加减法运算电路的设计和调试方法

加减法运算电路的设计和调试方法
加减法运算电路的设计和调试方法

二○一二~二○一三学年第一学期

电子信息工程系

脉冲数字电路课程设计

报告书

班级:电子信息工程(DB)1003班

课程名称:脉冲数字电路课程设计

学时: 1 周

学生姓名:林云霞

学号:201012135085

指导教师:廖宇峰

二○一二年九月

一、设计任务及主要技术指标和要求

1)设计目的

1.掌握加/减法运算电路的设计和调试方法。

2.学习数据存储单元的设计方法。

3.熟悉集成电路的使用方法。

2)设计内容

1.设计4位并行加/减法运算电路。

2.设计寄存器单元。

3.设计全加器工作单元。

4.设计互补器工作单元。

5.扩展为8位并行加/减法运算电路(选作)。

3)设计要求

1.根据任务,设计整机的逻辑电路,画出详细框图和总原理图。

2.选用中小规模集成器件(如74LS系列),实现所选定的电路。提出器材清单。

3.检查设计结果,进行必要的仿真模拟。

二、方案论证及整体电路逻辑框图

1)设计电路原理

图①加减法电路逻辑框图

如图所示:

第一步置入两个四位二进制数。例如(1010)2,(0101)2和(0101)2、(1000)2,同时在两个DCD_HEX_BLUE数码管上显示出对应的十六进制数A,5和5,8。

第二步通过开关选择加(减)运算方式;

第三步若选择加运算方式所置数送入加法运算电路进行运算;同理若选择减运算方式,则所置数送入减法运算电路运算;

第四步DCD_HEX_BLUE数码管和二极管显示运算结果。若是加法运算二极管显示进位,若是减法运算二极管显示正负号。即:

若选择加法运算方式,则(1010)2+(0101)2=(1111)2 十六进制5+A=F

并在数码管上显示器上显示F,二极管不发光。

若选择减法运算方式,则(0101)2-(1000)2=(10011)2十进制5-8= -3

并在七段译码显示器上显示3,而激光发光。

2)方案论证

通过开关J1——J8接不同的高低电平来控制输入端所置的两个一位十六进制数,分别用两个DCD_HEX_BLUE数码管显示所置入的两个数。数A接入74LS194的DCBA端,利用74LS194(1)的并行输入功能,从74LS194的QDQCQBQA输出。同理,数B通过74LS194(2)的QDQCQBQA输出。

数A经74LS194(1)输出后置入四位超前进位加法器74LS283的A4——A1端,74LS283(1)的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接74LS194(2)的QDQCQBQA。

通过开关J1——J4控制数A的数值,通过开关J5——J8控制数B的数值,通过脉冲端CLK来控制数A和数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。例如:

(0101)2+(0101)2=(1010)2 进位C4=0

当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B+1,实际上其计算的结果为

S=A-B完成减法运算。

当A>B时,输出结果S=A-B,通过数码管显示出来,进位显示为0。

当A<B时,需要再借助一块74LS283(2),将74LS283(1)1——4端置入74LS283(2)的A1——A4,74LS283(2)的B1——B4端分别置入1,74LS283(2)的输出端1——4分别置入四个二输入异或门,异或门的另一个输入端口置1,异或门的输出端口接入数码管,显示计算结果,进位显示1。例如:

(0101)2—(1010)2=(0101)2+(0101)2+(0001)2=(1011)2 计算出来的S S+(1111)2=(1011)+(1111)=(1 1010)(舍去进位)=(1010)2(求反)=(0101)2正确结果为-0101,这里的负号我们用1表示,正号用0表示。

3)方案确定

通过综合分析,我们可以把这一个减法运算电路和加法运算电路组合到一起,通过开关的选择来控制加减法运算,这样用的元器件更少,更节省成本,且操作方便。

三、单元电路设计

(单元电路的设计计算,元器件选择,电路图。填写完毕后删除本括号中的内容。)1)寄存器单元

如下图示关于寄存器单元的设计:

图②

寄存器选用的是74LS194,具有异步置零,保持,右移输入,左移输入,并行置数的功能,这里我们主要使用期并行置数的功能。将S0和S1分别置零,CLK接入方波信号。CLR是异步清零端,A和B的大小分别通过U2和U1的ABCD端输入,分别寄存在U2和U1中,当脉冲控制端CLK的上升沿到来时,并行输出A和B。

2)加法运算电路

如所示为加法运算电路:

图③

若是加法运算则借位端设置为0,将数据A和B分别置入到74LS283的A1——A4,B1——B4,进行加法运算并输出运算结果,74LS283的输出端4321接一个数码管显示结果,而进位端C4则接一个发光二极管显示进位大小,若有进位则发光,无进位则不发光。

3)减法运算电路

如图所示为减法电路

图④

当为减法运算时,导线29的端口的开关选择电平为1,即异或门的输出为反码B,74LS283(1)的进位也为1,此时S=A﹣B输入到74LS283(2)中的S分两种情况讨论:当A>B时导线17为1,导线18为0,此时U8A的输出为0 ,那么74LS283(2)中的B4——B1均为零,最下面四个二输入异或门的一端也为零,此处进行的运算为S+0000=S =A—B,最终的输出结果也为A-B。

符号输出端U7B为0。

当A<B时,在74LS283(1)中进行的运算是S=A﹣B,借位端C0为1,进位端C4为0,此时导线18为1,U8A的输出端为1,那么那么74LS283(2)中的B4——B1均为1,最下面四个二输入异或门的一端也为1,此处进行的运算为(A—B+1111),再对括号内的末四位求反即为输出结果,符号显示为1。

四、电路性能仿真调试

1)加法运算仿真

(0101)2+(0010)2=(0111)2 十六进制5+2=7

仿真如下:

图⑤

结果分析:

通过调节开关J1——J8,使U10显示5,U9显示2,开关J10接低电平,此时进行减法运算。二极管不发光,表示此时是低电平,进位为0,数码管显示数值为5。

2)减法运算仿真

(0101)2—(1010)2=(-0101)2 十六进制5—10=-5

仿真如下:

图⑥

结果分析:

通过调节开关J1——J8,使U10显示5,U9显示A,开关J10接高电平,此时进行减法运算。二极管发光,表示此时高电平,结果显示为负数,数值为5,综合起来是-5。

五、完整电路图及元器件列表

1)完整电路图

图⑦2)元器件明细表

六、设计总结

1)评价及改进意见

本次课程设计结果比较满意。

不仅设计出完整正确的电路图,还进行了仿真,通过数码管和二极管显示运算结果。比较突出的特点是将加减法运算电路集中在两个74LS283D上,只通过开关来选择加减法运算。另外就是巧妙的利用与门和异或门来表示加法的进位和减法运算结果正负,并通过发光二极管显示出来。最后,就是数码管的使用,能够直观的显示参与运算的数和运算结果。

除此,本次课程设计过程中还存在一些问题。

不熟悉绘图仿真软件multisim的用法,使本次课程设计遇到了诸多困难。例如:刚开始的时候,由于不熟悉芯片的搜寻功能,找不到芯片74LS194D和芯片74LS283D。不清楚导线与一般线条的区别,导致电路不导通。

在设计电路的过程中,对于芯片中的高低位对应的位置不对,导致输出结果与预想的不一样。

做课程设计的时候一定要细心,每一个细节都会影响到课程设计的质量及进程快慢。不仅如此,我们还要牢牢掌握专业知识及一些专业常用工具软件的用法。这样我们才可以顺利的完成课程设计,并在实践中去体会我们所学的知识。

2)心得体会

经过一个星期的课程设计,过程中的种种曲折可谓一言难尽!在这期间,因为苦苦思索没有思路,我愁眉不展过;因为发现了突破口,我激情澎湃过;也因取得一点点成就,我欣喜若狂过……点点滴滴令人回味无穷。

我想说,这次课程设计虽然有点累,甚至有些人还会觉得枯燥。但是苦中也有乐,汗水的背后见证的是收获。

对我而言,知识上的收获重要,精神上的丰收更加可喜。挫折是一份财富,经历是一份拥有。这次实习必将成为我人生旅途上一个非常美好的回忆!

加减法运算电路设计

电子课程设 ——加减法运算电路设计¥ 学院:电信息工程学院; 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月 19日

加减法运算电路设计 一、设计任务与要求 # 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: % 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 例如: 若选择加法运算方式,则(1001) 2+(0111) 2 =(10000) 2 十进制9+7=16, 并在七段译码显示器上显示16; 若选择减法运算方式,则(1001) 2-(0111) 2 =(00010) 2 十进制9-7=2, 并在七段译码显示器上显示02。 三、选择器件 ~ 1.器件种类: } ^ 表3-1 2.重要器件简介: (1)[ (2). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压:输出高电平电流:输出低电平电流: 8mA。 2).引脚图:

集成运放基本运算电路的分析与设计

实验报告 实验名称集成运放基本运算电路的分析与设计 课程名称模电实验 院系部:控计专业班级: 学生姓名:学号: 同组人:实验台号: 指导老师:成绩: 实验日期: 华北电力大学 一、实验目的和要求 1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。2.进一步熟悉该基本运算电路的输出与输入之间的关系。 二、实验设备 1.模拟实验箱 2.数字万用表 3.运算放大器LM324 4.10K、20K、100K的电阻若干

5.模拟实验箱上有滑动变阻器可供同学使用 三、实验原理. 实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。运放的理想参数: 1.开环电压增益 A=∞vd2.输入电阻 R=∞,R=∞icid3.输出电阻 R =0 o4.开环带宽 BW= ∞ KCMR =∞.共模抑制比5 .失调电压、电流6 、=0VI=0 ioio 根据分析时理想运放的条件,得出两个重要结论: =V 虚开路:I=0 V虚短路:i+-下图为反相比例运算放大器与同相比例运算放大器。 四、实验方法与步骤: 1.反向输入比例运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uiO相比较,分析误差产生的原因。 2.同向输入比例运算 参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。并将测量值与设计要求进行比较。 输入电压不能过大,要保证运放工作在线性区。

3.反向输入比例求和运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uOi相比较,分析误差产生的原因。 4.减法运算 参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。然后将测量值与设计要求进行比较。. 输入电压不能过大从而保证运放工作在线性区。五、实验结果与数据处理反向输入比例运算(V) U i U(V) o A 实验值u A-5 计算值 -5 -5 -5 u同向输入比例运算自行设计的电路图 自行设计的表格 (V)i (V) U o A 实验值u A6 6 6 6 计算值u反向输入求和运算 U(V) i1U-1 1 -1 (V) 1 i2U实验值o U计算值o减法运算自行设计电路图 自行设计表格 U (V) i1. -1 1 -1 1 (V) U i2U 实验值o U 计算值o六、思考题第

模拟电路自主设计实验

姓名_____________________班级_____________________学号_____________________ 日期_____________节次______________成绩__________教师签字__________________ 哈尔滨工业大学模拟电路自主设计实验 实验名称:运算放大器在限幅电路中的应用 一、实验目的 1、深入了解运算放大器的放大作用和深度负反馈; 2、灵活运用运算放大器的多种应用; 二、总体技术路线 2.1 当输入信号电压进入某一范围内,其输出信号的电压不再跟随输入信号电压的变化。 串联限幅电路:当输入电压U i <0或U i为数值较小的正电压时,D1截止,运算放大器的输出电压U0=0;仅当输入电压U i>0且U i为数值大于或等于某一个的正电压U th时,D1才正偏导通,电路有输出,且U0跟随输入信号U i变化。 并联限幅电路:当输入信号U i较小时,输出电压U0也较小,D1和D2没有击穿,U0跟随输入信号U i变化而变化,传输系数为:A uf=-R1 /R2;当U i幅值增大,使U0的幅值增大,并使D1和D2击穿,输出U0的幅度保持+(U z+U D)值不变,电路进入限幅工作状态。 2.2绝对值电路 当输入电压U i>0,则运算放大器的输出电压U1,D1导通,D2截止,输出电压U0 =0;当输入电压U i <0,则运算放大器的输出电压U1 >0,D2导通,D1截止,输出电压U0 =-R1 U i/R2。并通过反向放大器将整流信号放大两倍,再增加一个同相加法器,让输入信号的另一极性电

压不经整流,而直接送到加法器,与来自整流电路的输出电压相加,便构成了绝对值电路。 三、实验电路图 1、串联限幅电路: 2、并联限幅电路:

设计一个一位十进制加减法++数字电路课程设计报告

课程设计报告 课程:微机系统与接口课程设计学号: 姓名: 班级: 教师:

******大学 计算机科学与技术学院 设计名称:设计一个一位十进制加减法器 日期:2010年1月 23日 设计内容: 1、0-9十个字符和“+”“-”分别对应一个按键,用于数据输入。 2、用一个开关控制加减法器的开关状态。 3、要求在数码显示管上显示结果。 设计目的与要求: 1、学习数字逻辑等电路设计方法,熟知加减法器、编码器、译码显示的工作原理及特点; 2、培养勤奋认真、分析故障和解决问题的能力。 设计环境或器材、原理与说明: 环境:利用多功能虚拟软件Multism8进行电路的制作、调试,并生成文件。器材:74LS283或者4008, 4个异或门(一片74LS86)(减法);74LS08,3输入或门(加法) 设计原理: 图1二进制加减运算原理框图 分析:如图1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,

所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 设计过程(步骤)或程序代码: 实验电路: 1:减法电路的实现: (1):原理:如图1所示(如下),该电路功能为计算A-B。若n位二进制 原码为N 原,则与它相对应的补码为N 补 =2n-N 原 ,补码与反码的关系式为N 补 =N 反 +1, A-B=A+B 补-2n=A+B 反 +1-2n (2):因为B○+1= B非,B○+0=B,所以通过异或门74LS86对输入的数B求 其反码,并将进位输入端接逻辑1以实现加1,由此求得B的补码。加法器相加的结果为: A+B 反 +1, (3):由于2n=24=(10000) 2 ,相加结果与相2n减只能由加法器进位输出信号完成。当进位输出信号为1时,它与2n的差为0;当进位输出信号为0时,它与2n差值为1,同时还要发出借位信号。因为设计要求被减数大于或等于减数,所以所得的差值就是A-B差的原码,借位信号为0。

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

模拟运算电路(三)

实验五模拟运算电路(三) 一、实验目的 1、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念。 2、熟练掌握运算放大电路的故障检查和排除方法,以及输入阻抗、输出阻抗、增益、幅频 特性、传输特性曲线的测量方法。 二、实验原理 三、预习思考 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。 T:TIP 参数名称参数值参数意义及设计时应该如何考虑 直流参数 输入 失调电压V IO 1(T) <6mV 该参数表示使输出电压为零时需要在输入端作用的电压差。理 想运放当输入电压为零时,其输出电压也为零,但实际运放当 输入电压为零时,其输出端仍有一个偏离零的直流电压,这是 由于运放电路参数不对称所引起的。 输入 偏置电流I IB 80(T)<500nA 该参数指运算放大器工作在线性区时流入输入端的平均电流。 指运放输入级差分对管的基极电流 12 , B B I I,通常由于晶体管参

数的分散性,12B B I I ≠。输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级的性能,当他的β值太小时,将引起偏置电流增加。从使用角度看,偏置电流愈小,由信号源内阻变化引起的输出电压变化也愈小。 输入 失调电流I IO 20(T)<200nA 该参数是指流入两个输入端的电流之差。输出电压为零时,两 输入端静态电流的差值,即12io B B I I I =-。其典型值为几十至 几百Na .由于信号源内阻的存在,io I 会引起一输入电压,破坏放大器的平衡,使放大器输出电压不为零。io I 越小越好,他反映了输入级有效差分对管的不对称程度。 失调电压温漂 αV IO 20/uV C ±? 该参数指温度变化引起的输入失调电压的变化,通常以 /uV C ? 为单位表示.指在规定范围内io V 的温度系数。 共模抑制比K CMR 70(T)<90dB 差模电压增益VD A 与共模电压增益VC A 之比 开环差模 电压增益A VD 6 10 集成运放工作在线性区,接入规定的负载,无负反馈情况下的 直流差模电压增益。VD A 与输出电压0V 的大小有关。通常是在规定的输出电压幅度(如010V V =±)测得的值。VD A 又是频率的函数,频率高于某一数值后,VD A 的数值开始下降。 输出 电压摆幅V OM +/-10 ~14 正负输出电压的摆动幅度极限 差模输入电阻R ID 0.3~2M Ω 输出电阻R O 75 Ω 交流参数 增益带宽积G.BW 0.7~1.6MHZ 增益带宽积A OL * ? 是一个常量,定义在开环增益随频率变化的特性曲线中以-20dB/十倍频程滚降的区域。运放的增益是随信号的频率而变化的,输出电压随信号频率增大而使其下降到最大值的0.707倍的频率范围,称为带宽。 转换速率S R 0.25~0.5V/us (RL>2K) 该参数是指输出电压的变化量与发生这个变化所需时间之比的最大值。SR 通常以V/μs 为单位表示, 有时也分别表示成正向变化和负向变化。当运放在闭环情 况下,其输入端加上大信号(通常为阶跃信号时) ,其输出电压 波形将呈现一定的延时,其主要原因是运放内部电率中的电容 充放电需要一定的时间。SR 表示运放在闭环状态下,每1us 时间内输出电压变化的最大值。 极限参数 最大差模 输入电压V IOR 30V ± 反相和同相输入端所能承受的最大电压值。超过这个电压值, 运放输入级某一侧的BJT 将出现发射结的反向击穿,而使运放的性能显著恶化,甚至可能造成永久性损坏。 最大共模 13V ± 运放所能承受的最大共模输入电压。超过IC R V 值,它的共模抑

电路设计实验报告

电子技术课程设计 题目: 班级: 姓名: 合作者:

数字电子钟计时系统 一、设计要求 用中、小规模集成电路设计一台能显示时、分、秒的数字电子钟,基本要求如下: 1、采用LED显示累计时间“时”、“分”、“秒”。 2、具有校时功能。 二、设计方案 数字电子钟主要由振荡器、分频器、计数器、译码器、显示器等几部分组成,其整体框图为 其中,秒信号发生器为:

由石英晶体发出32768Hz的振荡信号经过分频器,即CD4060——14级串行二进制计数器/分频器和振荡器,输出2Hz 的振荡信号传入D触发器,经过2分频变为秒信号输出。 校时电路为: 当K1开启时,与非门一端为秒信号另一端为高电位,输出即为秒信号秒计数器正常工作,当K1闭合,秒信号输出总为0,实现秒暂停。 当K2/K3开启时,分信号/时信号输入由秒计数器输出信号及高电平决定,所以输出信号即为分信号/时信号,当K2/K3闭合时,秒信号决定分信号/时信号输出,分信号/时信号输出与秒信号频率一致, 以实现分信号/时信号的加速校时。 秒、分计数器——60进制

首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当计数器的Q1,Q2输出均为1时经过与门电路,输出高电平,作为分 脉冲或时脉冲并同时使两计数器置零。 时计数器——24进制 时脉冲 首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当十位计数器Q1和个位计数器Q2输出均为1时经过与门电路,输出 高电平使两计数器置零。 译码显示电路

加减法运算电路设计

电子课程设 ——加减法运算电路设计 学院:电信息工程学院 专业:电气工程及其自动化 班级: 姓名: 学号: 指导老师:闫晓梅 2014年12月19日

加减法运算电路设计 一、设计任务与要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数, 2.作减法运算时被减数要大于或等于减数。 3.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。 4.系统所用5V电源自行设计。 二、总体框图 1.电路原理方框图: 图2-1二进制加减运算原理框图 2.分析: 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010), 如(1001) 2和(0111) 2 ,同时在两个七段译码显示器上显示出对应的十进制数 9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16,并在七段译码显示器上显示16; 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。 三、选择器件 1.器件种类: 表3-1 2.重要器件简介: (1) . 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。 1).74LS283 基本特性:供电电压: 4.75V--5.25V 输出高电平电流: -0.4mA 输出低电平电流: 8mA 。 2).引脚图: 图3-1 引出端符号: A1–A4 运算输入端 B1–B4 运算输入端 C0 进位输入端 序号 元器件 个数 1 74LS283D 2个 2 74LS86N 5个 3 74LS27D 1个 4 74LS04N 9个 5 74LS08D 2个 6 七段数码显示器 4个 7 74LS147D 2个 8 开关 19个 9 LM7812 1个 10 电压源220V 1个 11 电容 2个 12 直流电压表 1个

模电-模拟运算电路实验

实验五 模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 i F O U R U -=

关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图5-3 同相比例运算电路 4) 差动放大电路(减法器)

数字电路及设计实验

常用数字仪表的使用 实验内容: 1.参考“仪器操作指南”之“DS1000操作演示”,熟悉示数字波器的使用。 2.测试示波器校正信号如下参数:(请注意该信号测试时将耦合方式设置为直流耦合。 峰峰值(Vpp),最大值(Vmax),最小值(Vmin), 幅值(Vamp),周期(Prd),频率(Freq) 顶端值(Vtop),底端值(Vbase),过冲(Overshoot), 预冲(Preshoot),平均值(Average),均方根值(Vrms),即有效值 上升时间(RiseTime),下降时间(FallTime),正脉宽(+Width), 负脉宽(-Width),正占空比(+Duty),负占空比(-Duty)等参数。 3.TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低 电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V。 请采用函数信号发生器输出一个TTL信号,要求满足如下条件: ①输出高电平为3.5V,低电平为0V的一个方波信号; ②信号频率1000Hz; 在示波器上观测该信号并记录波形数据。

集成逻辑门测试(含4个实验项目) (本实验内容选作) 一、实验目的 (1)深刻理解集成逻辑门主要参数的含义和功能。 (2)熟悉TTL 与非门和CMOS 或非门主要参数的测试方法,并通过功能测试判断器件好坏。 二、实验设备与器件 本实验设备与器件分别是: 实验设备:自制数字实验平台、双踪示波器、直流稳压电源、数字频率计、数字万用表及工具; 实验器件:74LS20两片,CC4001一片,500Ω左右电阻和10k Ω左右电阻各一只。 三、实验项目 1.TTL 与非门逻辑功能测试 按表1-1的要求测74LS20逻辑功能,将测试结果填入与非门功能测试表中(测试F=1、0时,V OH 与V OL 的值)。 2.TTL 与非门直流参数的测试 测试时取电源电压V CC =5V ;注意电流表档次,所选量程应大于器件电参数规范值。 (1)导通电源电流I CCL 。测试条件:输入端均悬空,输出端空载。测试电路按图1-1(a )连接。 (2)低电平输入电流I iL 。测试条件:被测输入端通过电流表接地,其余输入端悬空,输出空载。测试电路按图1-1(b )连接。 (3)高电平输入电流I iH 。测试条件:被测输入端通过电流表接电源(电压V CC ),其余输入端均接地,输出空载。测试电路按图1-1(c )连接。 (4)电压传输特性。测试电路按图1-2连接。按表1-2所列各输入电压值逐点进行测量,各输入电压值通过调节电位器W 取得。将测试结果在表1-2中记录,并根据实测数据,做出电压传输特性曲线。然后,从曲线上读出V OH ,V OL ,V on ,V off 和V T ,并计算V NH ,V NL 等参数。 表1-1 与非门功能测试表

加减运算电路设计

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:加减运算电路设计 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

根据反相与同相加法运算电路的运算关系,输出电压与各个输人电压的运算的关系为 单运放加减运算电路的外电路阻值不易计算和调整,双运放电路不仅克服了,上述缺点,而且对运放本身共模抑制比的要求也较低,如图6-2-2所示。 根据反相求和电路输出与输入关系,可得 若取RF1=R4,则

实验内容及步骤: 设计一个能完成的运算电路。要求选用单运放加减电路实现,其输出失调电压 1.电路形式及集成运算放大器的选择 电路形式如图6-2-1所示,集成运算放大器采用μA741,其输人失调电流=100~300nA 2.元器件参数的计算 (1)反馈电阻Rp的计算。Rp的最大值由运放允许的输出失调电压 和输人失调电流决定,即 其中,的大小按手册给定值或实测;为设计要求之一,包括输人失调电压,所引起的,而。与各电阻有关,故。为未知,所以只能按式(6-2-5) 取RF的值。 若未提此项要求,则Rr可在低于1MΩ内选取。RF值不宜过大,因为RF值越大,误差电压和噪声及漂移也越大; RF值也不宜过小,因为RF是负载的一部分,若过小,运放容易过载。 题意取,则 取RF=30kΩ (2)R1、R2、R3、R4的确定。设反向端、同向端各自输人信号为零时的直流等效电阻 RN、RP的值相等,可按反相求和原则计算R1、R2、R3、R4的值。

根据题目要求,则 (3)电阻R5的确定。R5是使RN=RP的平衡电阻,故首先计算在不包括R5时的反相端,同相端各自输入信号为零时的直流等效电阻RA和RB,即 4.电路的安装与调试 (1)静态的测试检查。 1)按电路图6-2-1搭接好实验电路,并细心检查运放组件各管脚位置的连接,切忌正负电源极性接反和输出端短路,否则会损坏集成块,确认无误后方可接通直电源。 2)将输入端接地,用万用表直流电压挡的相应量程测量输出端;此时,如果万用表显示不为零,则需要调整调零电位器旋钮,使输出端电压为零,在调零过程中,万用表的量程应从2V开始逐步变小,直至在毫伏级的量程下,测量输出为零时,结果最精确。此后的测量应保持电位器滑动端位置不变。 (2)动态测试。 1)当静态检查正常以后,将直流电源切断,输人端与“地”断开。 2)先对各输入信号电压进行初测,使其不超过规定的数值,然后

电路综合设计实验-设计实验2-实验报告

设计实验2:多功能函数信号发生器 一、摘要 任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。可编程门阵列(FPGA)具有高集成度、高速度、可重构等特性。使用FPGA来开发数字电路,可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。 此次实验我们采用DE0-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。频率范围为10KHz~300KHz,频率稳定度≤10-4,频率最小不进10kHz。提供DAC0832,LM358。 二、正文 1.方案论证 基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DE0-CV开发板来实现函数信号发生器。 DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080,8048,8085,Z80和其他的主流的微处理器进行直接交互。一个沉积硅铬R-2R 电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0.05%的全温度范围过温最大线性误差)。该电路使用互补金属氧化物半导体电

流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL)提高逻辑输入电压电平的兼容性。 另外,双缓冲区的存在允许这些DAC数模转换器在保持一下个数字词的同时输出一个与当时的数字词对应的电压。DAC0830系列数模转换器是八位可兼容微处理器为核心的DAC数模转换器大家族的一员。 LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。 本次实验选用的FPGA是Altera公司Cyclone系列FPGA芯片。Cyclone V系列器件延续了前几代Cyclone系列器件的成功,提供针对低成本应用的用户定制FPGA特性,支持常见的各种外部存储器接口和I/O协议,并且含有丰富的存储器和嵌入式乘法器,这些内嵌的存储器使我们在设计硬件电路时省去了外部存储器,节省了资源,而

加减法运算电路设计

加减法运算电路设计 1.设计内容及要求 1.设计一个4位并行加减法运算电路,输入数为一位十进制数,且作减法运算时被减数要大于或等于减数。 2.led 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。 3.提出至少两种设计实现方案,并优选方案进行设计 2.结构设计与方案选择 2.1电路原理方框图 电路原理方框图如下 → → 图1-1二进制加减运算原理框图 如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。 即: 若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16 并在七段译码显示器上显示16. 若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2 置数 开关选择运算方式 加法运算电路 减法运算 电路 译码显示计算结果 显示所置入的两个一位十进制数

并在七段译码显示器上显示02. 2.2加减运算电路方案设计 2.2.1加减运算方案一 如图2-2-1所示:通过开关S2——S9接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U13和U15分别显示所置入的两个数。数A 直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S6——S9,通过开关S6——S9控制数B的输入。当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B (反码)+1,实际上其计算的结果为S=A-B完成减法运算。由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)时加上6(0110),产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位。由于减法运算时两个一位十进制数相减不会大于10,所以不会出现上述情况,用一片芯片U11即可显示结果。 2.2.2加减运算方案二 由两异或门两与门和一或门组成全加器,可实现一位二进制加逻辑运算,四位二进制数并行相加的逻辑运算可采用四个全加器串行进位的方式来实现,将低位的进位输出信号接到高位的进位输入端,四个全加器依次串行连接,并将最低位的进位输入端接逻辑“0”,就组成了一个可实现四位二进制数并行相加的逻辑电路。 通过在全加器电路中再接入两个反相器可组成一个全减器,实现一位二进制减逻辑运算,将来自低位的错位信号端接到向高位借位的信号端,依次连接四个全减器,构成可实现四位二进制数并行进行逻辑减运算的电路。 在两组电路置数端接开关控制置数输入加法还是减法运算电路,电路输出端接LED灯显示输出结果,输出为五位二进制数。

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性范围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一) 模拟运算电路 预习部分 一、实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。 ⑧脚为空脚。 当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1) 反相比例运算电路 电路如图2-7-2所示。对于理想运放, 该电路 的输出电压与输入电压之间的关系为 Uo =-(R F / R 1)Ui 为了减小输入级偏置电流引起的运算误差,在 同相输入端应接入平衡电阻 R 2=R 1‖R F 。 2) 反相加法电路 图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路 电路如图2-7-3所示,输出电压与输入电压之间的关系为 F i F i F O //R //R R R U R R U R R U 2132211 =??? ? ??+-= 图2-7-1 μA741管脚图

3) 同相比例运算电路 图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F 当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图2-7-4 同相比例运算电路 4) 差动放大电路(减法器) 对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路 反相积分电路如图2-7-6所示。在理想化条件下,输出电压uo 等于 ()()01 C t i O U dt U RC t U +-=? 式中 Uc(o)是t =0时刻电容C 两端的电压值,即初始值。 如果u i (t)是幅值为E 的阶跃电压,并设Uc(o)=0,则 ()RC E Edt RC t U t O -=-=?01 即输出电压 Uo(t)随时间增长而线性下降。显然R C 的数值越大,达到给定的Uo 值所需的时间就越长。积分输出电压所能达到的最大值受集成运放最大输出范围的限值。 ()121 i i F O U U R R U -=

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

组合逻辑电路设计实验报告

组合逻辑电路设计实验报告 1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下:

卡诺图: 1 010100D D D D D D G ⊕=+= 2 121211D D D D D D G ⊕=+=

3232322D D D D D D G ⊕=+= 33D G = 电路原理图如下: 七段码显示: 真值表如下: 卡诺图:

2031020231a D D D D D D D D D D S ⊕++=+++= 10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++= 2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=

2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++= 01213g D D D D D S +⊕+= 电路原理图如下:

4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形:

除法运算电路(模拟电路课程设计)

模拟电路课程设计报告设计课题:除法运算电路 专业班级: 学生: 学号: 指导教师: 设计时间:

目录 第一设计任务与要求 (3) 第二方案设计与论证 (3) 第三单元电路设计与参数计算 (4) 第四总原理图及元器件清单 (9) 第五安装与调试 (11) 第六性能测试与分析 (12) 第七结论与心得 (14) 第八参考文献 (15)

题目4:除法运算电路(4) 一、设计任务与要求 1.设计一个二输入的除法运算电路。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 该课程设计是做一个二输入的除法电路,而因此需要利用对数和指数运算电路实现或者用模拟乘法器在集成运放反馈通路中的应用来实现。 在产生正、负电源的实用电路中,多采用全波整流电路,最常用的是单向桥式整流电路,即将四个二极管首尾相连,引出两根线接变压器,另外两个接后面电路,并将桥式整流电路变压器副边中点接地,并将二个负载电阻相连接,且连接点接地。电容滤波电路利用电容的充放电作用,使输出电压趋于平滑。 方案一: 除法电路的输出电压正比于其两个输入电压相除所得的商,所以利用对数电路、差分比例运算电路和指数电路,可得除法运算电路的方块图: I1 u

方案二: 利用反函数型运算电路的基本原理,将模拟乘法器放在集成运放的反馈通路中,便可构成除法运算电路。 比较: 方案一:该方案是利用对数电路、差分比例运算电路和指数电路的组合来设计的,运算放大器uA741要四个,电阻也很多,对焊接有很大的要求,要焊的器件比较多,相对来说比较复杂。 方案二:该方案是利用模拟乘法器放在集成运放的反馈通路中的应用, uA741只要一个,电阻也很少,焊接起来比较方便。 我选择方案二。 三、单元电路设计与参数计算 1.对数运输电路 (1)电路原理图 由二极管方程知 ) 1e (D S D -=T U u I i 当 u D >>U T 时, T U u I i D e S D ≈

相关文档
最新文档