中考数学专题讲座课件

合集下载

中考数学全景透视复习第07讲一元二次方程省公开课获奖课件市赛课比赛一等奖课件

中考数学全景透视复习第07讲一元二次方程省公开课获奖课件市赛课比赛一等奖课件

的判别式为 b2-4ac,一般用符号 Δ 表示.
(1)b2-4ac>0⇔方程有两个不相等的实数根,即
x1,2=-b±
b2-4a⇔ 方 程 有 两 个 相 等 的 实 数 根 , 即 x1=x2=-2ba;
(3)b2-4ac<0⇔方程没有实数根. 温馨提示: 一元一次方程没有根的判别式,因此,在逆用判 别式时,一定要保证二次项系数不等于零.
的根为
x1


f e

x2=-mn .
温馨提示: 解一元二次方程时,要根据方程的特点灵活选择 合适的方法,一般顺序为:直接开平方法、因式分解 法、公式法、配方法.公式法和配方法可以解所有判别 式大于或等于0的一元二次方程.
考点三 一元二次方程根的判别式
关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的根
系,然后列方程求解.
考点一 一元二次方程的解
例 1(2014·陕西)若 x=-2 是关于 x 的一元二次方
程 x2-52ax+a2=0 的一个根,则 a 的值为(
)
A.1 或 4
B.-1 或-4
C.-1 或 4
D.1 或 -4
【点拨】把 x=-2 代入 x2-52ax+a2=0,得(-2)2 -52a·(-2)+a2=0,解得 a1=-1,a2=-4.故选 B.
1.已知 1 是关于 x 的一元二次方程(m-1)x2+x
+1=0 的一个根,则 m 的值是( B )
A.1
B.-1
C.0
D.无法确定
解析:把 x=1 代入(m-1)x2+x+1=0,
得(m-1)+1+1=0,解得 m=-1,
此时 m-1=-2≠0,∴m=-1.故选 B.

中考数学专题讲座课件

中考数学专题讲座课件

中考数学专题讲座
8
2、有些选择题同学们很容易解出一 个答案,而且这个答案往往放在A 选项,但这个答案同时也在别的选 项中出现,这时我们同学一定要仔 细检查别的答案,而且往往发现别 的答案也符合要求,这样去思考可 以防止漏解,举例如下:
中考数学专题讲座
9
1、 已知点P是圆所在平面上的一点, 点P到圆上的最近距离是2,最远距离 是8,则圆的半径( )
23
练一练
1.若 ab 0 ,则正比例函数 y ax
与反比例函数
y
b x
在同一坐标系中的大
致图象可能是(

y
y
y
y
x
O
O
x
O
x
O
x
A.
B.
C.
D.
解析:由于 ab 0 ,即a、b异号,所以两个图
像不可能在相同的象限内,排除了A、C、D.故选B.
中考数学专题讲座
24
2、如图,双曲线 y k 与直线 y - 1 x
(A) 3 (B)-2 5
(C) 3 5 (D) 6
5
5
解析:此题考查逆用同底数幂的除法运算法则,由于
2 x 2 y 2 x 2 2 y 2 x 4 y,且 2x 3 ,
4y 5 ,即 2 x2 y 3 5
中考数学专题讲B = 5,∠BCD
= 120°,则对角线AC等于(
x
2
交于A、B两点,且A(−2,m),则点B
的坐标是( )
A.(2,−1)
B.(1,−2)
C.( 1 ,−1) D.(−1, 1 )
2
2
中考数学专题讲座
25
3. 在下列计算中,正确的是(

初中数学专题讲座课件

初中数学专题讲座课件

学生在计算函数值时,可能因为对函数表 达式处理不当而导致结果不正确。
05
初中数学学习方法与建议
Chapter
如何提高数学学习兴趣
01
02
03
发现数学的乐趣
尝试从数学中找到乐趣, 例如解决难题、探索数学 规律等。
结合实际应用
将数学与实际生活联系起 来,理解数学在生活中的 重要性。
参与数学活动
参加数学竞赛、数学俱乐 部等,与同学一起学习和 讨论数学问题。
03
初中数学解题技巧与策略
Chapter
代数解题技巧
01
代数方程求解
掌握一元一次方程、 一元二次方程的解法 ,理解方程的根与系 数的关系。
02
因式分解法
利用提取公因式、十 字相乘法等方法对多 项式进行因式分解, 简化计算。
03
分式化简
掌握分式的约分、通 分、化简技巧,理解 分式的基本性质。
04
二次根式化简
如何制定有效的学习计划
确定学习目标
明确学习目标,知道自己 要达到什么水平。
分配时间
根据学习目标,合理分配 学习时间,确保每个知识 点都得到充分复习。
制定学习计划
制定详细的学习计划,包 括每天的学习任务、每周 的学习重点等。
如何进行有效的复习与总结
及时复习
学完新知识后,及时复习巩固, 避免遗忘。
总结归纳
Chapter
代数易错题解析
总结词
代数是初中数学的重要组成部 分,学生在解决代数问题时容
易出现混淆和错误。
方程式解法混淆
学生在解方程时容易混淆等式 的性质和解方程的步骤,导致 解出的答案不正确。
变量代换错误
在解决复杂代数问题时,学生 可能不正确地代换变量,导致 后续计算出现错误。

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

中考名家讲座第9讲中考数学备考策略——应试技巧1PPT课件

中考名家讲座第9讲中考数学备考策略——应试技巧1PPT课件
2009年北京市生产运营用水 和居民家庭用水的总和为5.8 亿立方米,其中居民家庭用水 比生产运营用水的3倍还多0.6 亿立方米,问生产运营用水和 居民家庭用水各多少亿立方米.
解法1:
设生产运营用水x亿立方米,
居民家庭用水y亿立方米. -----------------1分
依题意,得
x
y
解这个方程组,
中考数学备考策略之 应试技能(一)
应试技能
“小题大做”一分不丢 “大题小做”详略得当
书写规范,稳操胜券
(一)“小题大做”一分不丢
(2010北京) 已知:如图,点A、B、C、D在同 一条直线上,EA⊥AD,FA⊥AD, EA=FD,AB=CD. 求证:∠ACE=∠DBF.
E
F
AB
CD
证明:∵ AB=DC ,
依题意,得 5.8-x=3x+0.6. -----2分
解得
x=1.3,
------3分
5.8-x=5.8-1.3=4.5.
-----4分
答:生产运营用水1.3亿立方米,
居民家庭用水4.5亿立方米. -----5分
23.已知反比例函数 y k x
的图象经过点
A
3 ,1
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕点O顺时针 旋转30°得到线段OB,判断点B是否在此反比 例函数的图象上,并说明理由;
(3)已知点Pm, 3m 6 也在此反比例函数的
图象上(其中m<0),过点P作x轴的垂线,
交x轴于点M.若线段PM上存在一点Q,使
得△OQM的面积是 ,设点1Q的纵坐标为n,

(1)求证:AE与⊙O相 切;
(1)证明:连结OM,则OM=OB.

中考数学复习专题课件:开放性问题(含详细参考答案)

中考数学复习专题课件:开放性问题(含详细参考答案)

中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。

三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1(义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。

810360专题:开放型。

分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2(宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。

2024年初中数学专题讲座课件

2024年初中数学专题讲座课件一、教学内容本讲内容基于初中数学教材第七章《平面几何图形及其性质》中的“三角形的性质”一节。

详细内容包括:三角形的基本概念,三角形的内角和定理,等腰三角形和等边三角形的性质,三角形的重心、外心、内心、垂心的定义及性质。

二、教学目标1. 理解并掌握三角形的基本概念及内角和定理。

2. 能够运用等腰三角形和等边三角形的性质解决问题。

3. 了解三角形的重心、外心、内心、垂心的概念,并能够运用其性质解决相关问题。

三、教学难点与重点教学难点:三角形的重心、外心、内心、垂心的概念及性质。

教学重点:三角形的基本概念,内角和定理,等腰三角形和等边三角形的性质。

四、教具与学具准备1. 教具:三角板、圆规、直尺、量角器。

2. 学具:练习本、铅笔、三角板、圆规。

五、教学过程1. 实践情景引入:通过展示生活中的三角形物体,让学生感受三角形的广泛应用,激发学生的学习兴趣。

教学细节:展示图片,引导学生观察、思考。

2. 例题讲解:例1:已知一个三角形的两个角分别是30°和60°,求第三个角的度数。

例2:已知一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。

教学细节:引导学生分析题目,找出已知条件和未知数,运用所学知识解决问题。

练习题1:已知一个三角形的三个内角分别为45°、45°和90°,判断该三角形的类型。

练习题2:已知一个等边三角形的边长为6cm,求该三角形的面积。

教学细节:学生独立完成练习题,教师巡回指导,解答学生的疑问。

4. 知识拓展:介绍三角形的重心、外心、内心、垂心的性质。

教学细节:通过讲解和演示,让学生了解并掌握三角形的四种特殊点的性质。

六、板书设计1. 三角形的基本概念2. 内角和定理3. 等腰三角形和等边三角形的性质4. 三角形的重心、外心、内心、垂心的定义及性质七、作业设计1. 作业题目:(1)已知一个三角形的两个内角分别为40°和50°,求第三个内角的度数。

中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件


二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题

《中考数学专题讲座》课件

在今后的学习和工作中,让我们继续发扬数学精神,勤学好问,刻苦钻研,取得更加优异的成绩和更加辉煌的 成就!
中考数学专题讲座
欢迎大家来到本次数学专题讲座,今天我们将深入探讨数轴与相交原理、全 等定理与全等三角形的判定、立体图形的表征和构造、函数与方程的联系与 应用等数学知识,让我们一起开启这段精彩的学习之旅!
数轴与相交原理
数轴
数轴是数学中常用的一种图示方 法,它可以直观地表示数字之间 的大小关系,也可用于解决一些 几何问题。
• SAS定理:若两个 三角形的两边和夹 角分别相等,则它
• 们AS全A定等理。:若两个 三角形的两角和夹 边分别相等,则它 们全等。
案例分析
我们将通过几个具体的例子, 来掌握如何运用全等定理判 断两个三角形是否全等。
立体图形的表征和构造
1
投影法
2
立体图形在平面上的表示称为投影,主
要包括平行投影和中心投影两种形式。
方程
方程是数学中的一种等式关系, 其中含有未知元,可以用来表 示问题的条件和限制。
联系和应用
函数和方程是数学中两个非常 重要的概念,它们之间有着密 切的联系。运用函数和方程, 我们可以解决许多实际问题, 如平面几何、航空航天、自然 科学等。
பைடு நூலகம்
实战演练
数学竞赛
习题和作业
参加全国数学竞赛、奥数比赛等 实战演练,可以检测我们是否真 正掌握了所学的数学知识和技能。
3
案例分析
4
我们将通过一个具体的例子,来掌握如 何将一个复杂的立体图形展开成一个平
面图形,并进行计算。
点、线、面、体
立体图形是由三维空间中的点、线、面 组成,是平面图形在第三个维度上的扩 展。
平面展开

中考数学讲座中考数学解答技巧基础复习课件


理解函数在实际问题中的应用,能建 立简单的实际问题与函数之间的关系 ,解决一些实际问题。
二次函数
理解二次函数的图像和性质,掌握二 次函数的顶点和对称轴,理解二次函 数的最大值和最小值问题。
04
中考数学模拟试题及解析
中考数学模拟试题及解析 基础复习课件
知识点梳理
对初中数学的知识点进行系统梳理, 形成知识网络。
多做真题
通过做中考数学的真题,熟悉考试形式和题 型,掌握解题技巧。
模拟考试与反思
定期进行模拟考试,并对自己的考试结果进 行反思,找出不足之处并加以改进。
中考数学展望
加强数学思维能力的培养
注重实际应用能力的考察
在中考数学中,越来越注重数学思维能力 的考察,如逻辑推理、空间想象等。
中考数学中,将更加注重考察学生运用数 学知识解决实际问题的能力。
中考数学考试内容与要求
考试内容
主要包括数与式、方程与不等式、函数与图像、图形与几何等章节的知识点。
考试要求
要求学生掌握初中数学的基础知识,能够运用所学知识解决实际问题,并具备 一定的数学思维能力。同时,要求学生具备良好的计算能力、逻辑推理能力和 空间想象能力。
02
中考数学解答技巧
选择题解答技巧
解析详尽
对每个例题进行深入解析,帮助 学生理解解题思路。
练习丰富
提供大量的练习题,供学生巩固 所学知识。
05
中考数学备考建议与展望
中考数学备考建议
制定复习计划
根据中考数学的考试大纲,制定详细的复习 计划,明确每个章节的重点和难点。
注重基础知识
在复习过程中,注重基础知识的学习和掌握 ,不要忽视课本上的例题和练习题。
几何基础知识复习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档