正方体与长方体的体积
长方体正方体表面积体积公式

长方体正方体表面积体积公式
长方体和正方体的表面积和体积公式是数学中常用的公式,可以用来计算立体图形的面积和体积。
下面是具体的公式:
长方体表面积公式:S(表面积) = 2(a1a2a3) (其中 a1、a2、a3 分别为长、宽、高)
长方体体积公式:V(体积) = a1a2a3 (其中 a1、a2、a3 分别为长、宽、高)
正方体表面积公式:S(表面积) = 6a2 (其中 a 为正方体的棱长) 正方体体积公式:V(体积) = a3 (其中 a 为正方体的棱长)
其中,a1、a2、a3 分别表示长方体或正方体的一个面的面积,V 表示体积,S 表示表面积,正方体有 6 个面,每个面都是相同的正方形,所以正方体的表面积为 6a2。
长方体和正方体的体积和表面积公式都是用来描述立体图形大
小和形状的公式,可以用来计算立体图形的面积和体积,帮助人们更好地理解和探究数学问题。
长方体和正方体的表面积和体积公式的推导过程

长方体和正方体的表面积和体积公式的推导
过程
长方体的体积公式是:V = l * w * h,其中l、w、h分别代表长方体的长度、宽度和高度。
长方体的表面积公式是:A = 2lw + 2lh + 2wh,其中lw、lh、wh 分别代表长方体的长宽面、长高面和宽高面。
推导过程:
假设长方体的长为l,宽为w,高为h,体积V表示长方体内部的三维空间大小。
我们可以想象将长方体沿着长度l的方向分成许多小立方体,然
后再将每个小立方体里的的长短和高加起来,就得到了体积的公式V = l * w * h。
长方体的表面积A表示长方体外部所包围的表面大小。
我们可以将长方体展开,得到一个长方形,其中有两个长宽面和
两个长高面以及两个宽高面。
所以表面积的公式为A = 2lw + 2lh +
2wh。
正方体的体积公式是V = a^3,其中a代表正方体的边长。
正方体的表面积公式是A = 6a^2,是指正方体的表面总和。
通过这些公式,我们可以计算出长方体和正方体的体积和表面积,用来解决实际问题和进行建筑设计等工作。
同时,这些概念也可以拓
展到立方体和其他的多面体,通过对公式的推导和理解,可以更深入
地认识空间几何学,对科学技术的工作也有帮助。
长方体正方体的体积计算公式

长方体正方体的体积计算公式咱们在数学的世界里啊,经常会碰到各种各样的图形,其中长方体和正方体那可是相当重要的角色。
先来说说长方体,这玩意儿就像是一个长长的盒子。
那怎么算出它的体积呢?其实很简单,就是用长乘以宽再乘以高。
比如说,有一个长方体的盒子,长是 5 厘米,宽是 3 厘米,高是 2 厘米,那它的体积就是 5×3×2 = 30 立方厘米。
我记得有一次,我在课堂上讲这个知识点的时候,有个小家伙瞪着大眼睛,一脸迷茫地问我:“老师,为啥要这么算啊?”我当时就笑了,然后从讲台上拿起一个长方体的粉笔盒,问大家:“你们看,这个粉笔盒就像一个长方体,如果我们把它一层一层地摆小方块,长的方向能摆 5 个,宽的方向能摆 3 个,高的方向能摆 2 层,那一共不就是 30 个小方块嘛,这 30 个小方块组成的空间大小,不就是这个长方体的体积嘛!”听我这么一说,小家伙们恍然大悟,脸上露出了开心的笑容。
再说说正方体,正方体其实就是一种特殊的长方体,它的长、宽、高都相等。
所以计算它的体积就更简单啦,直接边长乘边长再乘边长。
比如一个正方体的棱长是 4 厘米,那它的体积就是 4×4×4 = 64 立方厘米。
咱们在生活中也经常能看到长方体和正方体的身影。
像家里的冰箱,基本上就是一个长方体,咱们买冰箱的时候,不就得考虑它的体积大小,看看能不能放得下咱们想要放的东西嘛。
还有小朋友玩的魔方,那就是一个正方体,通过计算它的体积,咱们能大概知道它用了多少材料做成的。
总之,长方体和正方体的体积计算公式虽然简单,但用处可大着呢!大家可得好好掌握,以后在解决实际问题的时候就能派上大用场啦!。
长方体和正方体的体积复习

【知识点3】 体积单位及体积单位的互化 体积单位:立方厘米、立方分米和立米 1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3 体积单位的互化: 把高级单位化成低级单位,用高级单位数乘 以进率;------大化小,乘了好
把低级单位聚成高级单位,用低级单位数 除以进率。-----------小化大,除了吧
五年级(下册)
【知识点1】 体积的概念和计算公式
体积:物体所占空间的大小叫做物体的体积。 长方体的体积= 长×宽×高 用字母表示:V=abh 正方体的体积= 棱长×棱长×棱长 用字母表示:V=a3
【知识点2】长方体和正方体的体积统一公式:
长方体或正方体的体积=底面积×高 用字母表示:V=Sh
长方体体积公式的推导过程: 你是如何推导出长方体的体积公式的?再说说你 在推导时用了什么数学方法? 答:我是用体积1立方厘米的小正方体摆不同的长 方体,并把摆成的不同形状的长方体的长、宽、 高的数据与各个长方体所含小正方体的个数作比 较,通过比较,观察发现长方体所含小正方体的 个数就是长方体的体积,它与它的长×宽×高的 积正好相等,从而推导出长方体的体积=长×宽× 高如果用V表示长方体的体积,用a、b、h分别表 示长方体的长、宽、高,那么长方体的体积公式 可以写成V=abh,我在推导时采用了实验、观察、 比较、归纳、推理等方法。
4.有一个底面积是正方形的长方体,高是20厘 米,侧面展开正好是一个正方形。求这个长方 体的体积。
5.家具厂订购500根方木,每根方木横截 面的面积是24平方分米,长是3米,这些 木料一共是多少方?
同学们,通过这节课的学 习你有怎样的收获呢?
1.正方体的棱长扩大到原来的6倍,体积也扩大到原 来的6倍。( ) 2.如果将一块长方体的橡皮泥捏成一个正方体,我 们看到它的形状变发,但是它所占的空间的大小没变。 ( ) 3.一个物体的体积是1立方分米,这个物体的形状 一定是正方体。( ) 4.1立方米比1平方米大。( ) 5.长方体和正方体的体积都等于底面积乘以高。 ( ) 6.一个长方体的体积扩大2倍,它的长、宽、高都 扩大2倍。( )
长方体正方体表面积和体积公式

长方体正方体表面积和体积公式
长方体和正方体是几何学中常见的几何体,它们的表面积和体积是通过一些简单的公式来计算的。
首先来看长方体。
长方体是一种有六个矩形面的立体图形,其中每个面都是相对的两个相等的矩形。
我们可以使用以下公式来计算长方体的表面积和体积。
长方体的表面积等于所有面的面积之和。
假设长方体的长、宽、高分别为L、W、H,则长方体的表面积S可以用下面的公式表示:
S = 2LW + 2LH + 2WH
长方体的体积等于底面积乘以高。
长方体的体积V可以用下面的公式表示:
V = LWH
接下来我们来看正方体。
正方体是一种特殊的长方体,它的六个面都是正方形。
正方体的边长为a。
正方体的表面积和体积公式与长方体类似。
正方体的表面积等于所有面的面积之和。
正方体的表面积S可以用下面的公式表示:
S = 6a^2
正方体的体积等于边长的立方。
正方体的体积V可以用下面的公式表示:
V = a^3
长方体和正方体的表面积和体积公式是非常有用的,它们可以帮助我们计算这些几何体的重要属性。
无论是在日常生活中还是在工程领域,我们都经常需要使用这些公式来解决问题。
希望通过这篇文章的介绍,读者能更好地理解长方体和正方体的表面积和体积公式,并能灵活应用它们解决实际问题。
完整版长方体正方体体积

V物体=S X h 升高长方体与正方体体积知识点:1、物体所占空间的大小叫做物体的 体积。
f 长方体的体积 宽X 高 V=abh(横截面积相当于底面积,长相当于高)。
常用的容积单位有升和毫升也可以写成 L 和ml 。
1升=1立方分米 1毫升=1立方厘米1 升=1000毫升(1 L = 1 dm 31 ml = 1 cm注意: 1、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
2、*形状不规则的物体可以用排水法求体积 ,形状规则的物体可以用公式直接求体积。
长=体积*宽*咼 '宽=体积*长*高a=V * b * h b=V*a * h 高=体积*长*宽h= V * a * b2. 正方体的体积二棱长X 棱长X 棱长V=a X a X a = a 3读作“ a 的立方”表示 3个a 相乘,(即a • a • a ) 长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积X 高用字母表示:V=S h3、箱子、油桶、仓库等所能容纳物体的体积, 通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积, 如水、油等。
排水法的公式: V 物体=V 现在—V 原来 也可以 V物体=S X (h 现在-h 原来)2、 3、 数学书的封面的面积大约是300);一个热水瓶的容积约是2 (4、 体积单位比面积单位大,面积单位比长度单位大。
( )。
(判断)5、 在括号里填上合适的数。
十进率. 大单位进率: 1立方米=1000立方分米=1000000立方厘米 单位进率1000)立方分米=1000立方厘米=1升=1000毫升 立方厘米=1毫升 平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米注意:长方体与正方体关系 把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不 变。
长方体正方体体积计算

长方体正方体体积计算在我们的日常生活和学习中,经常会遇到与长方体和正方体体积计算相关的问题。
无论是在建筑设计、包装物品,还是在数学学习中,理解和掌握它们的体积计算方法都非常重要。
首先,让我们来认识一下长方体和正方体。
长方体是一种有六个面的立体图形,每个面都是长方形(有可能有两个相对的面是正方形),相对的面面积相等。
而正方体则是一种特殊的长方体,它的六个面都是完全相同的正方形。
那么,如何计算长方体的体积呢?我们知道,长方体的体积等于长乘以宽乘以高。
假设一个长方体的长为 5 厘米,宽为 3 厘米,高为 2厘米,那么它的体积就是 5×3×2 = 30 立方厘米。
这就好比是用一个个1 立方厘米的小正方体去填充这个长方体,长的方向能放 5 个,宽的方向能放 3 个,高的方向能放2 层,所以总的小正方体个数就是 30 个,也就是长方体的体积是 30 立方厘米。
再来看正方体,由于正方体的六个面都相等,所以它的体积计算就相对简单一些,正方体的体积等于棱长的立方。
比如说,一个正方体的棱长是 4 厘米,那么它的体积就是 4×4×4 = 64 立方厘米。
理解了体积的计算方法,我们来看看它们在实际生活中的应用。
比如,要建造一个长方体形状的水池,我们需要知道它的体积来确定能容纳多少水。
如果水池的长是 10 米,宽是 5 米,深是 2 米,那么水池的体积就是 10×5×2 = 100 立方米,也就是说这个水池能容纳 100 立方米的水。
在包装物品时,也经常会用到体积的计算。
假设要包装一个长方体形状的礼物,礼物盒的长、宽、高分别是30 厘米、20 厘米、10 厘米,那么我们就可以通过计算体积来选择合适大小的包装纸。
这个礼物盒的体积就是 30×20×10 = 6000 立方厘米。
除了实际应用,在数学学习中,长方体和正方体体积的计算也是很多问题的基础。
正方体,长方体,圆柱体,圆锥体的表面积,体积,容积公式

正方体,长方体,圆柱体,圆锥体的表面积,体积,容积公式
1.正方体的表面积公式是S=6a²
2.正方体的体积公式是V=a³或V=Sh
3.正方体的容积公式是V=a³或V=Sh
4.长方体的表面积公式是S=2ab+2ah+2bh
5.长方体的体积公式是V=abh或V=Sh
6.长方体的容积公式是V=abh或V=Sh
7.圆柱体的表面积公式是S=πdh+2πr²或S=2πrh+2πr²
8.圆柱体的体积公式是V=πr²h或V=Sh
9.圆柱体的容积公式是V=πr²h或V=Sh
10.圆锥体的表面积=圆锥的表面积=圆锥的侧面积+圆锥的底面积
S=πr²+πrl r——圆锥底面半径;l--圆锥底面周长
11.圆锥体的体积V=1/3×S×H(就是同底同高的圆柱体体积的1/3)
12.圆锥体的容积V=1/3×S×H(就是同底同高的圆柱体体积的1/3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方体与长方体的体积
一、一个长方体长8分米,宽4分米,高2分米,把它锯成若干个小正方体然后再拼成一个大正方体,求这个大正方体的体积?
二、有一个长方体底面是正方形,侧面展开是一个边长为20厘米的正方形,求这个长方体的体积是多少立方厘米?
1、把一根2米的长方体锯成1米长的两段,表面积增加了2平方厘米,求这个木块原来的体积?
三、一个长宽高分别为19厘米、14厘米和10厘米的长方体,现从它上面尽可能大地切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再以第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?
1、一个长宽高分别是21、15、12的长方体,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能的切下一个正方体,剩下的体积是多少?
四、一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米。
原长方体的体积是多少立方厘米?
1、一个长方体高缩短4厘米正好成为正方体,表面积减少1.6平方分米,求原来长方体的体积。
五、一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是多少立方厘米?
1、一个长方体和一个正方体的棱长之和相等,民知长方体长宽高分别是6分米、4分米和2分米,求正方体体积。
六、一个长方体,前面和上面的面积之和是272平方厘米,这个长方体的长、宽、高以厘米为单位且都是质数,这个长方体的体积是多少?
1、用四块同样的长方形和两块同样的正方形纸板做成一个长方体形状的纸箱,它的表面积是266平方分米。
长方体的长、宽、高的长度都是整分米数,并且使纸箱的容积尽可能大,这个纸箱的容积是多少?
七、一个长方体的三个侧面的面积分别是2、3、6平方厘米,这个长方体的体积是多少?
1、一个长方体相传邻三个面的面积为10平方分米,15平方分米和6平方分米,求这个长方体的体积。
八、一个长50厘米、宽40厘米、深30厘米的长方体水盆里,水深20厘米,如果在盆内放入一块棱长为10厘米的正方体石块,那么盆内水将上升多少厘米?
1.一个长方体水箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高出水面,这时水面高多少厘米?
2.有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?
3.一个长方体底面积是正方形,高12厘米,侧面展开正好是正方形,求这个长方体的体积。
4.一个长方体不同的三个面的面积分别是96平方厘米、40平方厘米、60平方厘米。
求这个长方体的体积
5.一个长方体,它的正面和上面的面积之和是90,如果已知它的长宽高是三个连续的自然数,那么这个长方体的体积是多少?
6.2、一个长方体木块,将长锯掉3厘米后,就成了一个正方体,已知锯掉后得到的正方体比原来长方体表面积减少了60平方厘米,求新正方体的体积。
7.一个边长为6厘米的正方体铁盒装满了水,将水倒入一个长9厘米,宽8厘米的长方形水槽内,若铁皮厚度不计,求水深.
1.有一个长方体,它的前面和上面的面积和是209平方厘米,且长宽高都是质数,那么这个长方体的体积是多少?
2.把一个长方体截去一个高为5厘米的小长方体,剩余部分刚好是一个正方体,正方体的表面积比原来长方体的表面积减少了120平方厘米,求原长方体的体积。
3.一个长方体水箱,长30厘米,宽42厘米,水箱里装着水,并有一个长21厘米,宽15厘米的小长方体铁块完全浸没在水中,当把水中的铁块取出后,水面下降了1厘米,铁块的高是多少厘米?
4.有大、中、小3个正方形水池,它们的内边长分别是6厘米、3厘米、2厘米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6米和4米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?
5.一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是多少立方厘米?
6.把一个长方体分割成一个表面积是150平方厘米的正方体和1个表面积是110平方厘米的长方体。
原来长方体的体积是多少立方厘米?
7.已知一个长方体前面和上面的面积和是209平方厘米,且这个长方体的长、宽、高都是以厘米为单位的素数,问这个长方体的体积是多少立方厘米?
8.一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,新长方体的表面积比原来大长方体的表面积减少了120平方厘米。
原来长方体的体积是多少立方厘米?
9.一个长方体,它的前面和上面的面积和为91平方米,如果它的长、宽、高的厘米数都是素数,那么这个长方体的体积是多少立方米?
10.一个长方体它的前面和上面的面积之和是108平方厘米,且长宽高是连续奇数,这个长方体的体积是多少?
11.一个长方体棱长总和是80厘米,已知长是高的2.5倍,宽比高多2厘米,求这个长方体的表面积和体积。
12.一个长方体的表面积是260平方厘米,它恰好可以切成两个相同的正方体,求每个小正方体的体积是多少?
13.用一根长88厘米的铁丝围成一个长方体,已知长是高的4倍,而且比宽多5厘米。
求这个长方体的长宽高各是多少?
14.有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积增加的和为240平方厘米,求原来长方体的体积。
15.如果一个边长为2厘米的正方体的体积增加208立方厘米后仍是正方体,则边长增加了多少厘米?
16.如图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条再锯成4小块,共得到大大小小的长方体48块。
那么,这48块长方体表面积的和是多少平方米?
17.一个长方体,如果长减小2cm,宽和高不变,则体积减小48cm3;如果宽增加3cm,长和高不变,则体积增加99cm3;如果高增加4cm,长和宽不变,则体积增加352 cm3。
那么,原长方体的表面积是多少?
18.有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面。
如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?
19.将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?
20.将一个棱长为整数分米的长方体6个面都涂上红色,然后把它全部切成棱长为1分米的小正方体。
在这些小正方体中,6个面都没有涂红色的有12块,仅有两个面涂红色的有28块,仅有一个面涂红色的有几块?原来长方体的体积是多少?
21.如图,有一个棱长为10厘米的正方体铁块,现已在每两个对面的中央钻一个边长为4厘米的正方形孔(边平行于正方体的棱),且穿透。
另有一长方体容器,从内部量,长、宽、高分别为15厘米、12厘米、9厘米,内部有水,水深3厘米。
若将正方体铁块平放入长方体容器中,则铁块在水
下部分的体积为________立方厘米。
22.一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?
23.一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?。