11.2命题逻辑与条件判断
高中数学选修1-11-2知识点归纳

高中数学选修1-1、1-2数学知识点一 简单的逻辑用语1.原命题:“若p ,则q ”;逆命题: “若q ,则p ”; 否命题:“若p ⌝,则q ⌝”;逆否命题:“若q ⌝,则p ⌝”2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.3.若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).集合间的包含关系:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;4. ⑴全称量词——“所有的”、“任意一个”等,用“∀”表示; 全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;二 复数1.概念: (1) z =a +bi 是虚数⇔b ≠0;(2) z =a+b i 是纯虚数⇔a =0且b ≠0; (3) a +b i=c +di ⇔a =c 且c =d ;2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di ,则: (1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ;(3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i dc adbc d c bd ac 2222+-+++ (z 2≠0) ; 三 圆锥曲线及其几何性质1焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b+=>> 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c离心率()22101c b e e a a==-<<2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c离心率 ()2211c b e e a a==+>渐近线方程 b y x a =±a y x b=± 标准方程 22y px = 22y px =-22x py =22x py =-图形焦点,02p F ⎛⎫⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2p x =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤四 导数及其应用1.函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.2.常见函数的导数公式: ①'C0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e=')(; ⑦ax x a ln 1)(log '=; ⑧x x 1)(ln '=3.导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.4.在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.5.求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.6.求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.五 统计案例1.线性回归方程 注意:线性回归直线经过定点 ),(y x 。
命题的真假判断及逻辑表达式(与或非)

(1)逆命题:若一个整数能被5整除,则这个整数的末位数是0。这 是假命题。 否命题:若一个整数的末位数不是0,则这个整数不能能被5整除。 这是假命题。 逆否命题:若一个整数不能被5整除,则这个整数的末位数不是0。 这是真命题。 (2)逆命题:若一个三角形的两个角相等,则这个三角形的两 条边相等。这是真命题。 否命题:若一个三角形的边不相等,则这个三角形的角也 不相等。这是真命题。 逆否命题:若一个三角形的角不相等,则这个三角形的边 也不相等。这是真命题。
逻辑表达式
用逻辑运算符将若干个表达式连接起来的式子,称逻辑 表达式。 ★逻辑表达式的值是一个逻辑值“真”或“假”。在判 断逻辑运算符两边的表达式时,若表达式的值为非零, 则被认作“真”,零则视为“假”
练一练 例2_1_3 用逻辑表达式表示,某一年是闰年。
设变量year表示年份 逻辑表达式为: year%4==0&&year%100!=0||year%400==0
解(3) 原命题:若一个数是正偶数,则它不是质数 逆命题:若一个数不是质数,则它是正偶数 否命题:若一个数不是正偶数,则它是质数 逆否命题:若一个数是质数,则它不是正偶数 解 (4) 原命题:若两个三角形全等,则它们相似 逆命题:若两个三角形相似,则它们全等 否命题:若两个三角形不全等,则它们不相似 逆否命题:若两个三角形不相似,则它们不全等
练一练 例2_1_4
在全国人口普查时,需要统计各个年龄段的 人数。请你用C语言描述: ①学龄前儿童,年龄小于6周岁。 ②青少年,年龄在 6 周岁和 18 周岁之间(含 6 周岁)。
③老年人,年龄大于60周岁。
设变量iage表示年龄。逻辑表达式为:
① iage<6 ② iage>=6 && age<18 ③ iage>60
命题及其关系、充分条件与必要条件

【例2】 若ab≠0,试证a3+b3+ab-a2-b2=0成立的充要条件是a+b=1. 证明:先证必要性:∵a3+b3+ab-a2-b2=0, ∴(a+b)·(a2-ab+b2)-(a2-ab+b2)=0,即(a+b-1)(a2-ab+b2)=0, 又ab≠0, ∴a2-ab+b2= ≠0,因此a+b-1=0,即a+b=1. 再证充分性:∵a+b=1,即a+b-1=0,∴(a+b-1)(a2-ab+b2)=0. 即a3+b3+ab-a2-b2=0.
变式3. 设{an}是公比为q的等比数列,Sn是它的前n项和. 求证:数列{Sn}不是等比数列; 数列{Sn}是等差数列吗?为什么? 解答:(1)证明:证法一:(反证法)若{Sn}是等比数列, 则 =S1S3,即 ∵a1≠0,∴(1+q)2=1+q+q2,即q=0与q≠0矛盾,故{Sn}不是等比数列
01
(了解逻辑联结词“或”“且”“非”的含义/理解全称量词与存在量词的意义/能正确地对含有一个量词的命题进行否定 )
02
逻辑联结词全称量词与存在量词
命题中的“且”、“或”、“非”叫做逻辑联结词. 用来判断复合命题的真假的真值表 真 假 假 假
至少 ∀ 全称 存在
01
02
5.命题的否定 (1)全称命题的否定是 命题;特称命题的否定是 命题. (2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.
否则S1,S2,S3成等差数列,即2S2=S1+S3.∴2a1(1+q)=a1+a1(1+q+q2).
∵a1≠0,∴2(1+q)=2+q+q2,q=q2,∵q≠1,∴q=0与q≠0矛盾.
【方法规律】
1.对命题正误的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题正误的过程中,要注意简单 命题与复合命题之间的真假关系;要注意命题四种形式之间的真假关系. 2.在充分条件、必要条件和充要条件的判断过程中,可利用图示这种数形结合的思想方法;在证明充要条件时,首先要弄清充分性和必要性. 3.特殊情况下如果命题以p:x∈A,q:x∈B的形式出现,则有:(1)若A⊆B,则p 是q的充分条件;(2)若B⊆A,则p是q的必要条件;(3)若A=B,则p是q的充要条件.
离散数学-----命题逻辑

离散数学-----命题逻辑逻辑:是研究推理的科学。
公元前四世纪由希腊的哲学家亚里斯多德首创。
作为一门独立科学,十七世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符号, 又称为数理逻辑(或符号逻辑)。
逻辑可分为:1. 形式逻辑(是研究思维的形式结构和规律的科学,它撇开具体的、个别的思维内容,从形式结构方面研究概念、判断和推理及其正确联系的规律。
)→数理逻辑(是用数学方法研究推理的形式结构和规律的数学学科。
它的创始人Leibniz,为了实现把推理变为演算的想法,把数学引入了形式逻辑中。
其后,又经多人努力,逐渐使得数理逻辑成为一门专门的学科。
)2. 辩证逻辑(是研究反映客观世界辩证发展过程的人类思维的形态的。
)一、命题及其表示方法1、命题数理逻辑研究的中心问题是推理,而推理的前提和结论都是表达判断的陈述句,因而表达判断的陈述句构成了推理的基本单位。
基本概念:命题:能够判断真假的陈述句。
命题的真值:命题的判断结果。
命题的真值只取两个值:真(用T(true)或1表示)、假(用F(false)或0表示)。
真命题:判断为正确的命题,即真值为真的命题。
假命题:判断为错误的命题,即真值为假的命题。
因而又可以称命题是具有唯一真值的陈述句。
判断命题的两个步骤:1、是否为陈述句;2、是否有确定的、唯一的真值。
说明:(1)只有具有确定真值的陈述句才是命题。
一切没有判断内容的句子,无所谓是非的句子,如感叹句、祁使句、疑问句等都不是命题。
(2)因为命题只有两种真值,所以“命题逻辑”又称“二值逻辑”。
(3)“具有确定真值”是指客观上的具有,与我们是否知道它的真值是两回事。
2、命题的表示方法在书中,用大写英文字母A,B,…,P,Q或带下标的字母P1,P2,P3 ,…,或数字(1),*2+, …,等表示命题,称之为命题标识符。
命题标识符又有命题常量、命题变元和原子变元之分。
命题常量:表示确定命题的命题标识符。
命题变元:命题标识符如仅是表示任意命题的位置标志,就称为命题变元。
命题逻辑的基本概念

命题逻辑的基本概念命题逻辑(propositional logic),又称命题演算,是数理逻辑的一个分支,它研究命题与命题之间的逻辑关系。
在命题逻辑中,命题是语句或陈述,可以判断为真或假。
命题逻辑的基础概念包括命题、联结词和复合命题等。
一、命题在命题逻辑中,命题是用来陈述某种事实或陈述的语句,可以判断为真或假。
命题通常用字母表示,如p、q、r等。
下面是一些例子:1. p:今天是晴天。
2. q:明天会下雨。
3. r:1+1=2。
二、联结词联结词是用来连接命题的词语,它们可以表示不同的逻辑关系。
常见的联结词有否定、合取、析取、条件、双条件等。
1. 否定(¬):表示命题的否定,将命题的真值取反。
例如,¬p表示命题p的否定。
2. 合取(∧):表示逻辑与的关系,表示两个命题都为真时,结果命题才为真。
例如,p∧q表示命题p和命题q都为真。
3. 析取(∨):表示逻辑或的关系,表示两个命题中至少一个为真时,结果命题为真。
例如,p∨q表示命题p或命题q至少一个为真。
4. 条件(→):表示逻辑蕴含的关系,表示命题p成立时,命题q也必定成立。
例如,p→q表示命题p蕴含命题q。
5. 双条件(↔):表示逻辑等价的关系,表示命题p和命题q有相同的真值。
即当p和q同时为真或同时为假时,结果命题为真。
例如,p↔q表示命题p和命题q等价。
三、复合命题复合命题是由多个命题通过联结词构成的新命题。
复合命题的真假取决于其组成命题的真假以及联结词的逻辑关系。
例如:1. (p∧q)→r:表示命题p和命题q的合取蕴含命题r。
2. ¬(p∨q):表示命题p和命题q的析取的否定。
3. p↔q∧r:表示命题p和命题q等价,并且命题r为真。
在命题逻辑中,通过运用联结词的组合和推理规则,可以进行逻辑推理和推断。
命题逻辑为我们提供了分析和解决复杂问题的思维工具。
总结:命题逻辑是数理逻辑的一个重要分支,研究命题与命题之间的逻辑关系。
逻辑与的名词解释

逻辑与的名词解释逻辑与,也称为“逻辑与运算”,是数学和计算机科学领域的一个基本概念。
在逻辑学中,逻辑与是一种二元运算,用于判断两个语句的真假关系。
逻辑与的符号是“∧”,在数学和计算机科学中经常用于表示逻辑与运算。
当两个语句都为真时,逻辑与的结果即为真,否则为假。
这个运算与日常生活中常常使用的“而且”、“同时”等概念类似,它要求两个条件同时满足。
在逻辑学中,逻辑与是命题逻辑的基本运算之一。
命题逻辑是研究命题间的关系与推理的一门学科。
将各个命题用逻辑符号表示,并通过逻辑运算来推导命题之间的关系,是逻辑学的核心内容之一。
逻辑与的运算规则非常简单直观。
假设有两个命题P和Q,它们分别有两个可能的取值:真(T)和假(F)。
那么,逻辑与运算的结果可以总结如下:- 当P为真而Q为真时,逻辑与的结果为真。
- 在其他所有情况下,结果为假。
这个规则可以通过真值表来展示,真值表是描述逻辑运算结果的一种二维表格。
例如,以下是逻辑与的真值表:```P Q P∧Q---------T T TT F FF T FF F F```从真值表中可以看出,只有当P和Q都为真时,逻辑与的结果才会是真。
否则,结果都是假。
逻辑与作为命题逻辑的基本运算,广泛应用于计算机科学领域。
在编程中,逻辑与常用于条件判断和逻辑运算。
例如,在程序中我们可以使用逻辑与来判断两个条件是否同时满足,从而决定程序的执行路径。
另外,逻辑与也常用于构建复杂的逻辑表达式。
通过嵌套多个逻辑与运算,我们可以实现更复杂的逻辑关系。
这在计算机科学中十分重要,因为它能帮助程序进行复杂的决策和判断。
总而言之,逻辑与是一种基本的逻辑运算,用于判断两个命题的真假关系。
它广泛应用于逻辑学、数学和计算机科学领域。
逻辑与的运算规则简单明了,通过逻辑与运算可以构建复杂的逻辑表达式,用于条件判断和逻辑推理。
什么是命题_命题的分类与条件
什么是命题_命题的分类与条件当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。
那么你对命题了解多少呢?以下是由店铺整理关于什么是命题的内容,希望大家喜欢!什么是命题在现代哲学、数学、逻辑学、语言学中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。
命题不是指判断(陈述)本身,而是指所表达的语义。
当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。
在数学中,一般把判断某一件事情的陈述句叫做命题。
(1) [proposition]∶逻辑学指表达判断的语言形式,由系词把主词和宾词联系而成(2) [problem;issue]∶数学或物理中要进行某种说明的问题命题的分类亚里士多德在《工具论》,特别是其中的《范畴篇》中,研究了命题的不同形式及其相互关系,根据形式的不同对命题的不同类型进行了分类。
亚里士多德把命题首先分为简单的和复合的两类,但他对复合命题并没有深入探讨。
他进而把简单命题按质分为肯定的和否定的,按量分为全称、特称和不定的命题,例如,"愉快不是善"。
他还提到个体命题,这相当于后来所谓的以专名为主项、以普遍概念为谓项的单称命题。
亚里士多德着重讨论了后人以A、E、I、O为代表的4种命题。
他所举出的例子是:"每个人是白的";"没有人是白的";"有人是白的";"并非每个人是白的"。
关于模态命题,他讨论了必然、不可能、可能和偶然这4个模态词。
亚里士多德所说的模态,是指事件发生的必然性、可能性等。
亚里士多德以后的逻辑学家,如泰奥弗拉斯多、麦加拉学派和斯多阿学派的逻辑学家,以及中世纪的逻辑学家等,又对包含有命题联结词"或者"、"并且"、"如果,则"等的复合命题进行了不断的探讨,从而丰富了逻辑学关于命题的学说。
人教A版数学选修2—11.1.1——1.1.2命题及四种命题
“若p则q”情势的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的情势。 p
q
通常,我们把这种情势的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”情势的命题是命题的一种情势而不是 唯一的情势,也可写成“如果p,那么q” “只要p,就有 q”等情势。
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例位如角,不命相题等“,同两位直角线相不等平,行两”直。线平行”的否原命否命题存命的在题题真相与是假关其“是性否同
呢?
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
不是(疑问句) 不是(疑问句) 不是(感叹句) 是(否定陈说句) 是(肯定陈说句) 不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
问题1
思考?
下列语句的表述情势有什么特点?你能判断
它们的真假吗?
• (1) 若直线a//b,则直线a和直线b无公共点;
• (2) 2+4=7
语句都是陈说句,
• (3)垂直于同一条直线的两个平面平行;
• (4)若x2=1,则x=1; 并且可以判断真假。
• (5)两个全等三角形的面积相等;
• (6)3能被2整除.
高中数学必修知识点命题与逻辑结构
高中数学必修知识点命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
若原命题为“若p,则q”,它的逆命题为“若q,则p”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p,则q”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
若原命题为“若p,则q”,则它的否命题为“若q,则p”。
6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:1两个命题互为逆否命题,它们有相同的真假性;2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q,则p是q的充分条件,q是p的必要条件.若p q,则p是q的充要条件(充分必要条件).8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q.当p、q都是真命题时,p q是真命题;当p、q两个命题中有一个命题是假命题时,p q是假命题.用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q.当p、q两个命题中有一个命题是真命题时,p q是真命题;当p、q两个命题都是假命题时,p q是假命题.对一个命题p全盘否定,得到一个新命题,记作p.若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个x,有p x成立”,记作“x,p x”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个x,使p x成立”,记作“x,p x”.10、全称命题p:x,p x,它的否定p:x,p x。
5.1.2命题逻辑与条件判断
导学2
阅读
理解
在研究实际问题时,经常会遇到由不同的条件得到不同结论的问题.
例如,儿童乘坐火车时,若身高不超过1.1 m,则儿童可以免费乘车, 无需购票;若身高高于1.1 m但不超过1.4 m,可以购买半价票乘车;若身 高超过1.4 m,应该购买全价票乘车.这个问题的特点是:满足不同的条 件,可以得到不同的结果.因此需要进行条件判断.
风采展示
练习与评价
独立完成
1.下列句子中哪些是命题? (1)动物都需要水; 是 (2)猴子是动物的一种; 是 (3)玫瑰花是动物; 是 (4)美丽的天空; 不是 (5)三个角对应相等的两个三角形一定全等; 是 是 (6)负数都小于零; (7)所有的质数都是奇数; 是 (8)过直线m外一点作m的平行线; 不是 (9)如果a>b,b>c,那么b=c; 是 (10)你的作业做完了吗? 不是
我可恰恰相反。
我从来不 给傻子让路。
你能判断出对话的意思吗?
教学目标
知识目标 1、理解命题、简单命题和复合命题的概念 2、会指出命题的条件和结论,会判断命题的真假 3、能使用命题的形式描述一个问题的算法 能力目标 进一步发展我们的数学思维能力和分析、解决问题的能 力 情感目标 感受数学语言的魅力和小组合作的快乐
自我完善 ☞
本课学了哪些内容?重点和难点各是什么? 你有哪些收获? 内容: 1、理解命题、简单命题和复合命题的概念。 2、会指出命题的条件和结论,会判断命题的真假 重点:理解命题、简单命题和复合命题的概念.. 难点:会指出命题的条件和结论,会判面作业: 课本习题5.1.2(必做题) 习题集5.1.2(选做题) 学习与训练5.1(选做题) 2、实践作业: 实践指导5.1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它是真命题还是
假命题.
(1).2008年夏季奥运会在北京举行.
(2).明天的大会是否按时举行?
(3).0.01不是有理数.
(4).把门关上!
(5).如果三角形的三边长分别为3,4,5,那么这个三角形一定是直角三角形.
(6).如果一个三角形是直角三角形,那么其三边长一定分别为3,4,5.
2.用∧和∨联结下面各组中的命题p和q,构成新的命题,并判断它们的真假.
(1).p:x=1是方程x²=1的解;q:x=-1是方程x²=1的解.
(2).p:7=3+2;q:2>3.
(3).p:π是实数;q:π是有理数.
3.某单位招工的基本条件是“笔试合格,从事相关工作2年以上”,符合基本条
件的人就可以参加面试.如果用p表示“笔试合格”,用q表示“从事相关工作2
年以上”,那么参加面试的条件用复合命题如何表示?
4.判断下列语句是否为命题,如果是命题,指出它是真命题还是假命题.
(1).今天你有空吗?
(2).不存在最大的质数.
(3).x+1=2.
(4).3+1=2.
(5).如果三角形的三个内角相等,那么这个三角形为等边三角形.
(6).这件事要么你做了,要么你没有做.
(7).请勿随地吐痰!
(8).1≥1.
5.写出下列命题的非命题,并判断其真假.
(1).不存在最大的整数;
(2).2>3.
6.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它是真命题还是
假命题.
(1).2+3=4.
(2).你能帮助我吗?
(3).0既不是正数,也不是负数.
(4).π是有理数.
(5).2x+y=10.
(6).不存在最大的整数.
(7).如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.
7.请按要求各给出一个命题:
(1).真命题;
(2).假命题:
(3).简单命题:
(4).复合命题.
8.写出下列命题的非命题,并判断其真假.
(1).p:3>6.
(2).q:sin30°=12.
9.在下列各题中,写出p∧q和p∨q所表示的命题,并判断它们的真假.
(1).p:x=2是方程x²=2的解;q:x=-2是方程x²=2的解.
(2).p:3=2;q:3>2.
10.设p:3整除12,q:3整除18,用语言表示下列命题:
(1).p;
(2).p∧q;
(3).p∨q;
(4).p∧q;
(5).p∨q.
11.如果命题p的真值为“真”,q的真值为“假”,r的真值为“真”,试确定下
列命题的真值.
(1).p∧q;
(2).p∨q;
(3).p∧q;
(4).p∨q;
(5).p∨q;
(6).(p∧q);
(7).(p∧q)∨r;
(8).(p∨r)∧(q∨r).
12.若用p,q,r分别表示王芳语文、数学、英语考试及格,试写出下列语句的
逻辑表达式:
(1).王芳语文、数学、英语都及格;
(2).王芳语文、数学、英语都不及格;
(3).王芳语文、数学及格,但英语不及格.