认识有理数的乘方和近似数
认识有理数的乘方和近似数

如 果 只 取 3位 小 数 , 么 应 为 31 2 就 是 精 确 到 千 分 位 ( 叫 精 确 那 .4 , 或
到 O.01) 0 .
一
般 地 , 一 个 数 四舍 五 人 到 某 一 位 得 到 近 似 数 , 说 这 个 近 似 数 将 就
精 确到那 一位.
对 于 一 个 数 , 左 边 第 一 个 不 是 0的 数 字 起 , 末 位 数 字 止 , 有 的 从 到 所
幂.
‘
一
个 数 可 以 表 示 成 这 个 数 本 身 的 1次 方 , 如 , 例 5就 是 5 , a就 是 a ,
指 数 l通 常 省 略 不 写 .
2 近 似 数 .
在 日常 生 活 和 生 产 实 际 中 , 们 会 接 触 到 很 多 数 : 我 某 校 七 ( 班喜 欢 看 篮球 赛 的学 生人 数 是 3 则 3 2) 5, 5这 个 数 是 与 实 际 完 全 符 合 的 准 确 数 , 个 也 不 多 , 个 也 不 少 . 如 , ( ) 有 5 名 一 一 又 七 1班 5
数字 都是 这个数 的有 效数 字 , 似 数也 是如 此. 近
_
一
些 偏 差 . 里 的 1 . c 只 是 一 个 与 实 际 宽 度 非 常 接 近 的 数 . 样 的 数 这 85 m 这
是 近似数.
使用 近 似数 就有 一个 近 似程 度 的问 题 , 就 是精 确 度 的问题 . 也 我 们 都 知 道 盯 =3 1 l5 26 35 . 算 中 我 们 应 按 要 求 取 近 似 数 . .4 9 5 … 计
一
列 川 t算 式 分 别 为
图 1是 细 胞 分 裂 示 意 图 , 细 胞 分 裂 到 第 凡次 时 , 胞 的 个 数 是 多 当 细
《近似数》课件精品 (公开课)2022年数学PPT

x 2
3x
6. 的相反数是_____ , -3x的相反数是___.
能力拓展
7.〔1〕假设a ,那么 -a = ;
(2)假设 -a = 2,那么a = ;
-2
(3)假设 -〔 -a〕 =3 ,那么 -a = ;
(4) -〔a -b〕 =
.
-3
b -a
x +1是 -9的相反数 ,求x的值. 解:由相反数的意义 ,得
2x +1 =9 2x =8 x =4
拓展思考:两个有理数x、y ,且x +y =0, 那么这两 个有理数有什么关系 ?
课堂小结
1.相反数的概念:只有符号不同的两个数叫做 互为相反数;特别地 ,0的相反数是0.
2. a 表示a的相反数.
0的相反数是___0__.
一个正数的相反数是一个 负数 . 一个负数的相反数是一个 正数 .
一个数的相反数是它本身的数是 __0____.
探究二 相反数的几何意义
思考:在数轴上 ,画出几组表示相反数的点 ,并观 察这两个点具有怎样的特征 ?
-5
-a -1 0 1 a 5
位于原点两侧 ,且与原点的距离相等.
A.(8) 和 (8) B.(8) 与 (8)
C.(8) 与 (8) 3.5的相反数是__-_5_;a的相反数是__-_a;
4.假设a = -13 ,那1么3 -a =____;假设 -6a = -6
,那么a =___ .
正
5.假设a正是负数 ,那么 -a是_____数;假设 -a
是负数,那么
x
a2 是_____数.
a = 0, -a = 0
-〔+1.1〕表示什么 ?-〔-7〕呢 ? -〔-9.8〕呢 ?它们的结果应是多少 ?
【优质部编】2019-2020七年级数学上册 第1章 有理数 1.5 有理数的乘方 1.5.3 近似数备课素材

1.5 有理数的乘方1.5.3近似数置疑导入问题1:(1)我班有________名学生,________名男生,__________名女生;(2)我今年________岁;(3)我的体重约为________千克,我的身高约为________厘米;(4)我们的数学课本有________页.(5)量一量我们的数学课本的长度是________厘米,宽度是________厘米.问题2:在这些数据中,哪些数是与实际接近的?哪些数据是与实际完全符合的?(师生共同完成:问题1中(1)(5)与实际完全符合,(2)(3)(4)是与实际接近的)与实际接近的数就是我们今天要研究的近似数.[说明与建议] 说明:提出现实生活中的实际问题,根据自己已有的生活经验观察身边熟悉的事物,收集一些数据,吸引学生的注意力,激发学生的学习兴趣,自然引入新课.建议:你还能举出生活中的一些准确数与近似数吗?生活中哪些方面用到近似数?1.阅读报道:中国是世界面积第3大国;中国有世界第一高峰珠穆朗玛峰,海拔约8844米;中国共划分为34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,中国共有56个民族,少数民族人口最多的是壮族,约有1700万人.2.回答问题:你能找出这篇报道中的精确数据和近似数据吗?[说明与建议] 说明:通过阅读一篇报道,找出其中的近似数和精确数,其一可以改变枯燥的概念复习,使复习环节变得更加有趣;其二通过阅读可以让学生掌握更多的知识,例如此报道可以让学生更多地了解我们的祖国,同时也为新课的学习和探究作铺垫和准备工作.建议:可以让学生寻找身边的实例,为本节课的学习做好铺垫.用喜羊羊的口吻讲故事,羊村超市开业了,懒羊羊买东西的时候发生了纠纷,一斤大米1.9元,一斤半大米共2.85元,可是,懒羊羊没有5分钱的零钱,村长又不愿意,懒羊羊给了村长3元,村长又没办法找零钱.怎么办呢?喜羊羊总是有办法.他想了什么办法呢?原来是四舍五入.今天我们来学习求一个数的近似数.[说明与建议] 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活并服务于生活,诱发学生对新知识的需求.建议:先留给学生自主思考的时间,然后教师要引导学生进行分析,为进一步学习积累数学活动经验.[命题角度1] 准确数和近似数的意义近似数识别的方法:①语句中带有“约”“左右”等词语,里面出现的数据都是近似数.如“某城市约有100万人口”“这篇文章有2000字左右”,这两个语句中的100万和2000都是近似数.②诸如“温度”“身高”“体重”“长度”等这些词语用数据来描述时,这些数都是近似数.如:“现在的气温是-2 ℃”“小明的体重是55千克”,这两个语句中的-2和55都是近似数.例下列各题中的数据,哪些是准确数?哪些是近似数?(1)某字典共有1234页;(2)我们班级有97人,买门票大约需要800元; (3)小红测得数学书的长度是21.0厘米.解:(1)1234是准确数;(2)97是准确数,800是近似数;(3)21.0是近似数. [命题角度2] 精确度的确定一个近似数四舍五入到哪一位,我们就说这个数精确到哪一位. (1)普通数直接判断;(2)对于科学记数法形式(形如a×10n)的数,先将其还原成普通数,再看a 最右边的数字处在哪个数位上,则其就精确到了哪个数位.(3)带有“文字单位”的近似数,在确定它的精确度时,分两种情况:当“文字单位”前面的数是整数时,则近似数精确到“文字单位”;当“文字单位”前面的数是小数时,则先将近似数还原成原来的数,再看最原小数中最右边的数字的位置.例1 12.30万精确到(D )A .千位B .百分位C .万位D .百位例2 由四舍五入法得到的近似数3.20×105,下列说法中正确的是(D ) A .精确到百位 B .精确到个位 C .精确到万位 D .精确到千位 [命题角度3] 按要求取近似数题目要求精确到哪一位,就观察下一位确定是“舍”还是“入”. 例 用四舍五入法,按括号中的要求对下列各数取近似数. (1)0.03049(精确到0.001); (2)199.5(精确到个位); (3)48.396(精确到百分位); (4)67294(精确到万位). 解:(1)0.03049≈0.030; (2)199.5≈200; (3)48.396≈48.40;(4)67294≈7×104.P46练习用四舍五入法对下列各数取近似数: (1)0.003 56(精确到万分位); (2)61.235(精确到个位); (3)1.8935(精确到0.001); (4)0.0571(精确到0.1).[答案] (1)0.0036;(2)61;(3)1.894;(4)0.1. P47习题1.5 复习巩固 1.计算:(1)(-3)3; (2)(-2)4;(3)(-1.7)2; (4)⎝ ⎛⎭⎪⎫-433; (5)-(-2)3; (6)(-2)2×(-3)2.[答案] (1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36.2.用计算器计算:(1)(-12)8; (2)1034;(3)7.123; (4)(-45.7)3.[答案] (1)429 981 696;(2)112 550 881; (3)360.944 128;(4)-95 443.993.3.计算:(1)(-1)100×5+(-2)4÷4;(2)(-3)3-3×⎝ ⎛⎭⎪⎫-134; (3)76×⎝ ⎛⎭⎪⎫16-13×314÷35; (4)(-10)3+[(-4)2-(1-32)×2]; (5)-23÷49×⎝ ⎛⎭⎪⎫-232;(6)4+(-2)3×5-(-0.28)÷4. [答案] (1)9;(2)-27127;(3)-572; (4)-968;(5)-8;(6)-35.93.4.用科学记数法表示下列各数:(1)235 000 000; (2)188 520 000; (3)701 000 000 000; (4)-38 000 000.[答案] (1)2.35×108;(2)1.8852×108;(3)7.01×1011;(4)-3.8×107.5.下列用科学记数法表示的数,原来各是什么数?3×107,1.3×103,8.05×106,2.004×105,-1.96×104. [答案] 30 000 000;1300;8 050 000; 200 400;-19 600.6.用四舍五入法对下列各数取近似数: (1)0.003 56(精确到0.0001); (2)566.1235(精确到个位); (3)3.8963(精确到0.01); (4)0.0571(精确到千分位).[答案] (1)0.0036;(2)566;(3)3.90;(4)0.057. 综合运用7.平方等于9的数是几?立方等于27的数是几? [答案] 3或-3;3.8.一个长方体的长、宽都是a ,高是b ,它的体积和表面积怎样计算?当a =2 cm ,b =5 cm 时,它的体积和表面积是多少?[答案] V =a ×a ×b ;S =2(a ×b +a ×a +a ×b ).V =20,S =48.9.地球绕太阳公转的速度约是1.1×105km/h ,声音在空气中的传播速度约是340 m/s ,试比较两个速度的大小.[答案] 340 km/h<1.1×105km/h.10.一天有8.64×104s ,一年按365天计算,一年有多少秒(用科学记数法表示)?[答案] 3.1536×107秒. 拓广探索11.(1)计算0.12,12,102,1002.观察这些结果,底数的小数点向左(右)移动一位时,平方数小数点有什么移动规律?(2)计算0.13,13,103,1003.观察这些结果,底数的小数点向左(右)移动一位时,立方数小数点有什么移动规律?(3)计算0.14,14,104,1004.观察这些结果,底数的小数点向左(右)移动一位时,四次方数小数点有什么移动规律?[答案] (1)0.01,1,100,10 000,向左(右)移动两位;(2)0.001,1,1000,1 000 000,向左(右)移动三位;(3)0.0001,1,10 000,100 000 000,向左(右)移动四位.12.计算(-2)2,22,(-2)3,23.联系这类具体的数的乘方,你认为当a <0时下列各式是否成立?(1)a 2>0; (2)a 2=(-a )2;(3)a 2=-a 2; (4)a 3=-a 3.[答案] 4,4,-8,8,(1)成立,(2)成立; (3)不成立;(4)不成立. P51复习题1 复习巩固1.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:3.5,-3.5,0,2,-2,-1.6,-13,0.5.[答案] 图略,-3.5<-2<-1.6<-13<0<0.5<2<3.5.2.已知x 是整数,并且-3<x <4,在数轴上表示x 可能取的所有数值. [答案] 如图所示:3.设a =-2,b =-23,c =5.5,分别写出a ,b ,c 的绝对值、相反数和倒数.[答案] 2,2,-12;23,23,-32;5.5,-5.5,211.4.互为相反数的两数的和是多少?互为倒数的两数的积是多少?[答案] 0,1. 5.计算:(1)-150+250;(2)-15+(-23); (3)-5-65;(4)-26-(-15); (5)-6×(-16);(6)-13×27;(7)8÷(-16);(8)-25÷⎝ ⎛⎭⎪⎫-23; (9)(-0.02)×(-20)×(-5)×4.5;(10)(-6.5)×(-2)÷⎝ ⎛⎭⎪⎫-13÷(-5); (11)6+⎝ ⎛⎭⎪⎫-15-2-(-1.5); (12)-66×4-(-2.5)÷(-0.1);(13)(-2)2×5-(-2)3÷4;(14)-(3-5)+32×(1-3).[答案] (1)100;(2)-38;(3)-70;(4)-11;(5)96;(6)-9;(7)-12;(8)752;(9)-9;(10)395;(11)5.3;(12)-289;(13)22;(14)-16.6.用四舍五入法,按括号内的要求,对下列各数取近似值: (1)245.635(精确到0.1); (2)175.65(精确到个位); (3)12.004(精确到百分位); (4)6.5378(精确到0.01).[答案] (1)245.6;(2)176;(3)12.00; (4)6.54.7.把下列各数用科学记数法表示: (1)100 000 000; (2)-4 500 000; (3)692 400 000 000.[答案] (1)1×108;(2)-4.5×106;(3)6.924 ×1011. 8.计算:(1)-2-|-3|; (2)|-2-(-3)|. [答案] (1)5;(2)1. 综合运用9.下列各数是10名学生的数学考试成绩: 82,83,78,66,95,75,56,93,82,81.先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力. [答案] 平均成绩79.1分.10.a ,b 是有理数,它们在数轴上的对应点的位置如图所示. 把a ,-a ,b ,-b 按照从小到大的顺序排列,正确的是()A .-b <-a <a <bB .-a <-b <a <bC .-b <a <-a <bD .-b <b <-a <a [答案] C[解析] 一对相反数在原点的两侧,并且到原点的距离相等,所以a 的相反数-a 在表示b 的点的左侧,b 的相反数-b 在表示a 的点的左侧,数轴上左边的点表示的数比右边的点表示的数小,所以选C.11.某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):[答案] 盈,盈38元12.当温度每上升1 ℃时,某种金属丝伸长0.002 mm.反之,当温度每下降1 ℃时,金属丝缩短0.002 mm.把15 ℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?[答案] 先伸长0.09 mm ,再缩短0.11 mm ,比原长度伸长-0.02 mm.13.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km ,试用科学记数法表示1个天文单位是多少千米.[答案] 1.496×108千米.拓广探索14.结合具体的数的运算,归纳有关特例,然后比较下列数的大小: (1)小于1的正数a ,a 的平方,a 的立方; (2)大于-1的负数b ,b 的平方,b 的立方. [答案] (1)a >a 的平方>a 的立方; (2)b 的平方>b 的立方>b .15.结合具体的数,通过特例进行归纳,然后判断下列说法的对错. 认为对,说明理由;认为错,举出反例. (1)任何数都不等于它的相反数;(2)互为相反数的两个数的同一偶数次方相等; (3)如果a 大于b ,那么a 的倒数小于b 的倒数. [答案] (1)×(零的相反数为0);(2)√((a )2n =[(a )2]n =[(-a )2]n =(-a )2n);(3)×⎝⎛⎭⎪⎫若a >0>b , 则1a>0>1b .16.用计算器计算下列各式,将结果写在横线上:1×1=________; 11×11=________; 111×111=________; 1111×1111=________. (1)你发现了什么?(2)不用计算器,你能直接写出111 111 111×111 111 111的结果吗? [答案] 1;121;12321;1234321;(1)每单个乘数有几个1,积就从1数到几,以后在倒数回来; (2)12 345 678 987 654 321.[当堂检测]1. 下列属于准确数的是( ). A .我国有13亿人口 B .七年二班有49名学生C .我国人口的平均寿命为76岁D .北京到太原的距离为512km2.【2012•西宁改编】2012年5月28日,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC )数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030四舍五入精确到0.1的近似数是( ) A .1 B .10 C .1.0 D .1.033. 对近似数:2.03万,下列说法正确的是( ) A .精确到百分位 B.精确到百位, C. 精确到万位 D.以上都不对。
2024年秋季学期新人教版7年级上册数学课件 2.3 有理数的乘方2.3.3近似数

(3)1.804(精确到0.1);(4)1.804(精确到百分位).
知识点2 精确度
解:(3)1.804 ≈1.8;(4)1.804 ≈1.80.
1.804 ≈1.8;
1.804 ≈1.80.
这里的1.8和1.80的精确度不同.近似数1.8表示精确到0.1,近似数1.80表示精确到0.01.表示近似数时,不能容易地把1.80后面的0去掉.
知识点2 精确度
跟踪训练 2.按括号内的要求,用四舍五入法对下列各数取近似数:
(1)0.003 56(精确到万分位);(2)61.235(精确到个位);
知识点2 精确度
解:(1)0.003 56≈0.003 6;(2)61.235≈61;
跟踪训练 2.按括号内的要求,用四舍五入法对下列各数取近似数:
(3)1.893 5(精确到0.001);(4)0.057 1(精确到0.1).
知识点2 精确度
解:(3)1.893 5≈1.894;(4)0.057 1≈0.1.
1. 下列各数是准确数的为( )A.七年级有800名学生B.月球与地球的距离大约是38万千米C.小明同学的身高大约是148厘米D.今天的气温大约是8摄氏度
下图是收集到的树叶,需要将树叶制成标本,在标本中需要注明每片树叶的长度.
知识点2 精确度
下面是两种不同的测量方法,测量同一片树叶的长度,所用的直尺的最小单位是不同的,分别是厘米和毫米. 猜想:哪个测量结果会更精确一些?说说你的理由.
近似数与准确数的接近程度,可以用精确度表示.
解:(3)四舍五入到个位为1 m.
4. 下列由四舍五入法得到的近似数,各精确到哪一位?
1.5_有理数的乘方_近似数自主学习导学案(共5课时)

课题:7.5.1有理数的乘方(第1课时)【学习目标】1.知道有理数乘方的意义;2.会用有理数乘方运算的符号法则,能熟练进行有理数乘方的运算;3.通过乘方的意义,感悟乘方符号的简洁美,并在有理数的运算过程中增强数感.一.导入新课 1二.自主学习,反馈交流14阅读课本P41例1以上部分的内容,回答下列问题.1.什么叫做乘方?什么是幂?什么是底数?什么是指数?在课本上画出来,并在关键词下做记号...2.把下列各式用幂的形式表示(1)(-1)·(-1)·(-1)·(-1)·(-1)= ;(2)xy·xy·xy·xy= ;(3)x·x·x·y·y·y= .3.在49中,底数是____,指数是_______,意义是____________,读作;在2(3)-中,底数是____,指数是______,意义是____________,读作;在23-中,底数是____,指数是________,意义是___________,读作;32 3与32()3意义一样吗?三.自主探究,展示提升16探究要求:利用乘方意义进行计算,并探究乘方的符号法则自学课本P41的例1,仿照例题的格式,计算下列式子:(1)22;(2)332⎪⎭⎫⎝⎛;(3)()33;(4)()22-;(5)()25.0-;(6)()33-.小组合作探究:观察上面各题的结果,说说幂的符号与底数的符号和指数存在着怎样的关系?四.自主小结本节课所学到的知识,教师点评.5五.课堂检测反馈101.填空(1)在6(2)-中,指数为,底数为;在-26中,指数为,底数为.(2)若a2=16,则a= .(3)平方等于本身的数为,立方等于本身的数为.2.计算:(1)3(3)-;(2)4(2)-;(3)3(2)--;(4)22(2)(3)--.3.将(-5)·(-5)·(-5)·(-5)·(-5)写成乘方的形式为;将423-写成乘法的形式为.4.(-3)4表示,底数是,指数是,读作:.5.计算:(1)-32= ;(2)33--= ;(3)3(2)3--= ;6.比较大小:21()3-31()2-;31()3-31()2-.测试评价:2组内互批,教师点评。
有理数的乘方、近似数(七上)

2例1、计算:(1)35;(2)(—2)4;(3)—()原式的区别14、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?五、探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求20200220012000aa a a +++的值。
一、复习引入:1.什么叫乘方?说出103,―103,(―10)3、a n的底数、指数、幂。
2. 把下列各式写成幂的形式:32×32×32×32; ⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫⎝⎛-23;-23×23×23×23;32222⨯⨯⨯。
3.计算:101,102,103,104,105,106,1010。
由第3题计算:105=10000,106=1000000,1010=10000000000,左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n 次幂表示较大的数,比如一亿,一百亿等等。
又如像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法。
(1)10= 0100,n 恰巧是1后面0的个数;(2) 10= 0100,比运算结果的位数少1(1)把下面各数写成10的幂的形式:1000,100000000,100000000000(2)指出下列各数是几位数:10,10,10,10知识结构1、用科学记数法表示下列各数:1. 近似数3.0的精确数1.能力培养、按一定的规律排列的一列数依次为:我的感悟和收获:。
有理数的乘方、混合运算、科学计数法及近似数

第二章 有理数第二讲 有理数的乘方、混合运算、科学计数法及近似数 ※知识要点:一、乘方及相关概念1、求几个相同因数的积的运算叫做乘方,其运算的结果叫做幂;2、在n a 中,a 叫做底数,n 叫做指数;3、正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
二、有理数的混合运算有理数的混合运算顺序是先算乘方,再算乘除,最后算加减;如果有括号,要先算括号里面的。
三、科学计数法把一个数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是整数。
四、近似数近似地表示某一个量准确值的数,叫做这个量准确值的近似数。
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
※思维驿站例1、计算:(1) 23(4)⨯-(2) ()()3432-⨯-(3) 2222133⎛⎫-⨯- ⎪⎝⎭(4) ()()()2212012111n n +---+-例2、有一张厚度为0.1mm 的纸片,将它对折1次后,厚度为0.1×2mm ,对折两次后,厚度是毫米,如果对折20次后,厚度为毫米。
练习:一个面积为2平方米的正方形纸片,第1次截去一半,第2次截去剩下的一半,如此下去,第5次剩下的面积是多少平方米?第10次呢?例3、计算:(1) ()2411322272⨯+-⨯÷(2)()()()115551010---⨯÷⨯- (3) ()2411236⎡⎤--⨯--⎣⎦(4) 111135532114⎛⎫⨯-⨯÷ ⎪⎝⎭ 练习:(1) 3778141283⎛⎫⎛⎫⎛⎫-÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()21110.5233⎡⎤⎛⎫⎡⎤--⨯⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦ 例4、(1)用科学计数法表示下列各数127 000 000, -70 600 000 000(2)写出下列用科学计数法表示的原数中国森林面积有1.28×108公顷。
一天共有1.2863×104s 。
人教版七年级上册数学《有理数的乘方》说课教学复习课件(近似数)

课件 课件
课件
课件
现实生活中,我们会遇到上面这样比较大的数,
读、写这样的数有一定困难。
思考
10 102 103 104 105
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
运算结果
前言
学习目标
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
1.了解近似数与有效数字的概念。
2. 能按照精度的要求取近似数。
3.能根据近似数的不同形式确定其精确度和有效数字。
重点难点
重点:近似数的求法。
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
十分位
千分位
百万位
(4)3.06×105
千位
方法小结:
(一)求一个较大数的近似数可用科学记数法表示或者用带单位的数表示。
(二)带单位的数(如:万、亿)由单位前面的末位数字在哪一位来决定其精确度。
课件
课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如 果 只 取 2位 小 数 . f 应 为 3 1 就 是 精 确 到 百 分 位 ( 叫 精 确 到 刀5 么 .4, 或
0. ) 01 ;
如 果 只 取 3化 小 数 . 么 应 为 3 1 2. 是 精 确 到 下 分 化 ( 叫 精 确 那 .4 就 或
至l0.0I . J O )
幂 .
一
个 数 可 以 表 示 成 这 个 数 本 身 的 1次 方 , 如 , 例 5就 是 5, 指 数 1通 ,
常省略 不写. 2近 似 数 .
在 日常 生 活 和 生 产 实 际 巾 . 们 会 接 触 到 很 多 数 . 我
某 校 七 ( 班 喜 欢 看 篮 球 赛 的 学 生 人 数 是 3 则 3 这 个 数 是 与 实 2) 5。 5 际 完 全 符 合 的 准 确 数 , 个 也 不 多 , 个 也 不 少 . 如 , ( ) 有 5 名 一 一 又 七 1班 5
乘 积 . 这 样 , 几 个 相 同 因 数 的 积 的 运 算 叫 做 乘 方 . 方 的 结 果 日l 幂 . 像 求 乘 L 做
在 中 , n叫 做 底 数 , 叫 做 指 数 . 我 们 把 看 成 a的 n次 方 的 结 果 时 . n 当
也 可 渎 作 n的 n次 幂 . 例 如 , 9 在 中 , 数 是 9, 数 是 4, 作 9 的 4 次 方 或 9 的 4次 底 指 9 读
使 『近 似 数就有 一 个近 似程 度 的问题 . 就是 精确 度 的问题. { j 也 我 们 都 知 道 叮= .4似 数 . T 3 1 15 2 6 3 5 计 I 如 果 只 取 整 数 , 么 按 四 舍 耶 五人 法 则 , 为 3 就 是 精 确 到 个 位 ; 应 , 如 果 只 取 lf . , . 么 应 为 3 1 就 是 精 确 到 t 分 位 ( 叫 精 确 到 W l数 那 1 .. 或
口江
苏
吴
宁
翌
蝴’ _ _ j ||| | l l l曩. _
列 出 算 式 应 为 :l × _ _
×
×
×
.
列 {算式 分别 为 : { I
,
.
O
l
第 n次分 裂
国
列 出算式应 为 :
.
观 察 上 面 所 列 的 几 个 算 式 . 们 发 现 这 些 算 式 都 是 一 些 相 同 因 数 的 我
+
般 地 . 一 个 数 网 舍 入 到 某 一位 得 到 近 似 数 . 说 这 个 近 似 数 将 就
精 确 宝 刃5 一 . U【 位
对 于 … 个 近 似 数 , 左 边 第 一 不 是 0的 数 字 起 . 米 位 数 字 为 止 . 从 个 到 所 l 的 数 字 都 是 这 个 数 的有 效 数 字 . 仃 最 后 清 读 者 朋 友 冉 找 几 个 近 似 数 的 实 例 . 思 考 如 何 灵 活 运 用 叫 许 舍五 人法 、 尾法 、 去 进 一 这 个 求 近 似 数 的 方 法 . 法
学 , T 厂 有 l 6 台 机 床 . 有 8本 练 习 册 , 些 都 是 与 实 际 完 全 符 合 某 2 我 这 的 i 数 . 确 如 求 造 得 数 学 课 水 的 宽 为 l . c . 为 所 川 子 的 刻 度 有 精 确 度 的 85 m
I ; 艮制 . 且 Jj 观 察 Hi f 可能 非 常 准 确 . 以 测 餐 结 果 与 实 际 宽 度 会 有 一 而 }眼 , ̄ - <[ 所 偏差 . 的 1. 这 85只 是 近似数. ・ 与 实 际 宽 度 非 常 接 近 的 数 . 样 的 数 称 为 个 这
( 任编辑 : 心 红 ) 责 田