含参不等式
第2章含参不等式(教案)

(1)含参不等式的图像法:对于一元二次含参不等式,学生需通过图像来理解不等式的解集,这对学生的直观想象能力要求较高。
举例:x^2 - 2ax + a^2 > 0,通过图像分析解集。
(2)含参不等式的证明:学生需要掌握不等式的证明方法,如比较法、综合法、分析法等,这要求学生具备较强的逻辑推理能力。
我反思自己在教学难点和重点的讲解上,可能需要更多的例子和练习来帮助学生巩固。特别是在含参不等式的证明部分,学生们似乎对逻辑推理的要求感到有些困惑。我考虑在下一节课中,引入更多的直观图形和实际情境,以帮助学生们更好地理解证明的步骤和逻辑。
此外,我也认识到在总结回顾环节,我需要更加强调对知识点的整合和应用。学生们需要明白,含参不等式的学习不仅仅是为了解决数学题目,更是为了培养解决实际问题的能力。
3.重点难点解析:在讲授过程中,我会特别强调一元一次含参不等式和一元二次含参不等式的解法这两个重点。对于难点部分,如图像法和判别式法,我会通过具体的例子和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与含参不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制一元二次不等式的图像,以演示其基本原理。
二、核心素养目标
1.理解含参不等式的概念,掌握其基本性质,培养数学抽象和逻辑推理能力;
2.学会一元一次和一元二次含参不等式的解法,提高问题解决能力和数学运算能力;
3.能够运用图像法、判ห้องสมุดไป่ตู้式法等方法解决含参不等式问题,增强直观想象和数学建模能力;
4.通过含参不等式的实际应用,提升数学在实际生活中的应用意识,培养数学素养;
在实践活动中,学生们分组讨论并展示了他们的成果,这部分的互动让我看到了他们的合作精神和解决问题的能力。不过,我也观察到,在讨论含参不等式在实际生活中的应用时,有些学生还是比较拘谨,可能是因为他们对这些概念还不够熟悉,或者是不太敢将自己的想法表达出来。
含参不等式恒成立问题例题

含参不等式恒成立问题例题在数学的世界里,有一种“含参不等式恒成立”的问题,听起来有点复杂,但实际上就像生活中的一些小窍门,掌握了就能轻松应对。
想象一下,数学就像一场舞会,里面有各种各样的舞步,有的简单易学,有的则需要你慢慢去摸索。
这些含参不等式就像那些你在舞会里需要学的舞步,只要掌握了,你就能在任何场合中游刃有余。
先说说什么是“含参不等式”。
简单来说,就是不等式中有参数,这些参数就像是调味料,放多少,怎么放,都会影响最终的结果。
参数就像是调皮的小孩子,让不等式变得难以捉摸。
可是,只要你找到合适的调味方式,不论参数怎么变化,不等式都能保持“和谐”的状态,听起来是不是很神奇?拿一个简单的例子来说吧,想象一下你在做饭,盐、糖、醋,每一样都要掌握好分量,才能做出美味的菜肴。
如果你在一道菜里放了太多盐,那就惨了,味道会让人皱眉;可是如果放得刚刚好,哇,绝对让人回味无穷。
这就是不等式的精髓,参数调得好,一切都能顺理成章。
在这道问题中,我们会遇到一些技巧,比如要学会“化简”。
有些东西,表面上看起来复杂,实际上只要你用对了方法,往往就能简单明了。
就像你在穿衣服的时候,挑选一件合适的外套,有时候那件看似简单的衣服,搭配得当,反而能让你瞬间提升气场。
其实数学也有同样的道理,化繁为简,才能找到最优解。
还有一些不等式的常用形式,比如“阿莫尔不等式”,听起来很高大上,其实就像在说:“伙计,学会了这招,你就能在不等式的海洋中畅游无阻。
”它帮助我们理解不同参数之间的关系,打下坚实的基础。
就好比你在乐队里,如果每个人都能把自己的乐器演奏得当,那整个乐队就会和谐得像一首动人的交响曲。
哦,咱们得聊聊例子了。
举个例子吧,假如有一个不等式 (a + b geq 2sqrt{ab),听上去像是个难题,但实际上它是在说:只要你把 (a) 和 (b) 搞得好,它们的和总是大于等于它们的几何平均。
这就像你和朋友一起出去玩,不论你们买了多少东西,只要快乐是最重要的。
第4讲 含参不等式--尖子班

第4讲 含参的不等式知识点1 含参的一元一次不等式含参的一元一次不等式(1)含未知数项的系数不含参数,如x >a ,(其中a 为常数);(2)含未知数项的系数含参数,如mx >n ,(其中m 为参数、n 为常数).【典例】1.已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,则m 的值为 . 【答案】94.【解析】解:去括号,得2m ﹣2x+1>3x ﹣2, 移项,得3x+2x <2m+1+2, 合并同类项,得,5x <2m+3, 系数化为1,得,x <2m+35,∵不等式2(m ﹣x )+1>3x ﹣2的解集是x <32, ∴2m+35=32,解得m=94.2.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是____________.【答案】a<﹣1.【解析】解:∵当a+1=0,即a=-1时,0>0不成立,∴当a+1=0时,不等式(a+1)x>a+1无解集,∴a+1≠0,∵不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴未知数x的系数(a+1)为负,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.3.关于x的两个不等式①3x+a2<1与②1﹣3x>0.(1)若两个不等式的解集相同,求a的值.(2)若不等式①的解都是②的解,求a的取值范围.【答案】略.【解析】解:(1)由①得:x<2−a3,由②得:x<13,由两个不等式的解集相同,得到2−a3=13,解得:a=1;(2)由不等式①的解都是②的解,得到2−a3≤13,解得:a≥1.4.若关于x,y的方程组{3x+y=1−ax+3y=3的解满足x+y<2,则a的取值范围为.【答案】a>﹣4.【解析】解:{3x+y=1−a ①x+3y=3 ②,①+②得:4(x+y)=4﹣a,则x+y=14(4﹣a ), 则14(4﹣a )<2,解得:a >﹣4. 故答案是:a >﹣4.【方法总结】1. 已知一元一次不等式(系数不含参)及其解集,求参数的值的思路. 如已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,求m 的值,①求不等式2(m ﹣x )+1>3x ﹣2的解集为x <2m+35,②令2m+35=32,从而不难求出m 的值,2. 求一元一次不等式ax >b(a ,b 是常数)解集的思路.需要借助分类讨论思想,①若a >0,则不等式ax >b 的解集为x >ba ;②若a <0,则不等式ax >b 的解集为x <ba ;③若a=0,b <0,则不等式ax >b 的解集为任意实数;若a=0,b ≥0,则不等式ax >b 无解集.3. 已知一元一次不等式①和②的解集相同,求参数的值的思路.如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若两个不等式的解集相同,求a 的值.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3=13,从而不难求出a 的值.4. 已知一元一次不等式①的解都是②的解,求参数的取值范围的思路. 如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若不等式①的解都是②的解,求a 的取值范围的思路.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3≤13,从而不难求出a 的取值范围.【随堂练习】1.如果关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,试求关于x的不等式mx>n的解集.【解答】解:移项得(2m﹣n)x>5n﹣m,∵关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,∴2m﹣n<0,且x<,∴=,整理得n=m,把n=m代入2m﹣n<0得,2m﹣m<0,解得m<0,∵mx>n,∴mx>m,∴x<.∴关于x的不等式mx>n的解集是x<.知识点2 含参的一元一次不等式组含参的一元一次不等式组常考题型1.给出不等式组解集的情况,求参数取值范围2.给出不等式组的解集,求参数的值3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围4.给出不等式组整数解的个数,确定参数的取值范围【典例】1. 若关于x 的一元一次不等式组{x −2m <0x +m >2有解,则m 的取值范围为 .【答案】m >23.【解析】解:{x −2m <0⋯①x +m >2⋯ ②,解①得:x <2m , 解②得:x >2﹣m ,∵关于x 的一元一次不等式组{x −2m <0x +m >2有解,∴2m >2﹣m ,解得:m >23. 故答案是:m >23.2.已知不等式{2x −a <1x −2b >3的解集为﹣1<x <1,求(a+1)(b ﹣1)的值为 .【答案】﹣6.【解析】解:由2x −a <1,解得x <a+12.由x −2b >3,解得x >3+2b .∵不等式{2x −a <1x −2b >3的解集为﹣1<x <1,∴a+12=1,3+2b=﹣1,解得a=1,b=﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6, ∴(a+1)(b ﹣1)的值为﹣6. 故答案为﹣6.3.如果关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,则a 的取值范围是 .【答案】﹣4<a <5. 【解析】解:{x +y =3 ①x −2y =a −2②,①﹣②得3y=5﹣a ,则y=5−a 3, 把y=5−a 3代入①得x=3﹣5−a 3=4+a 3.则方程组的解是{x =4+a3y =5−a 3,∵关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,∴{4+a3>05−a 3>0, 解得﹣4<a <5. 故答案是:﹣4<a <5.4.不等式组{3x −5>15x −a ≤12有2个整数解,则实数a 的取值范围是 .【答案】8≤a <13.【解析】解:解不等式3x ﹣5>1,得:x >2, 解不等式5x ﹣a ≤12,得:x ≤a+125,∵不等式组有2个整数解,∴不等式组{3x −5>15x −a ≤12整数解为3和4,则4≤a+125<5,解得:8≤a <13, 故答案为:8≤a <13.【方法总结】1.给出不等式组解的情况,求参数取值范围,解题思路如下:①分别求出不等式组中每个不等式的解集,②确定参数的取值范围,记住:“大小小大有解;大大小小无解.”注意:端点值另外考虑.2.给出不等式组的解集,求参数的值,解题思路如下:①先求出含参不等式组中每个不等式的解集;②再利用已知解集和所求解集之间的对应关系,建立方程(组);③解方程(组),从而求出参数的值.3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围,解题思路如下:①先求含参数的方程组的解,方程组的解用含参的式子表示出来;②列出题目中解满足的不等关系,将含参数的式子代入,转化为关于参数的不等式(组),③解不等式(组),从而求出参数的取值范围.4.给出不等式组整数解的个数,确定参数的取值范围,解题思路如下:①先求出不含参数的不等式的解集;②再结合题意,在不含参数的不等式解集范围内找出连续的几个整数解;③参数的范围就在最后一个整数解差一个单位长度的范围内(借助数轴解决问题),注意:端点值特殊考虑.【随堂练习】1.已知关于x,y的方程组,其中﹣3≤a≤1.(1)当a=﹣2时,求x,y的值;(2)若x≤1,求y的取值范围.【解答】解:(1),①﹣②,得:4y=4﹣4a,解得:y=1﹣a,将y=1﹣a代入②,得:x﹣1+a=3a,解得:x=2a+1,则,∵a=﹣2,∴x=﹣4+1=﹣3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴﹣3≤a≤0,即1≤1﹣a≤4,则1≤y≤4.2.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)在(2)的条件下,化简:|m+2|﹣|2m﹣6|.【解答】解:(1)将方程组中的两个方程相加,得3(x+y)=6m+1,将x+y=1代入,得6m+1=3,解得m=;(2)将方程组中的两个方程相减,得x﹣y=2m﹣1,解不等式组﹣1<2m﹣1<5,得0<m<3;(3)当0≤m≤3时,|m+2|-|2m﹣6|=(m+2)+(2m﹣6)=3m-4.知识点3 一元一次不等式的应用一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【典例】1.某中学计划用2500元购买一批名著和辞典作为奖品,其中名著每套60元,辞典每本40元,现已购买名著24套,学校最多还能买多少本辞典?【答案】略.【解析】解:设学校能买x本辞典,∵名著每套60元,现已购买名著24套,辞典每本40元,学校能买x本辞典,∴购买24套名著费用=24×60(元),购买x本辞典费用=40x(元),∵购买24套名著费用与购买x本辞典费用和不超过2500元,,∴可列出关于x的一元一次不等式:40x+24×60≤2500,解得:x≤2612∵x为整数,∴x=26.答:学校最多能买26本辞典.【方法总结】一元一次不等式的应用解决此类问题关键在于掌握解列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【随堂练习】1.为了开展全校学生阳光体育运动活动,增强学生身体素质,张老师所在的学校需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65750第二次37780第三次78742(1)张老师是第三次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,张老师决定从该商场一次性购买足球和篮球50个,且总费用不能超过2200元,那么最多可以购买多少个篮球.【解答】解:(1)张老师是第三次购买足球和篮球时,遇到商场打折销售.理由:∵张老师在某商场购买足球和篮球共三次,只有一次购买时,足球和篮球同时打折,其余两次均按标价购买,且只有第三次购买数量明显增多,但是总的费用不高,∴按打折价购买足球和篮球是第三次购买;故答案为:三;(2)设足球的标价为x元,篮球的标价为y元.根据题意,得,解得:.答:足球的标价为50元,篮球的标价为90元;(3)设购买a个篮球,依题意有0.6×50(50﹣a)+0.6×90a≤2200,解得a≤29.故最多可以买29个篮球.2.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?【解答】解:(1)当x≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样;(2)当50<x≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;(3)当累计购物超过100元时,即x>100元,甲商场消费为:100+(x﹣100)×0.9元,在乙商场消费为:50+(x﹣50)×0.95元.当100+(x﹣100)×0.9>50+(x﹣50)×0.95,解得:x<150,当100+(x﹣100)×0.9<50+(x﹣50)×0.95,解得:x>150,当100+(x﹣100)×0.9=50+(x﹣50)×0.95,解得:x=150.综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.知识点4 一元一次不等式组的应用一元一次不等式组的应用对具有多种不等关系的实际应用问题,通常列一元一次不等式组,并求解.一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【典例】1.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【答案】略.【解析】解:设有x个学生,那么共有(3x+8)本书,∵如果前面的每个学生分5本,那么最后一人就分不到3本,∴可知最后一人分到书的数的数量大于等于0且小于3,即0≤书的总数-(x-1)×5<3,∴可列不等式组为{3x+8−5(x−1)≥03x+8−5(x−1)<3,解得5<x≤6.5,∵x为整数,∴x=6,∴共有6×3+8=26本,答:有26本书,6个学生.【方法总结】一元一次不等式组的应用解题思路①将题目中所给信息与数学思想联系起来,读懂题,列出不等式关系;②根据不等关系,列一元一次不等式组;③解一元一次不等式组;④从不等式组解集中找出符合题意的答案,并作答.【随堂练习】1.青县祥通汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3,∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;2.义安中学工会“三八妇女节”共筹集会费1800元,工会决定拿出不少于270元,但不超过300元的资金为“优秀女职工”购买纪念品,其余的钱用于给50位女职工每人买一瓶洗发液或护发素,已知每瓶洗发液比每瓶护发素贵9元,用200元恰好可以买到2瓶洗发液和5瓶护发素.(1)求每瓶洗发液和每瓶护发素价格各是多少元?(2)有几种购买洗发液和护发素的方案?哪种方案用于为“优秀女职工”购买纪念品的资金更充足?【解答】解:(1)设每瓶洗发液和每瓶护发素价格分别为x元和y元,则,解得.答:每瓶洗发液和每瓶护发素的价格分别为35元和26元.(2)设购买洗发液t瓶,购买护发素(50﹣t)瓶,则1800﹣300≤35t+26(50﹣t)≤1800﹣270解得22≤t≤25,因为t为正整数,所以t=23,24,25,即有三种方案:第一种方案:购买洗发液23瓶,护发素27瓶,余下资金293元.第二种方案:购买洗发液24瓶,护发素26瓶,余下资金284元.第三种方案:购洗发液25瓶,护发素25瓶,余下资金275元.综合运用1.若不等式(k﹣4)x>﹣1的解集为x<−1k−4,则k的取值范围是.【答案】k<4.【解析】解:∵不等式(k﹣4)x>﹣1的解集为x<−1k−4,∴k﹣4<0,解得:k<4.故答案为k<4.2.关于x的两个不等式3x+a2<1与3﹣3x>0的解集相同,则a= .【答案】-1.【解析】解:由3x+a2<1得:x<2−a3,由3﹣3x >0得:x <1, 由两个不等式的解集相同,得到2−a 3=1,解得:a=-1. 故答案为:-1.3.已知关于x ,y 的方程组{3x +y =1+3a ①x +3y =1−a ②(1)由方程①﹣②,可方便地求得x ﹣y= ;(2)若方程组的解满足x+y >0,则a 的取值范围是 . 【答案】2a ; a >﹣1.【解析】解:(1){3x +y =1+3a ①x +3y =1−a ②,①﹣②得,2x ﹣2y=1+3a ﹣1+a , 即x ﹣y=2a ;(2)①+②得,4x+4y=1+3a+1﹣a , 即x+y=12a+12; ∵x+y >0,∴12a+12>0,解得a >﹣1; 故答案为2a ;a >﹣1.4.已知不等式组 {x +1<a3x +5>x −7无解,则a 的取值范围是 .【答案】a ≤﹣5【解析】解:解不等式x+1<a ,可得:x <a ﹣1;解不等式3x+5>x ﹣7,可得:x >﹣6, 因为不等式组 {x +1<a3x +5>x −7无解,所以a ﹣1≤﹣6, 解得:a ≤﹣5, 故答案为:a ≤﹣55.关于x 的不等式组{x −a >01−x >0的整数解共有3个,则a 的取值范围是 .【答案】﹣3≤a <﹣2.【解析】解:由不等式①得x >a , 由不等式②得x <1,所以不等式组的解集是a <x <1,∵关于x 的不等式组{x −a >01−x >0的整数解共有3个,∴3个整数解为0,﹣1,﹣2, ∴a 的取值范围是﹣3≤a <﹣2.6.已知不等式组{x +2>m +nx −1<m −1的解集为﹣1<x <2,则(m+n )2018=_________.【答案】1.【解析】解:解不等式x+2>m+n ,得:x >m+n ﹣2, 解不等式x ﹣1<m ﹣1,得:x <m ,∴不等式组{x +2>m +nx −1<m −1的解集为m+n ﹣2<x <m ,∵不等式组的解集为:﹣1<x <2, ∴m+n ﹣2=﹣1,m=2, 解得:m=2,n=﹣1,则(m+n )2018=(2﹣1)2018=1, 故答案为:1.7.已知关于x ,y 的二元一次方程组{4x +y =k +2x +4y =3的解满足0<x+y <1,则k 的取值范围是 . 【答案】﹣5<k <0.【解析】解:将两方程相加可得5x+5y=k+5, ∴x+y=k+55,∵0<x+y <1,∴{k+55>0k+55<1,解得﹣5<k <0,∴k 的取值范围是﹣5<k <0, 故答案为:﹣5<k <0.8.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_________元出售该商品. 【答案】6.【解析】解:设降价x 元出售该商品,,则降价出售获得的利润是(22.5﹣x ﹣15)元,根据利润率不低于10%,列出不等式得,22.5﹣x﹣15≥15×10%,解得x≤6,故该店最多降价6元出售该商品.故答案为:6.9.某种毛巾的原零售价为每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠方案:(1)两条按原价,其余按七折优惠;(2)全部按八折优惠.若在购买相同数量的毛巾的情况下,要使方案(1)比方案(2)合算,则最少要购买毛巾___________条.【答案】7.【解析】解:设购买毛巾x条,∵根据题意可得不等关系:2条毛巾的价格+(x﹣2)条毛巾的价格×0.7<x条毛巾打8折的价格,∴可列出不等式为:6×2+6×0.7(x﹣2)<6×0.8x,解得x>6,∵x为最小整数,∴x=7,故答案为:7.<1与②2(x﹣2)>3x﹣6.10.关于x的两个不等式:①a+2x3(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解与不等式②的正整数解之和小于4,求a的取值范围.【答案】略.,【解析】解:(1)由①得:x<3−a2由②得:x<2,由两个不等式的解集相同,得到3−a=2,2解得:a=﹣1.故a的值为﹣1;(2)由不等式①的解与不等式②的正整数解之和小于4,得到3−a+1<4,2解得a>﹣3.故a的取值范围是a>﹣3.11.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.【答案】略.【解析】解:设用A型货厢x节,则用B型货厢(50﹣x)节,∵甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,∴x节A型货厢可装甲种货物35x吨,乙种货物15x吨;(50-x)节B型货厢可装甲种货物25(50-x)吨,乙种货物35(50-x)吨;∴x节A型货厢和(50﹣x)节B型货厢共装甲种货物为[35x+25(50-x)]吨,x节A型货厢和(50﹣x)节B型货厢共装乙种货物为[15x+35(50-x)]吨,∴{35x+25(50−x)≥153015x+35(50−x)≥1150解得28≤x≤30,∵x为整数,∴x只能取28,29,30,∴当x=28时,则50-x=22,当x=29时,则50-x=21,当x=30时,则50-x=20,共有三种调运方案:第一种调运方案:用A型货厢28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,B型货厢20节.12.某工厂生产A、B两种产品共50件,其生产成本与利润如下表:若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?【答案】略.【解析】解:设生产A产品x件,则生产B产品(50﹣x)件,∴该工厂生产A种产品和B种产品一共投入资金为[0.6x+0.9(50-x)]元,∵该厂生产A种产品和B种产品投入资金不超过40万元,且希望获利超过16万元,∴可列不等式组为:{0.6x+0.9(50−x)≤40 0.2x+0.4(50−x)>16,解得:50≤x<20,3∵x取整数,∴x可取17、18、19,共三种方案:①A 17件,B 33件;②A 18件,B 32件;③A 19件,B 31件;第一种方案获利:0.2×17+0.4×33=16.6万元;第二种方案获利:0.2×18+0.4×32=16.4万元;第三种方案获利:0.2×19+0.4×31=16.2万元;故可得方案一获利最大,最大利润为16.6万元.答:工厂有3种生产方案,第一种方案获利润最大,最大利润是16.6万元.21。
《含参不等式专题》课件

2
二元二次不等式
探索二元二次含参不等式的求解策略和图像性质,深入理解不等式的几何关系。
3
二元高次不等式
学习如何解决具有多项式形式的二元高次含参不等式,拓展不等式求解的技巧。
四、常见方法
系数法
介绍使用系数和常数项来解 决含参不等式的方法和应用 场景。
因式分解法
学习如何将含参不等式转化 为因式的形式,简化解决过 程。
二、一元含参不等式
1
一元一次不等式
研究和解决一元一次含参不等式的方法和技巧。
2
一元二次不等式
深入了解一元二次含参不等式的解法,掌握其特点和解集。
3
一元高次不等式
探索一元高次含参不等式的求解策略,学习如何刻画不等式的图像。
三、多元含参不等式
1
二元一次不等式
研究二元一次含参不等式的解法和解集,了解其在实际问题中的应用。
学习柯西不等式的推导和应用,拓展不等式在数学中的应用范围。
3 格雷戈里-拉格朗日不等式
探索格雷戈里-拉格朗日不等式的形式和应用,加深对不等式的理解。
七、展应用
1 不等式证明
学习如何证明不等式的正确性,培养严谨的数学推理和证明能力。
2 不等式优化
挑战自己解决复杂优化问题,运用不等式知识寻找最佳解。
含参不等式专题
探索含参不等式的基本概念、解集与图示,包括一元和多元不等式,以及常 见的解题方法和考点解析。练习和拓展应用将帮助您深入了解这一重要主题。
一、基本概念
定义
探索含参不等式的基本概念和特征,以理解其在数学中的重要性。
解集与图示
学习如何确定一个含参不等式的解集,并使用图示方法直观地表示不等式。
辅助函数法
解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
高二含参不等式重要知识点

高二含参不等式重要知识点含参不等式是高中数学中重要的内容之一,它在数学建模、不等式证明以及解决实际问题中都起着重要作用。
本文将介绍高二阶段学习含参不等式时需要掌握的重要知识点。
1. 含参不等式的基本概念含参不等式是指不等式中包含一个或多个未知数的不等式。
通常使用形如f(x)>g(x)或f(x)<g(x)的形式表示,其中f(x)和g(x)是关于x的算式。
2. 含参不等式的解集表示法含参不等式的解集可以用数学符号表示,例如用区间表示。
对于f(x)>g(x)的不等式,解集可以表示为{x|f(x)>g(x)},其中x为满足不等式的实数。
3. 含参不等式的性质(1)含参不等式满足运算性质。
对于任意实数a和b,若f(x)>g(x),则af(x)>ag(x);若f(x)>g(x)且g(x)>h(x),则f(x)>h(x)。
(2)含参不等式满足传递性质。
若f(x)>g(x),g(x)>h(x),则f(x)>h(x)。
(3)含参不等式的均值不等式。
对于任意实数a和b,有(a+b)/2 >= sqrt(ab)。
4. 含参不等式的求解方法(1)代数法。
通过变形和运算,将含参不等式转化为可求解的形式,从而求得解集。
(2)图像法。
将含参不等式转化为函数图像,分析图像特征得出解集。
(3)区间法。
通过确定函数的单调性、零点、极值点等,在数轴上找到解集所在的区间。
5. 含参不等式的应用含参不等式在实际问题中有广泛的应用,例如优化问题、最值问题、经济学模型等。
通过建立合适的含参不等式模型,可以解决实际问题,并得到解的范围或最优解。
6. 含参不等式的证明在数学证明中,含参不等式的证明方法有多种。
常用的方法包括归谬法、反证法、数学归纳法等。
根据具体的证明要求,选择适合的方法进行证明。
以上是高二含参不等式重要知识点的介绍。
掌握这些知识点,可以帮助学生在解决实际问题和数学建模中灵活运用含参不等式,提升数学解题能力和逻辑思维能力。
含参不等式(实数解问题)(人教版)

含参不等式(实数解问题)(人教版)一、简介本文档主要讨论含参不等式的实数解问题。
含参不等式是指在不等式中含有未知数的不等式,我们将通过实例详细介绍解决这类问题的方法和步骤。
二、解决方法解决含参不等式的实数解问题可以采取以下步骤:1. 确定不等式的范围:首先,要确定不等式的范围,即确定未知数的取值范围。
这可以通过对不等式进行变形和化简来实现。
2. 根据范围解不等式:根据确定的范围,将未知数代入不等式,并求解。
可以采用试探法、代入法或图像法等方法求解。
3. 验证解的有效性:求解出不等式的解之后,需要验证这些解是否满足原始的不等式。
通过将解代入不等式并判断不等式是否成立来验证解的有效性。
三、实例分析以下是一个实例分析,展示了如何解决含参不等式的实数解问题:例题:求解不等式 |x - a| < b,其中 a > 0,b > 0。
解:首先,根据不等式 |x - a| < b 的定义,可以得到两个不等式:1) x - a < b;2) -(x - a) < b。
将两个不等式进行化简:1) x < a + b;2) x > a - b。
因此,不等式的解是 a - b < x < a + b。
需要注意的是,这个解是根据 a > 0,b > 0 的条件得出的。
接下来,我们需要验证解的有效性。
将解代入原始不等式 |x - a| < b 可得:1) |(a - b) - a| = b,成立;2) |(a + b) - a| = b,成立。
因此,解 a - b < x < a + b 是原始不等式的实数解。
四、总结通过本文档的介绍,我们了解到解决含参不等式实数解问题的方法和步骤。
关键是确定范围、带入求解,并验证解的有效性。
通过实例的分析,我们可以更好地掌握和应用这些方法,解决含参不等式的实数解问题。
以上是对含参不等式(实数解问题)(人教版)的文档概述,希望对您有所帮助。
七年级下册数学含参不等式

七年级下册数学含参不等式
以下是七年级下册数学含参不等式的一些例子:
1. 解不等式:4x + 7 > 23
解法:首先将不等式转化为等价的形式:4x > 23 - 7,即 4x > 16
然后将不等式两边都除以4,得到 x > 4
因此,不等式的解集为 x > 4
2. 解不等式:2(3x + 5) ≤ 10
解法:首先将不等式括号内的式子展开:6x + 10 ≤ 10然后将不等式两边都减去10,得到6x ≤ 0
最后将不等式两边都除以6,得到x ≤ 0
因此,不等式的解集为x ≤ 0
3. 解不等式:3(x + 4) - 2x ≥ 1
解法:首先将不等式括号内的式子展开:3x + 12 - 2x ≥ 1然后将不等式两边都减去12,得到 x - 2 ≥ 1
再将不等式两边都加上2,得到x ≥ 3
因此,不等式的解集为x ≥ 3
这些例子展示了计算含参不等式的步骤,具体的题目可能会有不同的形式和操作,但解题思路大致相同。
在解不等式时,都是通过对不等式进行等式的转化和运算,最后确定不等式的解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《不等式(组)的字母取值范围的确定方法》教学设计
教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。
上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。
学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解.
教学目标:
(1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。
(2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。
学习重点:
(1)加深对一元一次不等式组的概念与解集的理解。
(2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。
学习难点:
(1)一元一次不等式组中字母参数的讨论。
(2)运用数轴分析不等式组中参数的范围。
教学难点突破办法:
(1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。
(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。
教学准备
1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度,
能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到.
2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。
1、⑴不等式组⎩⎨⎧-≥>1
2x x 的解集是 . ⑵不等式组⎩⎨⎧-<-<12x x 的解集是 .
⑶不等式组⎩⎨
⎧≥≤14x x 的解集是 . ⑷不等式组⎩⎨⎧-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题
1. 逆向运用“大大取大”求解参数
分析:逆向运用大大取大归结为:若不等式组⎩⎨⎧>>b
x a x 的解集为b x >,则b a ≤
例1.(2014恩施市) 如果一元一次不等式组⎩⎨⎧>>a
x x 3的解集为a x >,则a 的取值范围是:( )
A. a >3
B. a ≥3
C. a ≤3
D. a <3
变式练习1:若不等式组⎩
⎨⎧<->+m x x x 544的解集是3<x ,那么m 的取值范围为( )
A. m ≤3
B. m ≥3
C. m=3
D. m <3
解析: 首先将原不等式组化简为⎩⎨⎧<<m x x 3,即⎩
⎨⎧<<m x x 3的解集为3x <,逆向运用小小取小归结为:m ≥3故选(B)。
变式练习2:若不等式组⎩⎨⎧>+≤--x
x a x x 324)2(3无解,则a 的取值范围是________
解析:首先将原不等式组化简为⎩⎨⎧<≥a x x 1,即⎩
⎨⎧<≥a x x 1无解,逆向运用“大大小小找不到”∴1≤a 例2:若不等式组⎩⎨⎧>->-0
22x b a x 的解集为11<<-x ,则_____)
(2015=+b a 分析:首先将原不等式组化简为⎪⎩
⎪⎨⎧<+>22b x a x ,因为原不等式组解集为11<<-x ,所以有22b x a <<+ ∴⎪⎩⎪⎨⎧=-=+12
12b a ∴ ⎩⎨⎧=-=23b a ∴1)23()(20152015-=+-=+b a 二、巧借数轴,利用数形结合思想解题
设计目的:考察两个不等式的解集之间的关系,(1)说明两个解集有公共部分,(2)说明两个解集没有
公共部分。
结合图形,运用数轴分析法,指出解决问题的一般方法:先在数轴上确定不等式的解集的大概位置,再确定不等式的两个界点是否能取到(等号问题)。
例3.已知关于x 的不等式组有且只有4个整数解,则a 的取值范围是_________
解析:由原不等式组可得⎩
⎨⎧<>2x a x ,因为不等式组有4个整数解,所以它的解集为2<<x a ,此解集中的4个整数解依次是-2,-1,0,1.故在数轴上表示如图 ∴23<≤-a
能力拓展:
例4.已知关于x 的不等式5x <的解也是不等式252x a a -<-的解,则a 的取值范围是____________ 解析:含参不等式解集为31x a <-,因为不等式5x <的解全部满足31x a <-,所以315a -≥
例5.若不等式组1235a x a x -<<+⎧⎨<<⎩
的解集是32x a <<+,则a 的取值范围是___________ 解析:因为不等式组的解集32x a <<+可得:⎪⎩
⎪⎨⎧>+≤+≤-325231a a a ,所以a 的取值范围为:31≤<a
数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母取值范围时,往往能显示出它的优越性———直观。
三.当堂反馈:
1.若不等式组
有解,则a 的取值是( ) A .a >1 B .a ≥1 C .a ≤﹣1 D .a <﹣1
2、不等式a ≤x ≤3只有5个整数解,则a 的范围是
3.已知关于x 的不等式
的整数解共有5个,则a 的取值范围是
四、本节课小结:
1、学生谈本节收获:优等生谈重点学到什么知识,上进生谈体会。
2、教师小结:这节课主要学习了含参数的不等式组的解集问题,在解决问题中体现出逆向思维,数形结合、分类讨论的数学思想的重要应用,要好好体会。
《不等式(组)的字母取值范围的确定方法》学案
一.课前复习
1、⑴不等式组⎩⎨⎧-≥>1
2x x 的解集是 . ⑵不等式组⎩⎨⎧-<-<12x x 的解集是 .
⑶不等式组⎩⎨⎧≥≤14x x 的解集是 . ⑷不等式组⎩
⎨⎧-≤>45x x 的解集是 . 二:讲授新课 例1.(2014恩施市) 如果一元一次不等式组⎩⎨
⎧>>a x x 3的解集为a x >,则a 的取值范围是:( )
A. a >3
B. a ≥3
C. a ≤3
D. a <3
变式练习1:若不等式组⎩
⎨⎧<->+m x x x 544的解集是3<x ,那么m 的取值范围为( ) A. m ≤3 B. m ≥3 C. m=3 D. m <3
变式练习2:若不等式组⎩⎨
⎧>+≤--x
x a x x 324)2(3无解,则a 的取值范围是________
例2:若不等式组⎩⎨⎧>->-022x b a x 的解集为11<<-x ,则_____)(2015=+b a
二、巧借数轴,利用数形结合思想解题
例3.已知关于x 的不等式组有且只有4个整数解,则a 的取值范围是_________
能力拓展:
例4.已知关于x 的不等式5x <的解也是不等式252x a a -<-的解,则a 的取值范围是____________
例5.若不等式组1235a x a x -<<+⎧⎨
<<⎩
的解集是32x a <<+,则a 的取值范围是___________
三.课堂练习:
1.若不等式组有解,则a 的取值是( )
A .a >1
B .a ≥1
C .a ≤﹣1
D .a <﹣1
2、不等式a ≤x ≤3只有5个整数解,则a 的范围是
3.已知关于x 的不等式的整数解共有5个,则a 的取值范围是
课后作业:
1.若不等式组⎩⎨⎧≥+≤--x
x a x x 324)2(3无解,则a 的取值范围是________
2.已知关于x 的不等式252x a a -<-的解集为5x <,则a 的取值范围是____________
3.若不等式组⎩⎨⎧>-+>-0
503a x x a 有解,则a 的取值范围____________
4.若不等式组⎩⎨⎧>-+≥-0
503a x x a 有解,则a 的取值范围____________
5.若不等式组
恰有两个整数解,则m 的取值范围_____________ 6.若不等式组12x x m
<≤⎧⎨>⎩有解,则m 的取值范围是____________
7.(本小题用数轴法求解字母的取值范围,并用口诀法验证答案)
⑴若不等式组⎩⎨⎧≥-+≥-0
503a x x a 有解,则a 的取值范围____________
画数轴:
⑵若不等式组⎩
⎨
⎧>+≤--x x a x x 324)2(3无解,则a 的取值范围是________
画数轴:
8.解答题:
⑴已知关于x 的不等式组
的解集为3≤x <5,求m ﹣n 的值
⑵关于x 的不等式组
有五个整数解,求a 的取值范围
⑶.若不等式⎩⎨⎧+>+>423m x m x 的解集是1->x ,求m 的值。