其分布的基本概念、性质和计算方法。
2. 利用案例分析,让学生更好地理解随机变量在实际问题中的应用。
3. 布置练习题,巩固所学知识,提高学生的实际操作能力。
教学评估:1. 课堂问答,检查学生对随机变量及其分布的理解程度。
2. 课后作业,检验学生对随机变量期望值和方差的计算能力。
3. 课程报告,让学生运用所学知识解决实际问题,提高学生的综合应用能力。
教学资源:1. 教材:《概率论与数理统计》2. 课件:随机变量及其分布的相关内容3. 案例资料:用于分析随机变量在实际问题中的应用4. 练习题及答案:用于巩固所学知识教学安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时总结:通过本章的学习,学生应掌握随机变量及其分布的基本概念、性质和计算方法,并能运用所学知识解决实际问题。
第六章:随机变量的函数6.1 离散型随机变量的函数6.2 连续型随机变量的函数6.3 函数随机变量的性质教学内容:本章主要介绍随机变量的函数,包括离散型随机变量的函数和连续型随机变量的函数。
《概率论与数理统计》第三版--课后习题答案.-(1)

习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。
1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。
1随机事件和概率

解 :令A={第一次取到次品},B={第二次取到次品}, 需求P(B│A).
(1)在缩减的样本空间中计算.因第一次已经取得了次品, 剩下的产品共19件其中3件次品,从而
P(B│A)=3/19 (2)在原样本空间中计算,由于
二 、乘法公式
设P(B)>0,则有 P(AB)=P(B)P(A│B) 同样,当P(A)>0时,有: P(AB)=P(A)P(B│A) 上述乘法公式可推广至任意有限个事件的情形:
三、样本空间
试验E的所有基本结果构成的集合称为样本空间, 记为S。 S中的元素即E的每个基本结果称为样本点,记为 ω,即S={ω}。 基本事件是样本空间的单点集。 复合事件是由多个样本点组成的集合。 必然事件包含一切样本点,它就是样本空间S。 不可能事件不含任何样本点,它就是空集φ。
四、事件间的关系及其运算 例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
可列个事件A1 , A2 , … , An的积记为A1 ∩ A2 ∩ … ∩ An
或A1A2 … An ,也可简记为 在可列无穷的场合,用 件同时发生。” 。 表示事件“A1、A2 …诸事
4.互不相容事件
事件A与事件B不能同时发生,即AB=φ,则称A 和B是互不相容的或互斥的。 基本事件是两两互不相容的。 5.对立事件 若A,B互不相容,且它们的和事件为必然事件,即
例2: 设A,B,C为三个事件,试用A,B,C表
示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生;
(6)A,B,C中至少有两个发生。
1.2 事件的概率
1-1随机试验随机事件和样本空间

概率论与集合论有关概念的对应关系
概率论
样本点
样本空间
集合论
元素
全集
记号
e
S
随机事件
基本事件
子集
单点集
A , B , C ……
{e}
不可能事件
空集
Φ
24
北京邮电大学世纪学院
例1、设试验为抛一枚硬币,观察是正面还 是反面,则样本空间为: S={正面,反面} 例2、设试验为从装有三个白球(记为1,2,3号) 与两个黑球(记为4,5号)的袋中任取两个球. (1)观察取出的两个球的颜色,则样本空间为: S={e00, e11, e01} e00 表示“取出两个白球”, e11 表示“取出两个黑球”, e01 表示“取出一个白球与一个黑球”
北京邮电大学世纪学院
五、随机数学简史
古——艺术及文学作品,游戏、决策
古希腊——哲学与宗教的思考 文艺复兴——数学讨论
北京邮电大学世纪学院
15
第一章 概率论的基本概念
§1.1 随机试验、随机事件和样本空间
说明 1. 随机现象揭示了条件和结果之间的非确定性 联系, 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶 然性, 但在大量重复试验或观察中, 这种结果的出现
北京邮电大学世纪学院
19
(2)
试验的所有可能结果:
正面,反面;
(3) 进行一次试验之前不能 故为随机试验. 确定哪一个结果会出现.
同理可知下列试验都为随机试验 1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三 件,记 录出现正品与次品的件 数”.
北京邮电大学世纪学院
20
3. 记录某公共汽车站某
《概率论与数理统计》1.1 随机试验与随机事件

i点 5, 6
}
在一起所构成的事件)
复合事件
事件 B = { 掷出奇数点 }
五. 随机事件间的关系及其运算
设试验 E 的样本空间为 S, A, B, Ak (k 1, 2, ) 是 S 的子集.
1. 事件的包含:如( A果中事的件每A个发样生本必点然都导包致含事在件BB中发)生.
注 ▲
则称 事件 B 包含事件 A 或 A 含于事 件 B 。记作:B A或 A B
从观察试验开始 研究随机现象,首先要对 研究对象进行观察或试验.
这里的试验指的是随机试验.
第一节 随机试验与随机事件
一. 试 验 : 为了研究随机现象,就要对客观事物进行 观察,观察的过程称之为试验。记为 E。
例1 E1:掷一枚硬币观察正面,反面出现的情况。 E2:记录一小时内,到某保险公司投保的户数 E3:射手射击一个目标,直到射中为止,观察 其射击的次数。 E4:从一批产品中抽取十件,观察其次品数。 E5:抛一颗骰子,观察其出现的点数。
A
B
为 A 与 B 的和 (并), 记作:
A B 或 A B x xA 或 xB
AB
注
▲ 它是由事件 A 和 B 所有样本点构成的集合 n
▲ 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件
k1
k 1 Ak 为可列个事件 A1 , A2 ,
的和事件
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件,
样本空间元素 是由试验目的 所确定的,不 同的试验目的 其样本空间也 是不一样的。
S
.e
样本点e
例 3.若试验 E是将一枚硬币抛掷两次. 试写出该试验 E 的样本空间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 概率论基础
1.1 随机试验与样本空间
1.1.1 随机试验
客观世界中存在着两类现象: 必然现象 随机现象
概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
Ω {H, T }
它既可以作为抛掷硬币出现正面或出现反面的 模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排
队的模型等.
1.1.2 样本空间
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
在一定条件下必然出现的现象,
称为必然现象;
实例: “太阳从东边升起” “水从高处向低处流” “同性电荷互斥”
1.1.1 随机试验
必然现象的特征
条件完全决定结果
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况. 结果有可能出现正面也可能出现反面.
1827 ) 、 高 斯 ( Gauss, 德 ,1777-1855 ) 和 泊 松
(Poisson,法,1781-1840)等一批数学家对概率论作 了奠基性的贡献.
【概率论简史】
1812年,拉普拉斯所著《概率的分析理论》实现了
从组合技巧向分析方法的过渡,开辟了概率论发展的
新时期.
19世纪后期,极限理论的发展成为概率论研究的中 心课题,是概率论的又一次飞跃,为后来数理统计的 产生和应用奠定了基础.契比谢夫(Chebyhev,俄, 1821-1894)对此做出了重要贡献.他建立了关于独立
(2) 随机现象在一次观察中出现什么结果具有偶 然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科. 如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
1.1.1 随机试验
概率论中把满足以下特点的试验称为随机试验:
1.1.2 样本空间
关于样本空间的几点说明:
(1) 样本空间中的元素可以是数也可以不是数;
(2) 样本空间中的样本点可以是有限多个的, 也可以是无限多个的.仅含两个样本点的样本空 间是最简单的样本空间.
Байду номын сангаас
1.1.2 样本空间
说明
(3) 建立样本空间,事实上就是建立随机现 象的数学模型. 因此 , 一个样本空间可以
1.1.1 随机试验
实例2
用同一门炮向同
一目标发射同一种炮弹多
发 , 观察弹落点的情况.
结果: 弹落点会各不相同. 实例3 抛掷一枚骰子,观 结果有可能为:
察出现的点数. 1, 2, 3, 4, 5 或 6.
1.1.1 随机试验
实例4
从一批含有正品
其结果可能为:
和次品的产品中任意抽取
一个产品.
正品 、次品.
科,20世纪以来,广泛应用于工业、国防、国民
经济及工程技术等各个领域.本章介绍随机事件 与概率、古典概型与几何概型、条件概率与乘法
公式等概率论中最基本、最重要的概念和概率计
算方法.
【概率论简史】
概率的概念形成于16世纪,与用投掷骰子的方法 进行赌博有密切的关系. 1654年,一个名叫德梅尔(De Mere,法)的赌 徒就“两个赌徒约定赌若干局,且谁先赢c局便算赢 家,若在一赌徒胜a局(a<c),另一赌徒胜b局(b<c) 时便终止赌博,问应如何分赌本”为题求教于数学家 帕斯卡(Pascal,法,1623-1662),帕斯卡与费玛 (Fermat,法,1601-1665)通信讨论了这一问题, 并用组合的方法给出了正确的解答.
☺课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品 的总件数. 答案
1. Ω {3, 4, 5, , 18}. 2. Ω {10, 11, 12, }.
概率论与数理统计
第1章 概率论基础
1.1 随机试验与样本空间 2.2 随机事件及其概率 3.3 古典概型与几何概型 3.4 条件概率与乘法公式 3.5 全概率公式和贝叶斯公式
3.6 独立性
3.7 Excel数据分析功能简介
第1章 概率论基础
概率论是从数量化的角度来研究现实世界中一
类不确定现象(随机现象)规律性的一门数学学
【概率论简史】
1657年惠更斯(Huygens,荷,1629-1695)发
表的《论赌博中的计算》是最早的概率论著作,论著
中第一批概率论概念(如数学期望)与定理(如概率
加法、乘法定理)标志着概率论的诞生. 18世纪初,伯努利(Bernoulli,法,1700-1782), 棣莫弗(De.Moivre,法,1667-1754)、蒲丰(Buffon, 法 ,1707-1788 ) 、 拉 普 拉 斯 ( Laplace, 法 , 1749-
(1) 可以在相同条件下重复进行;
(2) 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果;
(3) 进行一次试验之前不能确定哪一个结果会 出现. 随机试验通常用大写字母E表示.
1.1.1 随机试验
说明 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行 的 “调查”、“观察”或 “测量” 等.
随机变量序列的大数定律,推广了棣莫弗—拉普拉斯
的极限定理.契比谢夫的成果后被其学生马尔可夫发 扬光大,影响了20世纪概率论发展的进程.
【概率论简史】
1933 年 , 柯 尔 莫 哥 洛 夫 ( Kolmogorov , 俄 , 1903-1987)在他的名著《概率论基础》一书中,提 出了概率公理化定义,并得到数学家们的普遍承 认.公理化体系给概率论提供了一个逻辑上的坚实基 础,使概率论成为一门严格的演绎科学,取得了与其 他数学学科同等的地位,并通过集合论与其他数学分 支紧密联系起来.
1.1 随机试验与样本空间
1.1.2
样本空间
定义1.1 随机试验的一切可能基本结果组成 的集合称为样本空间,记为 = { },其中 表 示基本结果,又称为样本点. 研究随机现象首先要了解它的样本空间. 【例1.1】下面给出几个随机试验的样本空间. “抛一枚硬币观察哪一面朝上”:
1 = {正面,反面}.
实例5
过马路交叉口时,
可能遇上各种颜色的交通
指挥灯.
1.1.1 随机试验
实例6
出生的婴儿可
能是男,也可能是女. 实例7 明天的天气可
能是晴 , 也可能是多云 或雨. 随机现象的特征 条件不能完全决定结果
1.1.1 随机试验
说明 (1) 随机现象揭示了条件和结果之间的非确定性
联系 , 其数量关系无法用函数加以描述.
1.1.2 样本空间
“抛一颗骰子观察朝上一面的点数”:
2 = {1,2,3,4,5,6}.
“某品牌电视机的寿命”:
3 = {t | t 0}.
“110每天接到的报警次数”:
4 = {0,1,2,…}.
“圆心在原点的单位圆内任取一点”:
5 = {(x,y) | x2 + y2 1}.