连续系统振动(a)-杆的纵向振动
振动力学与结构动力学-(第一章).

摩擦力: Fd cdx2sgxn
c d :阻力系数
在运动方向不变的半个周期内计算耗散能量,再乘2:
Ecdx2sgxndx2
T/4
c T/4 d
x3dt
8 3
cd02
A2
等效粘性阻尼系数:
ce
8
3
cd0
A
24
四、结构阻尼
由于材料为非完全弹性,在变形过程中材料的内摩擦所引起 的阻尼称为结构阻尼
特征:应力-应变曲线存在滞回曲线
6
第一章 概 论
§1-1 动荷载及其分类 - 从广义上讲,如果表征一种运动的物理量作时而增大时而减
小的反复变化,就可以称这种运动为振动。 - 如果变化的物理量是一些机械量或力学量,例如物体的位移
、速度、加速度、应力及应变等,这种振动便称为机械振动 。 - 各种物理现象,诸如声、光、热等都包含振动
7
– 知识要点:结构被动控制、主动控制的基本概念。常用主动 控制方法的原理。结构主动控制在机械、土木结构工程中应 用简介。
– 重点难点:理解各种控制方法的原理及其具体实现。 – 教学方法:课堂讲授与引导讨论相结合。
主要参考书: • 刘延柱.振动力学.北京:高等教育出版社,1998 • 倪振华. 振动力学. 西安:西安交通大学出版社,1989 • 张准、汪凤泉. 振动分析.南京:东南大学出版社,1991 • 陈予恕.非线性振动. 天津:天津科技出版社,1983 • 龙驭球等编著.《结构力学》下册. 北京:高等教育出版 社,1994
– 教学方法:课堂讲授与引导讨论相结合
• 第六章 结构反应谱与地震荷载计算(8学 时)
– 知识要点:结构反应谱、单自由度和多自由度地震 荷载计算公式、规范中地震荷载计算公式。
第十二次课第四章连续体的振动

第四章连续体的振动§4.2 杆的纵向振动例:有一根 x =0 端为自由、x =l 端处为固定的杆,固定端承受支撑运动 td t u g ωsin )(=d 为振动的幅值试求杆的稳态响应。
l x 0)(t u g §4.2 杆的纵向振动解: l x 0t d t u g ωsin )(=方程建立 dx u dx x u u u g ∂-∂+)(22xu Sdx ∂∂ρdx x F F ∂∂+F 微段分析应变: xu u dx u dx x u u u g g ∂-∂=-∂-∂+=)(])([ε内力: xu u ES ES F g ∂-∂==)(ε达朗贝尔原理: F dx F F u Sdx -∂+=∂)(2ρ),(t x u 杆上距原点 x 处截面在时刻 t 的纵向位移 22)(u u ES u S g -∂=∂ρl x 0td t u g ωsin )(=令: 代入方程: 2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*g u u u +=*即: **''g Su ESu Su ρρ-=-2sin Sd tρωω=-设解为: ∑∞==1*)()(i i i t q x u φ)(x i φ为归一化的正则模态 ,...5,3,1,2cos 2)(==i x li l x i πφ代入方程,得: tSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞=l x0t d t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρgu u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x l i l x i πφtSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞= )(x j φ用 乘上式,并沿杆长积分:⎰∑⎰⎰=-∞=lj i l j i i l j i idx t Sd dx ES q dx S q 0210''0sin )(φωωρφφφφρ 利用正交性: t d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x li l x i πφt d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+ 模态稳态解: t d i l l q i i i i ωπηωωsin )1(222/)1(22--=2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=t d l x i i E l u u u i i i gωπηπωρsin 2cos )1(161 ,...5,3,12/)1(3322*⎥⎦⎤⎢⎣⎡-+=+=∑∞=-小结1. 建立动力学方程2. 根据边界条件求解固有频率和模态3. 变量分离4. 代入动力学方程,并利用正交性条件得到模态空间方程5. 物理空间初始条件转到模态空间6. 模态空间方程求解7. 返回物理空间,得解)()(),(1t q x t x u i i i φ∞=∑=)(2t Q q q j j j j =+ω )(,x i i φω)0(),0(j j q q )(t q j )()(),(1t q x t x u i i i φ∞=∑=物理空间问题 模态空间问题 )()(),(1t q x t x u i i i φ∞=∑=模态叠加法§4.3圆轴的扭转振动取圆轴的轴心线作为x 轴,图示轴任一 x 截面处的转角表示为θ(x ,t ) 。
振动力学—连续系统

弦的横向振动
y(x,t)为弦上坐标为x处的横截面 在t时刻的横向位移l。
取微元,分析受力,如图
杆的纵向振动
假定:细长等截面杆, 振动时横截面仍保持为平面,横截 面上的质点只作沿杆件纵向的振动,横向变形忽略不计。 则同一横截面上各点在x方向作相等的位移。 参数:杆长l,截面积S,材料密度,弹性模量E
EI d 4Y d 2T a 2 , 4 Y IV , 2 T ,则上式为: 令 m dx dt IV T 2 Y a Y T
Y IV T a 2 Y T
2
梁的弯曲振动
方程
T 2T 0
Y
( 4)
2
a
2
Y 0
T Aei (t )
各态遍历过程
相关函数
自相关函数性质
1 偶函数
Rx ( ) Rx ( )
2 周期随机过程的自相关函数仍是周期函数 X (t ) X (t ) Rx ( ) Rx ( T ) 3 4
2 Rx (0) x
2 2 x x Rx ( ) Rx (0)
T(t ) 2T (t ) 0
X ( x)
2
a
2 0
X ( x) 0
杆的纵向振动
解为 时间域,初值问题 空间域,边值问题 固支边条件
T (t ) Aei (t )
X ( x) C1 sin
a0
x C2 cos
a0
x
x=0时,u(0,t)=X(0)· T(x)=0,即X(0)=0 x=l时,u(l,t)=X(0)· T(l)=0,即X(l)=0
x=H(0) f
力学专业研究生面试

1. 各力学课程之间的区别和联系,重点的理论力学\材料力学\结构力学重点内容要清楚.理论力学:理论力学是研究物体的机械运动的。
它主要研究的是质点,质点系,刚体,并且以牛顿定律为主导思想来研究物体。
质点和刚体都是理想化的模型,没有变形,真实世界中不可能存在,适用于研究宏观低速的物质世界。
它主要分为三大部分,静力学(研究物体在保持平衡时应该满足的条件),运动学(从几何方面研究物体的运动,包括轨迹、速度、加速度和运动方程)和动力学(研究物体的受到的力与运动之间的关系)。
材料力学:研究构件在荷载作用下是否满足强度、刚度和稳定性。
材料力学主要研究的对象是构件,构件是可以变形的。
材料力学主要是从理论力学的静力学发展而来,因为刚体是不会变形的,所以在理论力学中是不可能解释变形体的问题的,但实际上物体没有不发生形变的,材料力学就是研究物体在发生形变以后的一些问题。
理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题。
而且材料力学在解释实际生活中的问题时时把问题工程化。
材料力学的假设:1,连续性假设;2均匀性假设;3各项同性假设。
拉、压、剪、扭、弯(纯弯和恒力弯曲)强度理论:最大拉应力强度理论最大伸长线应变理论最大切应力理论畸变能密度理论莫尔强度理论组合变形(拉弯,弯扭)压杆稳定莫尔积分结构力学:研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
在材料力学的基础上面发展起来的,一些基本的工具和思想都是差不多的。
在结构力学里面有一些更先进的解决问题的方法,例如力法、位移法、矩阵位移法(划行划列法,主1付0法,付大值法)、力矩分配法(逐渐趋近的方法接近真实值)。
结构力学里面还包括结构动力学力法:变形协调方程,以多余的未知力为基本未知量位移法:平衡方程,以某些结点位移和转角为基本未知量力矩分配法:以位移法为基础,无限趋近的方式逐渐逼近真实解矩阵位移法:位移法和计算机想结合的产物。
复习-连续系统的振动

t
0 F ( ) sin[i (t )]d
u(x,t) Φi (x)Φi (x1)
i 1
i
t
0 F( )sin[i (t )]d
10
二、 梁的弯曲振动
1. 运动微分方程
2 x2
EI (x)
2u(x,t)
x2
A(x)
2u( x, t ) t 2
f
( x, t )
2. 均匀梁自由振动方程
的解耦方程
qi i2qi
l
0 f (x, y)Φidx
1
qi i
l
t
0 Φi 0 f (x, ) sin[i (t )]d dx
u(x,t) Φi
i1 i
l
0 Φi
t
0 f (x, )sin[i (t )]d dx
9
(2)集中荷载 设在x=x1处受集中力F(t)
q(t) Φi (x1)
dFi
dx
dx
0
l
0Fi AFidx Mi
l
0Fi
d dx
EA
dFi
dx
dx
i2 M i
6
8.初始条件的响应求解步骤 (1)根据边界条件求解固有频率和固有振型。 (2)对振型函数标准化(正则化)
l
0Fi AFidx Mi 1
(3)将初始条件变换到标准坐标
l
q0i 0 AΦiu(x, 0)dx
12
(3)自由端:弯矩和剪力为0,即
2u( x, t ) x2
0,
3u( x, t ) x3
0
(x=0或l)
(4)集中质量
(5)弹簧
利用截面法研究微单元体的平衡。
连续系统的振动课件

连续系统振动仿真实例
弦振动仿真
建立弦的有限元模型,通过求解特征值和特征向量,得到弦的自振频率和振型,分析弦的振动特性。
梁弯曲振动仿真
建立梁的有限元模型,考虑剪切变形和转动惯量的影响,计算梁的自振频率和振型,揭示梁的弯曲振动规律。
拓扑优化
通过改变结构拓扑形态来优化振动特性,如减少 质量、提高刚度等。
形状优化
优化结构件的形状以降低振动幅度,例如改变梁 截面形状、板厚度分布等。
参数优化
针对特定连续系统,通过调整参数(如阻尼系数、 刚度分布等)实现振动性能的优化。
06
实验与测量技术
振动测量原理及设备
01
振动测量原理
02
振动测量设备
基于牛顿第二定律与连续系统的振 动特性,推导连续系统的偏微分方 程。
偏微分方程的形式
详细解释偏微分方程中各项的物理 意义,如惯性项、阻尼项和弹性项。
波动方程的推导与解析
01
02
03
波动方程的推导
从偏微分方程出发,通过 引入波动假设,推导连续 系统的波动方程。
波动方程的解析解
利用数学方法求解波动方 程,得到通解,并分析通 解的物理意义。
03
连续系统振动的应用实例
弦的振动与音乐乐器
振动弦上的波传播
当弦受到激励振动时,振动以波 的形式在弦上传播,形成驻波或 行波。这种波传播的现象是音乐
乐器发音的基础。
乐器中的弦振动
许多乐器如吉他、小提琴、钢琴 等都利用弦的振动发声。不同乐 器的音色和音调可以通过调整弦 的张力、长度、直径等参数来实
《结构动力学》-第八章-连续系统振动及精确解

A BC 0
简支梁第r阶固有频率和振型分别为
r r L
2
EI
r ( x) D sin r x
[例2] 悬臂梁情况 ( x) A ch x B sh x C cos x D sin x
3 y (0) 0 (0) 0 ( L) 0 ( L) 0 ( EI 3 Q 0) x
n
C
L
3
2 2 ,
,
扭转振动固有频率:
ni
C (2i 1) (2i 1) L 2 2L G
i 1,2
一阶固有频率:
n1
2L G
1.5708
1 G L
一阶振型函数为:
1 ( x) A1 sin
2L
x
任意阶振型i的响应为:
i ( x, t ) i ( x)qi (t ) Ai sin
总响应:
ni
C
xDi sin ni t Ei cos ni t
( x, t ) i ( x, t ) Ai sin
i 1 i 1
ni
C
xDi sin ni t Ei cos ni t
类似波动方程,有
d 2q + 2 q=0 dt 2 d 4 2 2 0 4 dx a
令 ( x) Ae x
4
代入得
a
2
a2
0 2
a
1
2
a
3 i
a
4 i
a
连续系统

2
(4.3.9)
( y ) C1 sin t C2 cos y a a
(4.3.10)
其中, C1 与 C2 是待定系数,它们由轴的边界条件决定。常见的扭转振动时轴的边界条件 为: 自由端:
y 0 时,GJ (0, t ) GJ (0)T (t ) 0 ,即 (0) 0 y l 时,GJ (l , t ) GJ (l )T (t ) 0 , 即 (l ) 0
3
但是在工程中有实际意义的,只有有限个低阶频率。
X i ( x) Ai sin
前三阶主振型如图 4.2-3(a)所示。
(2i 1) x 2l
(i 1, 2,3,)
(1) (2) (3)
f (1) f (2) f (3)
(a)
图 4.2-3
(b)
如果 k ,该边界相当于固定边界,频率方程为
(4.3.8)
关于(4.3.6)式,只有某些典型的轴,如 I ( y ) / GJ ( y ) 可按某种函数形式表达时,才可 假定 1/ a I ( y ) / GJ ( y ) , 则 (4.3.6) 能找到精确解答。 对于均匀轴,I ( y ) 与 GJ ( y ) 是常数,
2
式可改写成:
( y ) ( y ) 0 a
( y, t ) ( y, t ) I ( y )
(4.3.2)
( y, t ) 代表扭转角加速度。 其中, I ( y ) 代表单位长度的梁对扭转轴的转动惯量;
将(4.3.2)式代入(4.3. 1b )式中,并引用扭角与力矩 M 的关系式,得到扭转自由振 动的微分方程:
2 [GJ ( y ) ] I ( y ) 2 0 y y t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年1月24 日 并考虑到: 《振动力学》
2 y 达朗贝尔 Adx 2 t 惯性力
y x
2 2 y 1 2 y a p ( x, t ) 弦的横向强迫振动方程 0 2 2 t x
a0 弹性横波的纵向传播速度
9
连续系统的振动 / 一维波动方程
( l ) 0 l cos 0 a0
u (l , t ) 0 x
频率方程
零固有频率对应的常值模态为杆的纵向刚性位移 x x 2015年1月24日 u ( x , t ) ( x ) q (t ) ( x ) c1 sin c2 cos 《振动力学》 a0 a0
2015年1月24日 《振动力学》
( x) (t ) q 2 a0 (常数) q(t ) ( x)
13
连续系统的振动 / 杆的纵向振动 记: 2
(t ) q 2 ( x) a0 q(t ) ( x)
''
q (t ) 2 q (t ) 0 2 ( x) ( a ) ( x) 0 0
i 1
2015年1月24日 《振动力学》 15
连续系统的振动 / 杆的纵向振动
几种常见边界条件下的固有频率和模态函数
(1)两端固定 特征:两端位移为零 边界条件: u(0, t ) (0)q(t ) 0
0 l
x
u(l , t ) (l )q(t ) 0
q(t )
不能恒为零
u ( x , t ) ( x ) q (t ) 19
连续系统的振动 / 杆的纵向振动
0 l
x
0 l
x
(0) 0
( l ) 0
边界条件
(l ) 0
( 0 ) 0
l cos 0 a0
i a i , i 1,3,5,... 2 l
频率方程
l cos 0 a0
0 l
x
2 2u 1 2 u a0 p ( x, t ) a0 E / 2 2 S t x 2 2u u 2 a0 自由振动 2 2 t x
假设杆的各点作同步运动: u( x, t ) ( x)q(t ) q(t) :运动规律的时间函数
( x) :杆上距原点 x 处的截面的纵向振动振幅
杆长 l 材料密度 截面积 S 弹性模量 E
x
p( x, t ):单位长度杆上分布的纵向作用力
假定振动过程中各横截面仍保持为平面 忽略由纵向振动引起的横向变形
2015年1月24日 《振动力学》 6
连续系统的振动 / 一维波动方程
dx
微段分析
p( x, t )
0
u
x x
dx
u dx x
u p( x, t )dx
(0) 0
由于零固有频率对应的模态函数为零,因此零固有频率除去 x x ( x ) c1 sin c2 cos 2015年1月24日 a0 a0 《振动力学》
sin 0 频率方程 c2 0 a0 i a 0 (i 0,1,2, ) 无穷多个 固有频率: i l i x 模态函数: i ( x ) ci sin (i 0,1, 2, ) l
(3)振动为微振
2015年1月24日 《振动力学》
4
连续系统的振动 / 一维波动方程
一维波动方程
• 动力学方程
• 固有频率和模态函数
• 主振型的正交性
• 杆的纵向强迫振动
2015年1月24日 《振动力学》
5
连续系统的振动 / 一维波动方程
• 动力学方程
(1)杆的纵向振动
p( x, t )
0 l
等截面细直杆的纵向振动
2 t
2
2 a0
2
1 p ( x, t ) 2 Ip x
虽然它们在运动表现形式上并不相同,但它们的运动微 分方程是类同的,都属于一维波动方程
2015年1月24日 《振动力学》 12
连续系统的振动 / 杆的纵向振动
• 固有频率和模态函数
以等直杆的纵向振动为对象
p( x, t )
由频率方程确定的固有频率 i 有无穷多个
2015年1月24日 《振动力学》
(下面讲述)
14
连续系统的振动 / 杆的纵向振动
2 2u 2 u a0 2 t x 2 q(t ) a sin(t )
u( x, t ) ( x)q(t )
( x) c1 sin
(l ) 0
c1 0
( 0 ) 0 l cos 0 a0
u (0, t ) ES 0 x
频率方程
i a , i 1,3,5,... 固有频率: i 2 l i 模态函数: i ( x ) ci sin( x ), i 1,3,5,... 2l x x (日 x ) c1 sin c2 cos 2015年1月 24 a0 a0 《振动力学》
p( x, t )
0
x
dx
微段 dx 受力
x
pdx
T
T T dx x
圆截面杆的扭转振动强迫振动方程 等直杆,抗扭转刚度 GIp 为常数
2 2 1 2 a0 2 p ( x, t ) 2 年 t 1月24日 x I p 2015
2 I p dx 2 t
a0
(3)轴的扭转振动 细长圆截面等直杆在分布 扭矩作用下作扭转振动
截面的极惯性矩 Ip 杆参数: 材料密度
p( x, t )
0
x
dx
x
切变模量 G
微段 dx 受力
pdx
T
p( x, t ) :单位长度杆上分布的外力偶矩
T T dx x
假定振动过程中各横截面仍保持为平面
( x, t ) :杆上距离原点 x 处的截面在时
(l ) 0 l
16
连续系统的振动 / 杆的纵向振动
(2)两端自由
特征:自由端的轴向力为零 边界条件 : ES
u (0, t ) 0 x ( 0 ) 0
0 l
x
ES
c1 0
i a 0 固有频率: i (i 0,1,2, ) l i x 模态函数: i ( x ) ci cos (i 0,1, 2, ) l 频率方程和固有频率两端固定杆的情况相同
F
弦两端固定,以张力 F 拉紧
在分布力作用下作横向振动
dx
x
微段受力情况
dx
F
振动中认为张力不变
微振 sin
F
:单位长度弦质量
p( x, t ) :单位长度弦上分布的作用力
建立坐标系 xoy
pdx
dx x
y( x, t ) :弦上 x 处横截面 t 时刻的横向位移
2 y dx) F p( x, t )dx 达朗贝尔原理: Adx 2 F ( t x
《振动力学》
7
连续系统的振动 / 一维波动方程
p( x, t )
0
x x
dx
l
F ES ES u x
u( x, t ) 杆上距原点 x 处截面 在时刻 t 的纵向位移
横截面上的内力: 达朗贝尔原理:
2u F Sdx 2 ( F dx) F p( x, t )dx x t 2u u S 2 ( ES ) p ( x, t ) x x t
i a i , i 1,3,5,... 2 l
固有频率
i i ( x ) ci sin( x ), i 1,3,5,... 模态函数 2l
2015年1月24日 《振动力学》
i i ( x ) ci sin( x ), i 1,3,5,... 2l
2015年1月24日 《振动力学》 2
教学内容
• 一维波动方程
• 梁的弯曲振动
• 集中质量法
• 假设模态法
• 模态综合法(1) • 有限元法
2015年1月24日 《振动力学》
• 模态综合法(2)
3
假 设:
(1)本章讨论的连续体都假定为线性弹性 体,即在弹性范围内服从虎克定律 (2)材料均匀连续;各向同性
x x ( x ) c1 sin c2 cos 《振动力学》 a0 a0
2015年1月24日
u ( x , t ) ( x ) q (t )
18
连续系统的振动 / 杆的纵向振动
左端自由,右端固定
特征:固定端位移为零 自由端轴向力为零
0Байду номын сангаасl
x
边界条件 :
u(l , t ) 0
杆的纵向强迫振动方程 等直杆ES 为常数
a24 2015年1月 日 0
《振动力学》
2 2u 1 2 u a p ( x, t ) 0 2 2 S t x
E/
弹性纵波沿杆的纵向传播速度
8
连续系统的振动 / 一维波动方程
(2)弦的横向振动
弦的定义: 很细长
y F
o x
y( x, t ) p( x, t )
F
l
F
F dx x
u( x, t ) :杆上距原点 x 处截面 t 时刻的纵向位移
微段应变:
(u
u dx) u u x x dx
2u Sdx 2 x
达朗贝尔 惯性力
横截面上内力: F ES ES
u x
2u F 达朗贝尔原理: Sdx 2 ( F dx) F p( x, t )dx x t 2015年1月24日