单项式乘以单项式单项式乘以多项式练习题(供参考)
专题1-5整式的乘法(2)单项式乘多项式-(解析版)

2020-2021学年七年级数学下册尖子生同步培优题典【北师大版】专题1.5整式的乘法(2)单项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A.﹣(﹣3a n b)4=81a4n b4B.(a n+1b n)4=4a4n+4b4nC.(﹣2a n)2•(3a2)3=﹣54a2n+6D.(3x n+1﹣2x n)•5x=15x n+2﹣10x n+1【分析】根据单项式的乘法计算判断即可.【解析】A、﹣(﹣3a n b)4=﹣81a4n b4,错误;B、(a n+1b n)4=a4n+4b4n,错误;C、(﹣2a n)2•(3a2)3=54a2n+6,错误;D、(3x n+1﹣2x n)•5x=15x n+2﹣10x n+1,正确;故选:D.2.m(a2﹣b2+c)等于()A.ma2﹣mb2+m B.ma2+mb2+mc C.ma2﹣mb2+mc D.ma2﹣b2+c【分析】利用单项式乘多项式的计算方法:利用乘法分配律可以将单项式乘多项式转化成单项式乘单项式;直接计算得出结果即可.【解析】m(a2﹣b2+c)=ma2﹣mb2+mc.故选:C.3.(2020秋•南岗区期末)计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab【分析】根据单项式乘以多项式,先用单项式乘以多项式的每一项,再把所得的积相加计算.【解析】3a(5a﹣2b)=15a2﹣6ab.故选:D.4.(2020秋•万州区校级期中)当a﹣2b=2时,则代数式4a﹣8b﹣6的值为()A.14 B.﹣2 C.﹣4 D.2【分析】根据添括号法则把原式变形,把a﹣2b=2代入计算,得到答案.【解析】4a﹣8b﹣6=4(a﹣2b)﹣6,当a﹣2b=2时,原式=4×2﹣6=2,故选:D.5.(2020春•海伦市校级期末)计算x(1+x)﹣x(1﹣x)等于()A.2x B.2x2C.0 D.﹣2x+2x2【分析】根据单项式乘多项式的法则化简,再合并同类项即可求解.【解析】原式=x+x2﹣x+x2=2x2.故选:B.6.(2020春•新邵县期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写()A.1 B.﹣1 C.3x D.﹣3x【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【解析】﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x.故选:C.7.(2020秋•岳麓区校级月考)若一个长方体的长、宽、高分别为2x,x,3x﹣4,则长方体的体积为()A.3x3﹣4x2B.6x2﹣8x C.6x3﹣8x2D.6x3﹣8x【分析】根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.【解析】由题意知,V长方体=(3x﹣4)•2x•x=6x3﹣8x2.故选:C.8.(2020春•嘉兴期末)已知,a+b=2,b﹣c=﹣3,则代数式ac+b(c﹣a﹣b)的值是()A.5 B.﹣5 C.6 D.﹣6【分析】先利用整式的混合计算化简,再代入数值解答即可.【解析】ac+b(c﹣a﹣b)=ac+bc﹣ab﹣b2=c(a+b)﹣b(a+b)=(a+b)(c﹣b),把a+b=2,b﹣c=﹣3代入(a+b)(c﹣b)=2×3=6,故选:C.9.(2020春•张家港市校级月考)要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1 B.2 C.3 D.4【分析】先利用多项式乘以单项式法则及合并同类项法则进行运算,再根据不含x的四次项,确定x的值.【解析】原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.10.(2019秋•武汉期末)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是()A.6 B.7 C.8 D.9【分析】设大正方形的边长为a,小正方形的边长为b,根据题意列方程组,即可得到结论.【解析】设大正方形的边长为a,小正方形的边长为b,根据题意可得:ab b(a﹣b)=20,ab=14,解得:a=7.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•江北区校级期中)计算:﹣2a(3a﹣1)=﹣6a2+2a.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解析】﹣2a(3a﹣1)=﹣6a2+2a.故答案为:﹣6a2+2a.12.(2020秋•南岗区期中)计算:(x﹣2y)(﹣5x)=﹣5x2+10xy.【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】(x﹣2y)(﹣5x)=﹣5x2+10xy.故答案为:﹣5x2+10xy.13.(2020春•舞钢市期末)计算()•()=x3y3+3x2y3.【分析】直接利用单项式乘多项式计算得出答案.【解析】()•()x2y•()﹣6xy•(xy2)x3y3+3x2y3.故答案为:x3y3+3x2y3.14.(2020秋•沙坪坝区校级月考)已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=.【分析】根据题意可得方程组,再解出A、B的值,然后可得A+B的值即可.【解析】由题意得:,解得:,则A+B,故答案为:.15.(2020春•白云区期末)已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是﹣3.【分析】直接利用分组分解法分解因式,进而把已知代入得出答案.【解析】∵a﹣b=3,b﹣c=﹣4,∴a﹣b+b﹣c=a﹣c=﹣1,∴a2﹣ac﹣b(a﹣c)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b)=﹣1×3=﹣3.故答案为:﹣3.16.(2020•海陵区一模)已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为4.【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.17.(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为4.【分析】直接将原式变形,再利用已知代入原式得出答案.【解析】∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.18.(2020春•北镇市期中)某同学计算一个多项式乘﹣3x2时,因抄错符号,算成了加上﹣3x2,得到的答案是x2x+1,那么正确的计算结果是﹣12x4.【分析】用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.【解析】这个多项式是(x2x+1)﹣(﹣3x2)=4x2x+1,正确的计算结果是:(4x2x+1)•(﹣3x2)=﹣12x4x3﹣3x2.故答案为:﹣12x4x3﹣3x2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•袁州区校级期中)计算:(1)2b(4a﹣b2);(2)(﹣2a3)2+(﹣a2)3.【分析】(1)直接利用单项式乘多项式运算法则计算得出答案;(2)直接利用积的乘方运算法则化简,再合并同类项即可.【解析】(1)2b(4a﹣b2)=8ab﹣2b3;(2)(﹣2a3)2+(﹣a2)3=4a6﹣a6=3a6.20.计算:(1)2x(x2﹣1)﹣3x(x2);(2)(﹣2a2)•(ab+b2)﹣5a(a2b﹣ab2).【分析】(1)直接去括号,进而合并同类项得出答案.(2)直接去括号,进而合并同类项得出答案.【解析】(1)原式=x3﹣2x﹣x3﹣2x,=﹣4x.(2)原式=﹣2a3b﹣2a2b2﹣5a3b+5a2b2,=﹣7a3b+3a2b2.21.已知A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,求:(1)A•B+A•C;(2)A•(B﹣C);(3)A•C﹣B.【分析】(1)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案;(2)直接利用已知结合单项式乘多项式运算法则化简得出答案;(3)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案.【解析】(1)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•B+A•C=﹣2x2•(x2﹣3x﹣1)﹣2x2•(﹣x+1)=﹣4x4+6x3+2x2+2x3﹣2x2=﹣4x4+8x3;(2)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•(B﹣C)=﹣2x2(x2﹣3x﹣1+x﹣1)=﹣2x2(x2﹣2x﹣2)=﹣2x4+4x3+4x2;(3)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•C﹣B=﹣2x2(﹣x+1)﹣(x2﹣3x﹣1)=2x3﹣2x2﹣x2+3x+1=2x3﹣3x2+3x+1.22.(2020秋•安居区期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(xy)=3x2y﹣xy2xy(1)求所捂的多项式;(2)若x,y,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2xy)÷(xy)计算即可.(2)把x,y代入多项式求值即可.【解析】(1)设多项式为A,则A=(3x2y﹣xy2xy)÷(xy)=﹣6x+2y﹣1.(2)∵x,y,∴原式=﹣621=﹣4+1﹣1=﹣4.23.(2019秋•闵行区校级月考)已知x(x﹣m)+n(x+m)=x2+5x﹣6对任意数都成立,求m(n﹣1)+n (m+1)的值.【分析】把x(x﹣m)+n(x+m)去括号、合并同类项,然后根据与x2+5x﹣6对应项的系数相同,即可求得n﹣m和mn的值,然后代入求值即可.【解析】x(x﹣m)+n(x+m)=x2﹣mx+nx+mn=x2+(n﹣m)x+mn,∴则m(n﹣1)+n(m+1)=n﹣m+2mn=5﹣12=﹣7.24.(2019春•金安区校级期中)已知:A x,B是多项式,王虎同学在计算A+B时,误把A+B看成了A ×B,结果得3x3﹣2x2﹣x.(1)求多项式B.(2)求A+B.【分析】(1)根据整式的除法运算即可求出答案;(2)根据整式的加法运算即可求出答案.【解析】(1)由题意可知:x•B=3x3﹣2x2﹣x,∴B=(3x3﹣2x2﹣x)x=6x2﹣4x﹣2;(2)A+B x+(6x2﹣4x﹣2)=6x2x﹣2;。
整式的乘除(混合运算)(北师版)(含答案)

学生做题前请先回答以下问题问题1:(1)同底数幂相乘,_________,_________.即_____________;(2)同底数幂相除,_________,_________.即_____________;(3)幂的乘方,___________,___________.即_____________;(4)积的乘方等于___________.即_____________;规定:_______(___________);______(_________________________).问题2:根据幂的定义:,推导下列公式:;;;.问题3:(1)单项式×单项式:_____乘以_____,______乘以_____;(2)单项式÷单项式:_____除以_____,_____除以_____;(3)单项式×多项式:根据________________,转化为_________;(4)多项式×多项式:根据________________,转化为_________;(5)多项式÷单项式:借用____________,转化为_________.问题4:(1)平方差公式:_____________________;(2)完全平方公式:①_________________;②__________________;(3)我们记完全平方公式的口诀是什么?整式的乘除(混合运算)(北师版)一、单选题(共12道,每道8分)1.计算的结果是( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:整式的乘除2.计算的结果是( )A.-3B.3C.25D.27答案:D解题思路:故选D.试题难度:三颗星知识点:幂的运算法则3.计算的结果是( )A.2B.-2C. D.答案:C解题思路:观察结构,分为三个部分,每部分依据法则进行计算;先乘方,再乘除,最后算加减,如果有括号先算括号里面的.故选C.试题难度:三颗星知识点:幂的运算法则4.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除5.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的乘除6.已知一个多项式与单项式的积为,则这个多项式为( )A. B.C. D.答案:A解题思路:解:设这个多项式为A.由题意知,∴这个多项式为.故选A.试题难度:三颗星知识点:整式的乘除混合运算7.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除8.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的乘除混合运算9.计算的结果是( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:整式的乘除混合运算10.计算的结果是( )A. B.C. D.答案:B解题思路:整式的乘除混合运算的处理思路:观察结构划部分;有序操作依法则;每次推进一点点.故选B.试题难度:三颗星知识点:整式的乘除11.化简求值:当,时,代数式的值为( )A.-32B.32C. D.答案:A解题思路:当,时,故选A.试题难度:三颗星知识点:整式的乘除12.化简求值:当时,代数式的值为( )A.51B.-49C.-51D.答案:D解题思路:当时,故选D.试题难度:三颗星知识点:整式的乘除学生做题后建议通过以下问题总结反思问题1:计算:.。
单项式乘多项式专项练习60题选择填空解答(有答案)ok

单项式乘多项式专项练习60题(有答案)1.若(a m+1b n+2)•(a2m b2n﹣1)=a4b7,则m+n等于()A.1B.2C.3D.42.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm23.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x64.计算(﹣3x)3•2x2的结果是()A.54x5B.﹣54x5C.54x6D.﹣54x65.计算(﹣2a2)•3a3的结果,正确的是()A.﹣6a5B.6a5C.﹣2a6D.2a66.2x2y•3xy的结果是()A.6x3y B.6x3y2C.D.7.计算﹣3x2(4x﹣3)等于()A.﹣12x3+9x2B.﹣12x3﹣9x2C.﹣12x2+9x2D.﹣12x2﹣9x28.下列计算正确的有()A.(6xy2﹣4x2y)•3xy=18xy2﹣12x2yB.(﹣x)(2x+x2﹣1)=﹣x3﹣2x2+1C.(﹣3x2y)(﹣2xy+3yz﹣1)=6x3y2﹣9x2y2z2﹣3x2yD.(a n+1﹣b)•2ab=a n+2b﹣ab29.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a610.(﹣3x+1)(﹣2x)2等于()A.﹣6x3﹣2x2B.6x3﹣2x2C.6x3+2x2D.﹣12x3+4x211.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等12.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c13.下列计算正确的是()A.(2xy2﹣3xy)•2xy=4x2y2﹣6x3y B.﹣x(2x+3x2﹣2)=﹣3x3﹣2x2﹣2x C.﹣2ab(ab﹣3ab2﹣1)=﹣2a2b2+6a2b3﹣2abD.(a n+1﹣)•ab=a n+2b﹣ab214.下列计算正确的是()A.x n(x n﹣x2+3)=x2n﹣x n+2+3x n B.(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2=﹣20xy C.(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3+12x3y2D.(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz15.﹣5x•(2x2﹣x+3)的计算结果为()A.﹣10x3+5x2﹣15x B.﹣10x3﹣5x2+15x C.10x3﹣5x2﹣15x D.﹣10x3+5x2﹣316.计算﹣2a(2a2+3a+1)的结果等于()A.﹣4a3﹣5a2+2a B.﹣4a3+6a2+1C.﹣4a3+6a2D.以上都不对17.如果长方体长为3m﹣4,宽为2m,高为m,则它的体积是()A.3m3﹣4m2B.m2C.6m3﹣8m2D.6m2﹣8m18.(﹣2ab)(3a2﹣3ab﹣4b2)=_________,_________.19.要使(x2+ax+1)•(﹣6x3)的展开式中不含x4项,则a=_________.20.计算:4x•(2x2﹣3x+1)=_________.21.计算:﹣3x•(2x2﹣x+4)=_________.22.(﹣2x2)3•(x2+x2y2+y2)的结果中次数是10的项的系数是_________.23.计算:(x2+x﹣1)•(﹣2x)=_________.24.3ax2•(_________)=3a2x3﹣6ax2+9a3x4.25.计算:=_________.26.(x2y﹣xy﹣y3)(﹣4xy2)=_________.27.计算:(﹣9x2+3x)(﹣3x)=_________.28.计算:=_________.29.计算:=_________.30.计算:﹣3xy(4y﹣2x+1)=_________.31.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.32.若A是单项式,且A(4x2y3+3xy2)=﹣12x3y5﹣9x2y4,则A2=_________.33.(x2y﹣xy﹣y3)(﹣4xy2)=_________.34.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.35.计算:﹣6a•(﹣﹣a+2)36.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.37.(3x2y﹣2x+1)(﹣2xy)38.已知某长方形的长为(a+b)cm,它的宽比长短(a﹣b)cm,求这个长方形的周长与面积.39.计算:.40.计算:(﹣a2b)(b2﹣a+)41.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?42.计算:2x(x2﹣x+3)43.2ab(5ab+3a2b)44.计算:.45.(﹣2ab)(3a2﹣2ab﹣4b2)46.计算:xy2(3x2y﹣xy2+y)47.(﹣2ab)(3a2﹣2ab﹣b2)48.﹣2x2(+y2)49.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.50.计算:(﹣2x3y)•(3xy2﹣4xy+1).51..52..53.﹣3a•(2a2﹣a+3)54.2a(3a﹣2b)55.计算:2a2(3a2﹣5b+1)56.5x(2x2﹣3x+4)57.计算:(﹣2a2b)3(3b2﹣4a+6)58.2a2•(3a2﹣5b)59.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?60.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案:1.∵(a m+1b n+2)•(a2m b2n﹣1)=a m+1+2m b n+2+2n﹣1=a4b7,∴m+1+2m=4,n+2+2n﹣1=7,解得m=1,n=2.∴m+n=1+2=3.故选C.2.(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).故选:C.3.(﹣x3)2•x=x3×2•x=x7.故选B.4.(﹣3x)3•2x2=﹣27x3•2x2=(﹣27×2)•(x3•x2)=﹣54x5.故选:B.5.(﹣2a2)•3a3=﹣2×3a2•a3=﹣6x5.故选A.6.2x2y•3xy=6x3y;故选A.7.﹣3x2(4x﹣3)=﹣12x3+9x2.故选A.8.A、应为(6xy2﹣4x2y)•3xy=18x2y3﹣12x3y2,故本选项错误;B、应为(﹣x)(2x+x2﹣1)=﹣2x2﹣x3+x,故本选项错误;C、应为(﹣3x2y)(﹣2xy+3yz﹣1)=6x3y2﹣9x2y2z+3x2y,故本选项错误;D、(a n+1﹣b)•2ab=a n+2b﹣ab2,正确.故选D.9.(﹣2a3+3a2﹣4a)(﹣5a5)=10a8﹣15a7+20a6.故选D.10.(﹣3x+1)(﹣2x)2=(﹣3x+1)•(4x2)=﹣12x3+4x2.故选D.11.A、多项式乘以单项式,积一定是多项式,而不是单项式,故本选项错误;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、正确.故选D.12.A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.13.A、应为(2xy2﹣3xy)•2xy=4x2y3﹣6x2y2,故本选项错误;B、应为﹣x(2x+3x2﹣2)=﹣3x3﹣2x2+2x,故本选项错误;C、应为﹣2ab(ab﹣3ab2﹣1)=﹣2a2b2+6a2b3+2ab,故本选项错误;D、(a n+1﹣)•ab=a n+2b﹣ab2,正确.故选D.14.A、x n(x n﹣x2+3)=x2n﹣x n+2+3x n,正确;B、应为(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2,故本选项错误;C、应为(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3z+12x3y2z,故本选项错误;D、应为(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz﹣xz,故本选项错误.故选A.15.原式=﹣(10x3﹣5x2+15x)=﹣10x3+5x2﹣15x.故选A.16.﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a.故选D.17.∵长方体长为3m﹣4,宽为2m,高为m,∴它的体积是:(3m﹣4)×2m×m=6m3﹣8m2.故选C18.(﹣2ab)(3a2﹣3ab﹣4b2)=﹣6a3b+6a2b2+8ab3,﹣2x4+x3﹣x2.19.(x2+ax+1)•(﹣6x3)=﹣6x5﹣6ax4﹣6x3,∵展开式中不含x4项,∴﹣6a=0,解得a=0.20.4x•(2x2﹣3x+1)=8x3﹣12x2+4x.21.﹣3x•(2x2﹣x+4)=﹣6x3+3x2﹣12x.22.(﹣2x2)3•(x2+x2y2+y2)的结果中次数是10的项的系数是﹣8.23.(x2+x﹣1)•(﹣2x)=﹣2x3﹣x2+2x.24.(3a2x3﹣6ax2+9a3x4)÷3ax2=3a2x3÷3ax2﹣6ax2÷3ax2+9a3x4÷3ax2=ax﹣2+3a2x2.故答案为:ax﹣2+3a2x2.25.=x4﹣6x3+3x2.26.(x2y﹣xy﹣y3)(﹣4xy2)=﹣3x3y3+2x2y3+xy5.27.计算:(﹣9x2+3x)(﹣3x)=27x3﹣9x2.28.计算:=﹣3x2y+8x3y2.29.计算:=﹣2x3+x2﹣6x30.计算:﹣3xy(4y﹣2x+1)=﹣12xy2+6x2y﹣3xy.31.长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.32由题意得:﹣12x3y5﹣9x2y4=﹣3xy2(4x2y3+3xy2),∴A=﹣3xy2,则A2=9x2y4.故答案为:9x2y433.(x2y﹣xy﹣y3)(﹣4xy2)=﹣3x3y3+2x2y3+xy5.34.原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.35.﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a36.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.37.(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.38.由题意可得:这个长方形的宽为(a+b)﹣(a﹣b)=2b(cm),长方形的周长为2(a+b+2b)=2a+6b(cm),长方形的面积为(a+b)×2b=2ab+2b2(cm2).39.原式=﹣8a3b3(5a2b﹣ab2+b3)=﹣40a5b4+4a4b5﹣2a3b6.40.(﹣a2b)(b2﹣a+)=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•=﹣a2b3+a3b﹣a2b.41.(1)防洪堤坝的横断面积S=[a+(a+2b)]×a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.42.2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x43.2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b244.(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y445.(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.46.原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy347.(﹣2ab)(3a2﹣2ab﹣b2)=(﹣2ab)•(3a2)+(﹣2ab)•(﹣2ab)+(﹣2ab)•(﹣b2)=﹣6a3b+4a2b2+2ab3.48.﹣2x2(+y2)=﹣x3y﹣2x2y249.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.50.(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.51.=﹣2a2•ab+2a2•b2=﹣a3b+2a2b²52.=﹣2x2•(xy)﹣2x2•y2=﹣x3y﹣2x2y253.﹣3a•(2a2﹣a+3)=﹣3a•2a2+3a•a﹣3a•3=﹣6a3+3a2﹣9a.54.2a(3a﹣2b)=2a•3a﹣2a•2b=6a2﹣4ab.55.2a2(3a2﹣5b+1),=2a2•3a2+2a2•(﹣5b)+2a2,=6a4﹣10a2b+2a256.原式=10x3﹣15x2+20x57.(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.58.2a2•(3a2﹣5b)=2a2•3a2﹣2a2•5b=6a5﹣10a2b.59.这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.60.∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.。
14.1.5单项式乘以多项式

. 3 . 乘法对加法的分配律
a(b c) ab ac
设长方形长为(a+b+c),宽为m, 则面积为;m(a+b+c)
这个长方形可分割为宽为m,长分别为a、b、c 的三个小长方形, 它们的面积之和为ma+mb+mc
∴ m(a+b+c)=ma+mb+mc
m ma
a
mb
mc
c
b
m(a+b+c) = ma+mb+mc
课堂 & 测控 ☞
(1)如果单项式-3xay2和x3yb的积与7x4y5 1 ,b=__ 3 ;这两个单项式 是同类项,则a=__ 4y5 -3x 的积是 ______.
(2)(-4x) · (2x2+3x-1) (3)3x[xy-2x(y-x)]+3y(x2-y2) 其中x=-1,y=2.
拓展 & 提高 ☞
观察这个式子有什么特征? 思考: 你能说出单项式与多项式相乘的法则吗?
单项式乘以多项式法则:
用单项式分别去乘多项式的 每一项,再把所得的积相加。
你能用字母表示这一结论吗?
a(b c) ab ac
例题: (-4x2)· (3x
+ 1) (-4x2) ×1
原式=(-4x2)(3x)
=(-4×3)(x2· x)+(-4x2) = -12x3-4x2
(1)已知ab 6, 求 - ab(a b - ab - b)的值
2 2 5 3
(2)已 知x 3, y 2, 求 代 数 式 1 m n 1 n m ( x y ) ( x y )的 值 3 2
m n
9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练巩固篇(含答案)

专题9.3 单项式乘以单项式(巩固篇)(专项练习)一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算:a2b•(ab)﹣1=( )A.a B.a3b2C.a D.a3b23.若(-5a m+1b2n-1)·(2a n b m)=-10a4b4,则m-n的值为( )A.-1B.1C.-3D.34.如果一个单项式与的积为,则这个单项式为()A.B.C.D.5.如果单项式与是同类项,那么这两个单项式的积是()A.B.C.D.6.若,则()A.8B.9C.10D.127.若(mx4)·(4x k)=-12x12,则适合条件的m,k的值分别是( )A.m=-3,k=8B.m=3,k=8C.m=8,k=3D.m=-3,k=38.一个长方形的宽是1.5×102 cm,长是宽的6倍,则这个长方形的面积(用科学记数法表示)是()A.13.5×104cm2B.1.35×105cm2C.1.35×104cm2D.1.35×103cm29.某同学做了四道题:①;②;③;④,其中正确的题号是()A.①②B.②③C.③④D.②④10.下列各图均由若干个大小相同的小正方形组成,且最大的正方形边长都为a,下面三幅图中阴影部分的面积均相同,请你写出这个面积(用含有a的式子表示)( )A.B.C.D.二、填空题11.计算:___________.12.计算:_________ (结果用科学记数法表示)13.若单项式4x m-2n y8与-2x2y4m+2n的和仍为单项式,则这两个单项式的积为________.14.计算_________________________15.若am+1bn+2·a2n-1b2m=a5b3,则m+n的值为________.16.如果单项式与单项式的乘积为,则__________.17.若-2x a y·(-3x3y b)=6x4y5,则a=_______,b=_______.若(mx4)·(4x k)=-12x12,则m=____,k=______.18.三、解答题19.计算:(1) (2)20.计算:(1) .(2) .21.计算:(1) ;(2) ;(3) ;(4) .22.已知单项式与的积与是同类项,求.23.化简求值:(1) 当a=2022时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2022的值.(2)24.如图是某一长方形闲置空地,宽为米,长为b米,为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的甬路,剩余部分种草.(提示:取3)(1)甬路的面积为________平方米;种花的面积为_______平方米;(2)当,时,请计算该长方形场地上种草的面积;(3)在(2)的条件下,种花的费用为每平方米30元,种草的费用为每平方米20元,甬路的费用为每平方米10元.那么美化这块空地共需要资金多少元?参考答案1.B【分析】根据单项式乘以单项式法则,进行运算,即可一一判定.解:A.,故该选项错误,不符合题意;B.,故该选项正确,符合题意;C.,故该选项错误,不符合题意;D.,故该选项错误,不符合题意;故选:B.【点拨】本题考查了单项式乘以单项式法则,熟练掌握和运用单项式乘以单项式法则是解决本题的关键.2.C【分析】根据单项式乘单项式法则及积的乘方运算法则进行运算即可求得.解:原式a2b•a﹣1b﹣1a2•a﹣1•b•b﹣1a2﹣1b1﹣1a.故选:C.【点拨】本题考查了单项式乘单项式法则及积的乘方运算法则,熟练掌握和运用各运算法则是解决本题的关键.3.A【分析】根据单项式相乘的法则可得:(-5a m+1b2n-1)(2a n b m)=-10a m+n+1b m+2n-1,然后再根据题意可得方程组,解出m、n的值即可求得m-n的值.解:∵(-5a m+1b2n-1)(2a n b m)=-10a m+n+1b m+2n-1,∴解得:m=1,n=2,所以m-n=1-2=-1.故选A.【点拨】考查了单项式乘法,关键是掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.4.B【分析】把单项式的积转化为单项式的除法计算即可.解:设这个单项式为,由题意得,,,故选:.【点拨】本题考查了单项式的乘法,单项式的除法,熟记运算的法则是解题的关键.5.B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a和b,再利用单项式乘以单项式计算结果即可.解:由题意可得:,解得:,则这两个单项式分别为:,,∴它们的积为:,故选:B.【点拨】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.6.D【分析】先根据单项式乘以单项式,确定m,n的值,即可解答.解:∵,∴,,∴,,∴,故选D.【点拨】本题考查了单项式乘以单项式,解题的关键是确定m,n的值.7.A【分析】等式左边先利用单项式乘单项式法则计算,然后根据等式的性质左右对比求得m、k的值.解:∵(mx4)·(4x k)=4mx4+k,又∵(mx4)·(4x k)=-12x12,∴4m=-12,4+k=12,∴m=-3,k=8,故选A.【点拨】本题考查了单项式乘单项式,熟练掌握单项式乘单项式的法则是解题的关键.8.B【分析】首先求得长方形的长,然后利用长方形的面积公式求解解:长是6×1.5×10=9×10(cm)则长方形的面积是1.5×10×9×10=13.5×10=1.35×10(cm)故选B.【点拨】此题考查单项式乘单项式和科学记数法一表示较大的数,解题关键在于熟练掌握运算法则9.D【分析】根据合并同类项法则可判断①错误,根据积的乘方运算法则和幂的乘方运算法则可判断②正确,根据单项式除以单项式和同底数幂除法的运算法则可判断③错误,根据单项式乘以单项式和同底数幂乘法的运算法则可判断④正确.解:①不是同类项不能合并,错误.②,正确.③,错误.④,正确.故选:D.【点拨】本题考查了合并同类项法则,积的乘方,幂的乘方,单项式除以单项式,单项式乘以单项式的运算法则,熟练掌握以上知识点是解题的关键.10.B【分析】题目已告诉三个图形的阴影面积相同故选最右边图形用a表示其阴影面积.右边图形的阴影是梯形,可先用a表示出其上下底及高,再运用梯形面积公式表示出其面积,最后化简即得答.解:由于题目已知三个图形的阴影面积相同,故只需把最右边图形的面积用a表示即可.如下图知梯形的上底长为,高为,下底长为a所以阴影部分的面积为==.故选:B.【点拨】本题考查用单项式的乘法解决面积类问题.关键是要正确利用字母根据题意表示相关的量再套用面积公式.本题中最大的正方形边长这a,故最小的正方形边长为,则其它长度量容易表示.11.【分析】根据单项式乘以单项式法则计算即可.解:,故答案为:.【点拨】本题考查单项式乘以单项式,熟练掌握单项式乘以单项式法则是解题的关键.12..【分析】原式利用单项式乘以单项式法则计算,结果化为科学记数法即可.解:,=,=.故答案为:.【点拨】此题考查了单项式乘以单项式,熟练掌握运算法则是解答本题的关键.13.-8x4y16【分析】根据题意得两个单项式为同类项,从而可先求出m,n的值,再求出两个单项式之积即可.解:∵4x m-2n y8与-2x2y4m+2n的和仍为单项式,∴4x m-2n y8与-2x2y4m+2n是同类项,∴,解得,∴4x2y8•(-2x2y8)=-8x4y16,故答案为:-8x4y16.【点拨】此题考查了单项式乘单项式,以及合并同类项,熟练掌握运算法则是解本题的关键.14.【分析】先去括号,再根据单项式的乘法法则对单项式进行化简即可.解:==【点拨】本题考查单项式乘单项式,熟练掌握计算法则是解题关键.15.2【分析】根据单项式的乘法的法则,同底数幂相乘,底数不变,指数相加的性质计算,然后再根据相同字母的次数相同列出方程组,整理即可得到m+n的值.解:a m+1b n+2•a2n-1b2m=a m+1+2n-1•b n+2+2m=a m+2n•b n+2m+2=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故答案为2.【点拨】本题主要考查单项式的乘法的法则和同底数幂的乘法的性质,根据数据的特点两式相加求解即可,不需要分别求出m、n的值.16.-5【分析】根据已知条件可求得,约分可得,根据单项式相乘的原则:底数不变,指数相加可得求解即可.解:单项式与单项式的乘积为,即两边约分后可得根据底数不变,指数相加原则可得可求得.故答案为-5.【点拨】此题考查单项式乘单项式,解题关键在于掌握运算法则.17. 1; 4; -3; 8.【分析】根据单项式乘以单项式的乘法法则计算即可解答.解:∵-2xy·(-3x3y4)=6x4y5,∴a=1,b=4;∵(-3x4)·(4x8)=-12x12,∴m=-3,k=8.故答案为1,4,-3,8.【点拨】本题考查了单项式乘以单项式,灵活运用单项式乘以单项式的运算法则进行计算是解决问题的关键.18.【分析】根据题目所给的信息得表示,表示,在进行单项式乘以单向式的运算即可.解:根据题意,得表示,表示,则=×=.故答案为:.【点拨】此题考查了新定义下的单项式乘以单项式的运算,解题的关键是读懂题意,根据题目所给的信息写出相应的式子.19.(1) (2)【分析】(1)根据幂的乘方及同底数幂的乘法运算法则进行计算即可;(2)先算幂的乘方,单项式乘单项式,再合并同类项即可.(1)解:原式(2)解:原式【点拨】本题考查了单项式乘单项式,幂的乘方,同底数幂的乘法,熟练掌握运算法则是解题的关键.20.(1) (2)【分析】(1)根据整式的加减运算、同底数幂的乘法运算以及积的乘方运算即可求出答案;(2)根据单项式的乘除法则进行计算即可.解:(1)==(2)==【点拨】本题考查同底数幂的乘法以及积的乘方运算,单项式的乘除,解决本题的关键是熟练掌握整式的运算法则.21.(1) (2) (3) (4)【分析】(1)单项式与单项式相乘,把他们的系数,相同字母分别相乘;(2)单项式与单项式相乘,把他们的系数,相同字母分别相乘;(3)先进行积的乘方,再利用单项式与单项式相乘,把他们的系数,相同字母分别相乘;(4)先进行积的乘方,再利用单项式与单项式相乘,把他们的系数,相同字母分别相乘.解:(1);(2);(3);(4).【点拨】本题考查的是单项式乘单项式,掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.22.2.【分析】根据同底数幂的乘法,同类项的概念可求m,n的值;从而求得的值.解:9a m+1b n+1•(-2a2m-1b2n-1)=9×(-2)•a m+1•a2m-1•b n+1•b2n-1=-18a3m b3n因为与5a3b6是同类项,所以3m=3,3n=6,解得m=1,n=2;∴【点拨】本题考查了同类项的定义;解题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.23.(1) 2022(2) x2n,64【分析】(1)先根据单项式乘多项式进行计算,再合并同类项,最后代入求值即可;(2)先根据单项式乘多项式进行计算,再合并同类项,最后代入求出答案即可.(1)解:原式==2022;(2)解:原式==;当x=-2,n=3时,则;【点拨】本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.24.(1)ab;3a2;(2)28平方米;(3)1120元【分析】(1)利用长方形面积公式和圆的面积公式计算即可;(2)用总面积减去甬路和花圃面积即可;(3)表示出甬路、花圃、草地的面积,再求出各自的花费即可.解:(1)甬路的面积:(3a-a-a)•b=ab(平方米),种花的面积:π•a2≈3a2(平方米),故答案为:ab;3a2;(2)种草的面积:3a•b-ab-πa2=2ab-3a2,当a=2,b=10时,原式≈2×2×10-3×22=40-12=28(平方米),答:长方形场地上种草的面积为28平方米;(3)3×22×30+28×20+2×10×10=360+560+200=1120(元)答:美化这块空地共需要资金1120元.【点拨】此题主要考查了列代数式和代数式求值,关键是掌握四个花圃拼在一起组成圆形.。
七年级数学上册精编分层练习:《单项式乘以多项式》(含答案)

第2课时单项式乘以多项式01基础题知识点1直接运用法则计算1.(湖州中考)计算2x(3x2+1),正确的结果是(C)A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x2.计算x(y-z)-y(z-x)+z(x-y),结果正确的是(A)A.2xy-2yz B.-2yzC.xy-2yz D.2xy-xz3.计算:a(a-1)-a2=-a.4.计算:(1)(2xy2-3xy)·2xy;解:原式=2xy2·2xy-3xy·2xy=4x2y3-6x2y2.(2)-x(2x+3x2-2);解:原式=-x·2x+(-x)·3x2+(-x)·(-2)=-2x2-3x3+2x.(3)-2ab(ab-3ab2-1).解:原式=-2ab·ab+(-2ab)·(-3ab2)+(-2ab)·(-1)=-2a2b2+6a2b3+2ab.知识点2运用法则解决问题5.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为(C) A.3x3-4x2B.6x2-8xC.6x3-8x2D.6x3-8x6.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写(A )A .3xyB .-3xyC .-1D .17.要使x(x +a)+3x -2b =x 2+5x +4成立,则a ,b 的值分别为(C )A .a =-2,b =-2B .a =2,b =2C .a =2,b =-2D .a =-2,b =28.化简求值:3a(a 2-2a +1)-2a 2(a -3),其中a =2.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=a 3+3a =14.02 中档题9.(北京中考)图中四边形均为长方形,根据图形,写出一个正确的等式:m(a +b +c)=am +bm +cm .10.方程3x(7-x)=18-x(3x -15)的解为x =3.11.计算:(1)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1=-13a 2b 3+a 2b 2-23ab 2-12ab.(2)3ab(a 2b -ab 2-ab)-ab 2(2a 2-3ab +2a).解:原式=3a 3b 2-3a 2b 3-3a 2b 2-2a 3b 2+3a 2b 3-2a 2b 2=a 3b 2-5a 2b 2.12.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.03 综合题13.某同学在计算一个多项式乘以-3x 2时,算成了加上-3x 2,得到的答案是x 2-12x +1,那么正确的计算结果是多少? 解:设这个多项式为A ,则A +(-3x 2)=x 2-12x +1, ∴A =4x 2-12x +1. ∴A ·(-3x 2)=(4x 2-12x +1)(-3x 2) =-12x 4+32x 3-3x 2.。
单项式乘以多项式练习题
1 单项式乘以多项式 1、填空:(每小题7分,共28分) (1) a (2a2一3a+1)=_________; (2)3ab(2a2b-ab+1) =_____________; (3)(34ab2+3ab一23b)(12ab)=_______;(4)(一22x)(2x-12x一1) =_____. 2.选择题:(每小题6分,共18分) (1)下列各式中,计算正确的是 ( )
A.(a-3b+1)(一6a)= -6a2+18ab+6a B.232191313xyxyxy
C.6mn(2m+3n-1) =12m2n+18mn2-6mn D.-ab(a2一a-b) =-a3b-a2b-ab2 (2)计算a2(a+1) -a(a2-2a-1)的结果为 ( ) A.一a2一a B.2a2+a+1 C.3a2+a D.3a2-a (3)一个长方体的长、宽、高分别是2x一3、3x和x,则它的体积等于 ( ) A.22x—32x B.6x-3 C.62x-9x D.6x3-92x 3.计算(每小题6分,共30分) (1)323(23)xyxyxy; (2)222(3)xxxyy;
(3)222(1)(4)4ababab (4)(2x3一32x+4x-1)(一3x); (5)22213632xyyxxy.
4.先化简,再求值.(每小题8分,共24分) (1) 22(1)2(1)3(25)xxxxxx;其中12x
(2)m2 (m+3)+2m(m2—3)一3m(m2+m-1),其中m52; ⑶4ab(a2b-ab2+ab)一2ab2(2a2—3ab+2a),其中a=3,b=2. 2
多项式乘以多项式 1、下列计算是否正确?为什么(每小题8分,共24分) (1) (5x+2y)(5x-2y)=(5x)2-(2y)2=25x2-4y2 (2) (-1+3a)(-1-3a)=(-1)2+(3a)2=1+9a2 (3) (-2x-3y)(3y-2x)=(3y)2-(2x)2=9y2-4x2
1.4.2单项式乘以多项式专项习题
单项式与多项式相乘知识梳理:(知识梳理在第二页)一、选择题1.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -2.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)4.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 5.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a bB .3222536a b a b +C .2332223236a b a b a b -++D .232236a b a b -+二、填空题 1.22(3)(21)x x x --+-= 。
2.321(248)()2x x x ---⋅-= 。
3.222(1)3(1)a b ab ab ab -++-= 。
4.2232(3)(23)3(25)x x x x x x ---+--= 。
5.228(34)(3)m m m m m -+--= 。
6.7(21)3(41)2(3)1x x x x x x ----++= 。
7.22223(2)()a b ab a b a --+= 。
8.223263()(2)2(1)x x y x x y --⋅-+-= 。
9.当t =1时,代数式322[23(22)]t t t t t --+的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库 - 让每个人平等地提升自我
1
15.1.4单项式与单项式相乘
一、选择题
1.计算2322)(xyyx的结果是( )
A. 105yx B. 84yx C. 85yx D.126yx
2.)()41()21(22232yxyxyx计算结果为( )
A. 36163yx B. 0 C. 36yx D. 36125yx
3.2233)108.0()105.2( 计算结果是( )
A. 13106 B. 13106 C. 13102 D. 1410
4.计算22232)3(2)(bababa的结果为( )
A. 3617ba B. 3618ba C. 3617ba D. 3618ba
5.x的m次方的5倍与2x的7倍的积为( )
A. mx212 B. mx235 C. 235mx D. 212mx
6.992213yxyxyxnnmm,则nm34( )
A. 8 B. 9 C. 10 D.无法确定
7. 计算))(32()3(32mnmyyxx的结果是( )
A. mnmyx43 B. mmyx22311 C. nmmyx232 D. nmyx5)(311
8.下列计算错误的是( )
A.122332)()(aaa B.743222)()(babaab
C.212218)3()2(nnnnyxyxxy D.333222))()((zyxzxyzxy
二、填空题:
1..___________))((22xaax
2.3522)_)((_________yxyx
3..__________)()()3(343yxyx
4.._____________)21(622abcba
5.._____________)(4)3(523232baba
百度文库 - 让每个人平等地提升自我
2
6..______________21511nnnyxyx
7.._____________)21()2(23mnmnm
8.._______________)104)(105.2)(102.1(9113
三、解答题
1.计算下列各题
(1))83(4322yzxxy (2))312)(73(3323cbaba
(3))2.1()25.2()31(522yxaxyaxx (4)3322)2()5.0(52xyxxyyx
(5))47(123)5(232yxyxxy (6)23223)4()()6()3(5aabababbba
2、已知:81,4yx,求代数式52241)(1471xxyxy的值.
3、已知:693273mm,求m.
4.若32a,62b,122c,求证:2b=a+c.
5.一长方体的长为7108cm,宽为5106cm,高为9105cm,求长方体的体积.
百度文库 - 让每个人平等地提升自我
3
单项式与多项式相乘
一、选择题
1.化简2(21)(2)xxxx的结果是( )
A.3xx B.3xx C.21x D.31x
2.化简()()()abcbcacab的结果是( )
A.222abbcac B.22abbc C.2ab D.2bc
3.如图14-2是L形钢条截面,它的面积为( )
A.ac+bc B.ac+(b-c)c
C.(a-c)c+(b-c)c D.a+b+2c+(a-c)+(b-c)
4.下列各式中计算错误的是( )
A.3422(231)462xxxxxx B.232(1)bbbbbb
C.231(22)2xxxx D.342232(31)2323xxxxxx
5.2211(6)(6)23abababab的结果为( )
A.2236ab B.3222536abab
C.2332223236ababab D.232236abab
二、填空题
1.22(3)(21)xxx 。
2.321(248)()2xxx 。
3.222(1)3(1)abababab 。
4.2232(3)(23)3(25)xxxxxx 。
5.228(34)(3)mmmmm 。
6.7(21)3(41)2(3)1xxxxxx 。
7.22223(2)()abababa 。
8.223263()(2)2(1)xxyxxy 。
9.当t=1时,代数式322[23(22)]ttttt的值为 。
10.若20xy,则代数式3342()xxyxyy的值为 。
百度文库 - 让每个人平等地提升自我
4
三、解答题
1.计算下列各题
(1)111()()(2)326aababab
(2)32222211(2)(2)()342xyxyxyxyxyz
(3)3212[2()]43abaabb
(4)32325431()(2)4(75)2aabababab
2.已知26ab,求253()abababb的值。
3.先化简,再求值22(69)(815)2(3)xxxxxxxx,其中16x。
4.已知225(2520)0mmn,
求2(2)2(52)3(65)3(45)mmnmnmnnmn的值。
5.解方程:2(25)(2)6xxxxx
6.已知:单项式M、N满足222(3)6xMxxyN,求M、N。