四年级第9讲 鸡兔同笼
四年级数学下册 课件(第九单元:数学广角 —— 鸡兔同笼)

在解决这个问题时有什么发现? 5. 如果笼子里都是兔。 (1)如果笼子里都是兔,就有 8×4=32只脚,比题 目中多32-26=6只脚。
(2)那么需要用鸡换兔,一只鸡比一只兔少2只脚, 有6÷2=3只鸡。
(3)所以有8-3=5只兔。
问题②:回顾刚才的三种解法,“如果都是鸡”“如果都 是兔”与列表法有什么联系?
问题①:通过填表,你发现了什么? 每多一只鸡,就少两只脚;每多一只兔,就多两只脚。 所以有3只鸡,5只兔。
在解决这个问题时有什么发现?
4. 如果笼子里都是鸡。
(1)如果笼子里都是鸡,就有8×2=16只脚,比题目 中少26-16=10只脚。 (2)那么需要用兔换鸡,一只兔比一只鸡多2只脚,有 10÷2=5只兔。 (3)所以有8-5=3只鸡。
1. 有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各 有几只?
预设:(2)如果都是龟。 ① 如果都是龟,就有40×4=160条腿,比题目中多 160-112=48条腿。 ② 那么需要用鹤换龟,换上一只鹤,腿的总数就少 2条,有48÷2=24只鹤。 ③ 所以有40-24=16只龟。
1. 有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各 有几只?
鸡兔同笼,从上面数有5个头,从下面数,有14只 脚,鸡和兔各有几只?
要求:用画图法或列表法独立尝试解决问题。
交流研讨,提升认识
在解决这个问题时有什么发现? 1. 如果是5只兔,就有20条腿。
在解决这个问题时有什么发现? 2. 如果是5只鸡,就有10条腿。
在解决这个问题时有什么发现?
3. 每多一只鸡,就少两条腿;每多一只兔, 就多两条腿。
864÷36=24
864÷24=36 24×36=864
小学四年级下册数学讲义第九章 数学广角-鸡兔同笼 人教新课标版(含解析)

人教版小学四年级数学下册同步复习与测试讲义第九章数学广角-鸡兔同笼【知识点归纳总结】鸡兔同笼方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数公式3:总脚数÷2-总头数=兔的只数;总只数-兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2;兔的只数=鸡兔总只数-鸡的只数公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数-兔总只数公式6:(头数x4-实际脚数)÷2=鸡公式7:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数.【经典例题】例1:鸡兔同笼,鸡兔共35个头,94只脚,问鸡兔各有多少只?分析:假设全部是兔子,有35×4=140只脚,已知比假设少了:140-94=46只,一只鸡比一只兔子少(4-2)只脚,所以鸡有:46÷(4-2)=23只;兔子有:35-23=12只.解:鸡:(35×4-94)÷(4-2),=46÷2,=23(只);兔子:35-23=12(只);答:鸡有23只,兔子有12只.点评:此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.例2:班主任王老师,在期末用50元买了2.5元和1.5元的水笔共30支,准备作为优秀作业的奖品.那么2.5元和1.5元的水彩笔各多少支?分析:假设30支全是2.5元的水笔,则用30×2.5=75元,这样就多75-50=25元;用25÷(2.5-1.5)=25支得出1.5元的水笔支数,进而得出2.5元的水笔数量.解:1.5元的水笔数量:25÷(2.5-1.5)=25÷1=25(支),30-25=5(支),答:2.5元的水彩笔5支,1.5元的水彩笔25支.点评:此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.【同步测试】单元同步测试题一.选择题(共8小题)1.笼子里有鸡和兔共15只,腿有44条,兔子有()只.A.7B.8C.62.某宾馆客房有3人间和2人间共15间,总共可以住39人,则该宾馆有()A.3人间6间,2人间9间B.3人间8间,2人间7间C.3人间9间,2人间6间3.六年级270人去公园游玩,一共租了10辆车.每辆大客车坐30人、小客车坐20人,所有的车刚好坐满,租用大客车()辆.A.3B.4C.6D.74.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有十八头,下有五十六足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡10只兔12只B.鸡10只兔8只C.鸡14只兔21只D.以上都不正确5.一场篮球比赛,一名队员总共投中了11个球,得了28分.他两分球投中了()个.A.4B.5C.6D.76.钢笔每支9元,圆珠笔每支2元,一共买了6支,花了40元,钢笔买了()支.A.4B.3C.27.100元钱买了100只鸟,大鸟3元钱一只,小鸟1元钱3只.大鸟买了()只.A.30B.25C.75D.108.在一个停车场上,停了小轿车和摩托车一共16辆,这些车一共52个轮子.小轿车有()辆.A.9B.10C.11二.填空题(共8小题)9.把45千克油装到两种不同规格的油桶里(见图),大、小油桶正好装满12桶,期中大油桶装了桶,小油桶装了桶.10.笑笑买来3元一瓶的矿泉水和5元一瓶的矿泉水共12瓶,共花48元.3元的矿泉水买了瓶.11.停车场里有摩托车和小轿车共20辆,共70个轮子.摩托车有辆,小轿车有辆.12.电影院在一小时内售出甲、乙两种票共30张,甲种票30元一张,乙种票25元一张,共收入840元.其中售出甲种票张,乙种票张.13.有1元和5角的硬币共18枚,一共14元,5角的硬币有枚.14.一次数学竞赛中共有20道题,规定答对一道得5分,答错或不答一题扣2分,得到65分才能晋级,小明若想晋级,他至少要答对道题.15.体育馆内,14张乒乓球台上共有40人打球,正在进行单打的乒乓球台有张,双打的乒乓球台有张.16.王老师带领五(1)班50名同学参加植树.王老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树苗120棵.请问全班男生和女生分别有名和名.三.判断题(共5小题)17.动物园里有百灵鸟和松鼠共17只,它们共有54条腿,则百灵鸟有7只,松鼠有10只.(判断对错)18.数学竞赛试卷共12道题,做对一题得10分,做错一题扣5分,小军全部做完了,但最后只得了90分,则他做错了6道题.(判断对错)19.解决鸡兔同笼问题常用假设法..(判断对错)20.自行车和三轮车共10辆,总共有26个轮子,自行车有4辆.(判断对错)21.今有鸡兔同笼,头有27个,脚有74只,则鸡有16只,兔有11只.(判断对错)四.应用题(共7小题)22.自行车和童车分别有多少辆?23.某公司委托搬运站送1000个玻璃花瓶,双方商定每个运费0.15元,如打碎一个,这个不但不计运费,还要赔偿0.95元.结果搬运站共得搬运费145.6元.搬运过程中打碎了几个玻璃花瓶?24.小李来到文具超市,发现中性笔和圆珠笔共28盒,共计306支,中性笔每盒10支,圆珠笔每盒12支,中性笔和圆珠笔各多少盒?25.学校有象棋、跳棋共26副,2名学生下1副象棋,6名学生下1副跳棋,恰好可以同时供120名学生活动.象棋与跳棋各有多少副?26.菜市场的停车场里停着一些两轮摩托车和三轮摩托车,一共有42辆,共100个车轮.三轮车停了多少辆?27.一个停车场有两轮摩托和三轮摩托共13辆,它们共有36个轮子.两轮摩托和三轮摩托各有多少辆?28.五年级有108人参加了文体活动,分别是踢毽子和跳绳,踢毽子3人一组,跳绳6人一组,一共有22组,踢毽子和跳绳各有多少组?参考答案与试题解析一.选择题(共8小题)1.【分析】假设全是兔,那么应该是15×4=60条腿,则比已知多出了60﹣44=16条腿,因为1只兔比1只鸡多4﹣2=2条腿,所以鸡的只数为16÷2=8只,进而求得兔的只数.【解答】解:假设全是兔子,则鸡就有:(15×4﹣44)÷(4﹣2)=(60﹣44)÷2=16÷2=8(只)兔有:15﹣8=7(只)答:兔子有7只.故选:A.【点评】此题属于典型的鸡兔同笼问题,可以利用假设法解答.2.【分析】假设全是3人房,则一共可以住15×3=45人,这比已知的39人多出了45﹣39=6人,因为一间3人房比1间2人房多3﹣2=1人;所以2人间一共有6间,则3人房有15﹣6=9间.【解答】解:假设全是3人房,则2人房有:(15×3﹣39)÷(3﹣2)=6÷1=6(间)则3人房有:15﹣6=9(间)答:3人间9间,2人间6间.故选:C.【点评】此题属于鸡兔同笼问题,采用假设法直接计算出正确结果,再进行选择即可.3.【分析】假设全租的是大客车,则共有的人数是10×30=300人,这和实际人数就差了300﹣270=30人,而大客车和小客车每辆差的人数是(30﹣20)人,据此可求出小客车的辆数.据此解答.【解答】解:(10×30﹣270)÷(30﹣20)=(300﹣270)÷10=30÷10=3(辆)10﹣3=7(辆)答:租用大客车7辆.故选:D.【点评】本题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.4.【分析】此题是典型的鸡兔同笼问题,可以采用假设法进行计算,假设全是鸡,则有:18×2=36只足,那么比实际56只足就少了56﹣36=20只足,这就是把兔子看做鸡少加的那2只足,由此可知兔子的只数为:20÷2=10只,从而即可求得鸡的只数.【解答】解:(56﹣18×2)÷(4﹣2)=(56﹣36)÷2=20÷2=10(只)18﹣10=8(只)答:鸡有8只,兔有10只.故选:D.【点评】解决鸡兔同笼问题的关键是用假设法来进行解答.5.【分析】假设投中的全部是3分球,可得:3×11=33(分),比实际得的28分多:33﹣28=5(分),是因为我们把每个2分球当作了3分球,每个球算了3﹣2=1分,所以可以求出2分球的个数:5÷1=5(个),据此解答.【解答】解:假设投中的全部是3分球,2分球的个数:(3×11﹣28)÷(3﹣2)=5÷1=5(个)答:他两分球投中了5个.故选:B.【点评】本题属于鸡兔同笼问题的综合应用,可以利用假设法来解答,是这种类型应用题的解答规律.6.【分析】假设全是钢笔,一共需要9×6=54元,这比40元多了54﹣40=14元,这是因为每支钢笔比圆珠笔多9﹣2=7元,用多的总钱数除以每支多的钱数,即可求出圆珠笔买了几支,进而求出钢笔的支数.【解答】解:(6×9﹣40)÷(9﹣2)=14÷7=2(支)6﹣2=4(支)答:钢笔买了4支.故选:A.【点评】此题属于鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.7.【分析】每只小鸟需要1÷3=(元),假设全是大鸟,那么100只大鸟需要花100×3=300(元),实际少花了300﹣100=200(元),这是因为每只大鸟比每只小鸟多花(3﹣)元,用多花的总钱数除以每只多花的钱数,即可求出小鸟的只数,进而求出大鸟的只数.【解答】解:每只小鸟需要1÷3=(元),假设全是大鸟,那么小鸟有:(100×3﹣100)÷(3﹣)=200÷=75(只)100﹣75=25(只)答:大鸟买了25只.故选:B.【点评】此题属于鸡兔同笼题,解答此题的关键是先进行假设,然后根据假设后的情况进行计算,即可得出答案;也可以用方程解答,设其中的一个量为未知数,另一个数也用未知数表示,根据题意,列出方程,解答即可.8.【分析】假设全是摩托车,则一共有轮子2×16=32个,这比已知的52个轮子少了52﹣32=20个,因为小轿车比摩托车多4﹣2=2个轮子,所以小轿车有:20÷2=10辆,据此解答即可.【解答】解:(52﹣2×16)÷(4﹣2)=20÷2=10(辆)答:小轿车有10辆.故选:B.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.二.填空题(共8小题)9.【分析】此题可以用假设法来解答,假设都是2千克的,那么一共装2×12=24(千克),因为一共是45千克,少了45﹣24=21(千克),就是因为把5千克的也看作2千克的了,每桶少算了5﹣2=3(千克),所以5千克的有21÷3=7(桶);据此解答即可.【解答】解:(45﹣2×12)÷(5﹣2)=21÷3=7(桶)12﹣7=5(桶)答:大油桶装了7桶,小油桶装了5桶.故答案为:7;5.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.10.【分析】假设12瓶全是5元的,则用5×12=60元,这样就多60﹣48=12元;用12÷(5﹣3)=6得出3元的矿泉水的瓶数,据此解答.【解答】解:(5×12﹣48)÷(5﹣3)=12÷2=6(瓶)答:3元的矿泉水买了6瓶.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.11.【分析】首先应明白摩托车有两个轮子,小轿车有4个轮子,假设这些车全部是小轿车,则轮子个数应为4×20=80(个),而现在只有70个轮子,多出了80﹣70=10(个),用一辆轿车换一辆摩托车,轮子就少了2个,10个轮子可以换二轮摩托车:10÷2=5(辆),小轿车的辆数就好求了,由此解决问题.【解答】解:摩托有:(4×20﹣70)÷(4﹣2)=(80﹣70)÷2=10÷2=5(辆)小轿车有:20﹣5=15(辆)答:摩托有5辆,小轿车有15辆.故答案为:5,15.【点评】此题主要考查学生运用“假设法”来解决实际问题的能力.12.【分析】假设全是买的乙种票,则一共要花掉30×25=750元,已知实际花掉了840元,少了840﹣750=90元,因为1张乙种票比1张甲种票少30﹣25=5元,所以甲种票有90÷5=18张,据此即可解答.【解答】解:假设全是买的乙种票,则甲种票有:(840﹣30×25)÷(30﹣25)=90÷5=18(张)乙种票:30﹣18=12(张)答:甲种票有18张,乙种票有12张.故答案为:18,12.【点评】此题属于鸡兔同笼问题,采用假设法解答即可.13.【分析】假设18枚硬币全是1元的,则一共有18元,这比已知的14元多了18﹣14=4元,因为一枚1元的比一枚5角的多0.5元,所以5角的一共有4÷0.5=8枚,据此即可解答.【解答】解:5角=0.5元(18×1﹣14)÷(1﹣0.5)=4÷0.5=8(枚)答:5角硬币有8枚.故答案为:8.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.14.【分析】答错或不答一题扣2分,不仅不得分,还要倒扣2分,相当于每错一道要丢5+2=7分.假设他全做对了,应得100分,现在得了65分,说明他被扣了100﹣65=35分,故他做错35÷7=5道,做对15道才能晋级.列式为:20﹣(5×20﹣65)÷(5+2).【解答】解:20﹣(5×20﹣65)÷(5+2)=20﹣35÷7=20﹣5=15(道)答:他至少要答对15道题.故答案为:15.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.15.【分析】假设14张乒乓球台全是单打,则应有14×2=28人,而实际有40人比赛,实际就比假设多了40﹣28=12人,这是因为每张双打的球台上就比每张单打的多4﹣2=2人.据此可求出双打乒乓球台的张数,再用14去减,就是单打乒乓球台的张数.据此解答.【解答】解:(40﹣14×2)÷(4﹣2)=12÷2=6(张)14﹣6=8(张)答:正在进行单打的乒乓球台有8张,双打的乒乓球台有6张.故答案为:8;6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.16.【分析】假设都是女生,则可以栽50×2=100棵,除去老师栽的5棵,这样少载了120﹣5﹣100=15棵;因为一名女生比一名男生少栽3﹣2=1棵,则男生有15÷1=15人;进而得出女生人数.【解答】解:男生:(120﹣5﹣2×50)÷(3﹣2)=15÷1=15(名)女生:50﹣15=35(名)答:有15名男生,35名女生.故答案为:15;35.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.三.判断题(共5小题)17.【分析】假设全是松鼠,则一共有17×4=68条腿,这比已知的54条多了68﹣54=14条,因为1只松鼠比1只百灵鸟多4﹣2=2条腿,据此可得百灵鸟有14÷2=7只,据此即可解答问题.【解答】解:假设全是松鼠,则百灵鸟有:(17×4﹣54)÷(4﹣2)=14÷2=7(只),所以松鼠有:17﹣7=10(只),即:百灵鸟有7只,松鼠有10只,所以原题说法正确.故答案为:√.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.18.【分析】假设12道题全做对,则得10×12=120分,这样就少得120﹣90=30分;最错一题比做对一题少10+5=15分,也就是做错30÷15=2道题.【解答】解:(10×12﹣90)÷(10+5)=30÷15=2(道);即,他做错了3道题;所以原题说法错误.故答案为:×.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.19.【分析】根据实际可知:解决鸡兔同笼问题常见的方法有列表法、假设法和方程法.据此解答即可.【解答】解:解决鸡兔同笼问题常见的方法有列表法、假设法和方程法,所以原题说法正确.故答案为:√.【点评】此题主要考查解决鸡兔同笼问题常用的方法.20.【分析】假设全是三轮车,则一共有轮子3×10=30个,这比已知的26个轮子多出了30﹣26=4个,因为1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可求出自行车有4辆,10﹣4=6,所以三轮车有6辆.【解答】解:假设全是三轮车,则自行车有:(3×10﹣26)÷(3﹣2)=4÷1=4(辆),则三轮车有10﹣4=6(辆),答:自行车有4辆,三轮车有6辆.故答案为:√.【点评】此题属于鸡兔同笼问题,采用假设法即可解答.21.【分析】假设全都是鸡,则应用2×27=54只脚,实际有74只,实际就比假设多了74﹣54=20只脚,这是因为每只兔子比每只鸡多了4﹣2只脚.据此可求出兔子的只数,再用27减兔子的只数,就是鸡的只数.据此解答.【解答】解:(74﹣2×27)÷(4﹣2)=20÷2=10(只)27﹣10=17(只)即有鸡17只,兔子10只,所以原题说法错误.故答案为:×.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.四.应用题(共7小题)22.【分析】假设全是童车,则共有的轮子数是15×3个,然后与实有的轮子数相比,就是因为每辆自行车比童车少了(3﹣2)个轮子.据此解答.【解答】解:(15×3﹣36)÷(3﹣2)=(45﹣36)÷1=9÷1=9(辆)15﹣9=6(辆)答:自行车有9辆,童车有6辆.【点评】本题的关键是用假设法,设全是童车,求出应有的轮子数,与实用的轮子数进行比较,求出实有自行车的数量.23.【分析】假设一只也没打破,将会获得运费:0.15×1000=150(元),而实际共得运费145.6元,两者相差了:150﹣145.6=4.4(元),因为每打破一只玻璃花瓶就会少得运费:0.95+0.15=1.1(元),因此根据这两个差可以求出打破的玻璃花瓶的只数,列式为:4.4÷1.1=4(个),据此解答.【解答】解:(1000×0.15﹣145.6)÷(0.95+0.15)=4.4÷1.1=4(个)答:搬运过程中打碎了4个玻璃花瓶.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.24.【分析】假设都是圆珠笔,则一共有12×28=336支,多出来的支数,是把中性笔每盒多算12﹣10=2支,由此算出中性笔的支数,再进一步求得圆珠笔支数即可.【解答】解:中性笔:(12×28﹣306)÷(12﹣10)=(336﹣306)÷2=30÷2=15(盒),圆珠笔:28﹣15=13(盒),答:中性笔15盒,圆珠笔13盒.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.25.【分析】假设全部为跳棋,一共有:26×6=156人,比实际多了156﹣120=36人,这是因为我们把下象棋的人当作了下跳棋的人,每副多算了:6﹣2=4人;所以有象棋:36÷4=9(副),那么跳棋就为:26﹣9=17(副);据此解答.【解答】解:假设全部为跳棋,象棋:(26×6﹣120)÷(6﹣2)=36÷4=9(副)跳棋:26﹣9=17(副)答:象棋有9副,跳棋有17副.【点评】解决鸡兔同笼问题往往用假设法解答,有些应用题中有两个或两个以上的未知量,思考问题时,可以假设要求的两个或两个以上的未知量相等,或假设它们为同一种量,然后按照题中的已知条件进行推算,如果数量上出现矛盾,可适当调整,以求出正确的结果.26.【分析】根据题意,假设都是三轮车,则轮子应用:42×3=126(个),比实际多:126﹣100=26(个),每辆两轮摩托车比三轮车少轮子:3﹣2=1(个),所以两轮车的辆数为:26÷1=26(辆),三轮车为:42﹣26=16(辆).【解答】解:(42×3﹣100)÷(3﹣2)=(126﹣100)÷1=26÷1=26(辆)42﹣26=16(辆)答:三轮车停了16辆.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.27.【分析】假设全是两轮摩托车,则轮子有13×2=26个,这比已知的36个轮子少了36﹣26=10个,因为一辆三轮摩托车比一辆摩托车多3﹣2=1个轮子,所以三轮摩托车有10÷1=10辆,则摩托车有13﹣10=3辆,由此即可解决问题.【解答】解:假设全是两轮摩托车,则三轮摩托车有:(36﹣13×2)÷(3﹣2)=10÷1=10(辆)摩托车有:13﹣10=3(辆)答:三轮摩托有10辆,两轮摩托车有3辆.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.28.【分析】假设全部是6人一组,有6×22=132人,已知108人比假设少了:132﹣108=24人,3人一组比6人一组少6﹣3=2人,所以3人一组的有:24÷3=8组;跳绳6人一组有:22﹣8=14组.【解答】解:(6×22﹣108)÷(6﹣3)=24÷3=8(组)22﹣8=14(组)答:踢毽子的有8组,跳绳的有14组.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.。
(四年级奥数讲义)第9讲_鸡兔同笼问题(带答案)

第9讲鸡兔同笼问题◆认识鸡兔同笼问题。
◆用假设法解鸡兔同笼问题。
我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。
用假设法解题,首先要根据题意去正确地判断应该怎么假设,一般可假设要求的两个或几个未知量相等,或者假设要求的两个未知量是同一种量;其次要能根据所做的假设,注意到数量关系发生了什么变化,怎样从所给的条件与变化了的数量关系的比较重做出适当的调整,从而找到正确的答案。
【例题1】鸡兔同笼,共100个头,320只脚,鸡兔各多少只?答案:60,40思路点拨:【拓展1】(2009年北京“高思”数学思维能力检测试题)在马达加斯的大草原上,环尾狐猴和斑马进行投篮比赛,每只环尾狐投进一球记2分,每只斑马投进一只球记3分,共投进了100个球,共得了220分,那么斑马一共投进了多少个球? 答案:20思路点拨:【例题2】现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个? 答案:20,30思路点拨:【拓展2】现有大小塑料袋60个,每个大袋可装苹果5千克,每个小袋可装苹果3千克,小袋比大袋少装苹果60千克。
问大小塑料袋各有多少个? 答案:30,30思路点拨:【例题3】(“希望杯”全国数学大赛试题)小猴和小熊轮流共同完成一批玩具的组装,小猴每天可以完成20件,小熊每天只能完成12件。
它们用8天的时间共组装了112件玩具。
小猴工作了多少天? 答案:2思路点拨:【拓展3】松鼠妈妈采松球,晴天每天可以采20个,雨天每天只能采12个,它一连几天才了112个松球,平均每天14个。
2024年公开课9数学广角——鸡兔同笼精彩课件

2024年公开课9 数学广角——鸡兔同笼精彩课件一、教学内容本节课选自人教版四年级数学下册第八单元“数学广角”中的“鸡兔同笼”问题。
具体内容包括:通过列表法、假设法、方程法等方法解决鸡兔同笼问题,让学生体会数量关系在解决问题中的应用。
二、教学目标1. 让学生掌握解决鸡兔同笼问题的方法,并能运用所学方法解决实际问题。
2. 培养学生运用列表法、假设法、方程法等多种方法解决问题的能力,提高学生的逻辑思维和数学思维能力。
3. 增强学生合作交流的意识,培养学生主动探索、积极思考的学习习惯。
三、教学难点与重点教学难点:用列表法、假设法、方程法解决鸡兔同笼问题。
教学重点:让学生掌握解决鸡兔同笼问题的方法,并能灵活运用。
四、教具与学具准备教具:PPT课件、黑板、粉笔。
学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入利用PPT课件展示鸡兔同笼的情景,引导学生观察并思考:“你能知道笼子里有几只鸡和兔子吗?”2. 探索新知(1)列表法a. 学生独立思考,用列表法记录鸡和兔子的数量。
b. 小组讨论,共同找出解决问题的方法。
(2)假设法a. 教师引导学生用假设法解决问题。
b. 学生尝试用假设法解决鸡兔同笼问题,并汇报结果。
(3)方程法a. 教师引导学生用方程法解决问题。
b. 学生尝试用方程法解决鸡兔同笼问题,并汇报结果。
3. 例题讲解教师选取一道典型的鸡兔同笼问题,引导学生运用所学方法进行解答。
4. 随堂练习学生完成课后练习题,巩固所学方法。
六、板书设计1. 鸡兔同笼问题2. 解决方法:列表法、假设法、方程法七、作业设计1. 作业题目:答案:a. 23只鸡,12只兔子。
八、课后反思及拓展延伸本节课通过解决鸡兔同笼问题,让学生掌握了列表法、假设法、方程法等解决问题的方法。
课后,教师应反思教学过程中的优点和不足,针对学生的掌握情况,进行有针对性的辅导。
同时,可布置拓展延伸作业,让学生尝试解决类似的其他问题,提高学生的实际应用能力。
人教版四年级下第九单元鸡兔同笼课件

课件PPT
同学们,通过今天的学习你有什么 收获吗?
1.初步认识鸡兔同笼的数学趣题,了解有关的数学 史。能用列表法和画图法解决相关的实际问题,结合 图解法理解假设的方法解决鸡兔同笼问题。
2.通过画图分析、列表举例、假设计算等方法理解 数量关系,体会数形结合的方便性,体验解决问题方 法的多样化,提高解决实际问题的能力。
•
12、人乱于心,不宽余请。2021/4/30 2021/4/ 302021 /4/30F riday, April 30, 2021
•
13、生气是拿别人做错的事来惩罚自 己。202 1/4/30 2021/4/ 302021 /4/302 021/4/3 04/30/ 2021
•
14、抱最大的希望,作最大的努力。2 021年4 月30日 星期五 2021/4 /30202 1/4/302 021/4/ 30
14 13
兔/只 19 15 10 5
6 7
脚/只 78 70 60 50
52 54
13只鸡,7只兔。
比54少了,兔 子数应该在5和 10之间。
课件PPT
头/个 20 20
20
鸡/只 10 12
13
兔/只 10 8
7只 60 56
54
13只鸡,7只兔。
课件PPT
谢谢大家
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2021/ 4/30202 1/4/30 Friday, April 30, 2021
•
10、低头要有勇气,抬头要有低气。2 021/4/ 302021 /4/3020 21/4/3 04/30/2 021 2:06:21 PM
人教版四年级数学下册第九单元鸡兔同笼问题

4.【杭州市·钱塘区】如图甲、乙两种模型都是由面积为1平 方厘米的小正方形构成的。现在用这两种模型共9块,拼 成了一个面积是30平方厘米的长方形。那么甲、乙两种 模型各用了多少块?
假设全用乙种模型。 4×9-30=6(平方厘米) 甲种模型块数:6÷(4-3)=6(块) 乙种模型块数:9-6=3(块) 答:甲种模型用了6块,乙种模型用了3块。
5.(新情境)德老师要为课后托管美食DIY准备材料。她带了 20元、50元和100元三种人民币共50张,共2400元,其中20 元和50元的张数相同,那么100元的有( 10 )张。
解析:假设全部是100元的,则面值是50×100=5000(元),比实际 多出5000-2400=2600(元),因为1张100元比1张50元多50元,1张 100元比1张20元多80元,所以2张100元比1张50元和1张20元多(100 -50+100-20)元,用2600元除以(100-50+100-20)元可求得20 元或50元的张数,从而求得100元的张数。
第9单元 数学广角——鸡兔同笼 鸡兔同笼问题
知 识 点 鸡兔同笼问题的解题方法
1.鸡兔同笼,共有9个头,24只脚,鸡和兔各有多少只? 解法一:列表法。
鸡
9
8
7
6
5
4
兔
0
1
2
320
22
24
26
28
鸡有( 6 )只,兔有( 3 )只。
解法二:假设法。 ①如果笼子里都是兔,那么就有( 36 )只脚,这样就少
了( 12 )只脚。 ②一只鸡比一只兔少( 2 )只脚,也就是有( 6 )只鸡。 ③所以鸡有( 6 )只,兔有( 3 )只。
列式解答: 4×9-24=12(只) 12÷(4-2)=6(只) 9-6=3(只) 答:鸡有6只,兔有3只。
四年级数学下册课件-9鸡兔同笼90-人教版
小鸡腿的数量为 2X
兔子腿的数量为(35-X)*4
那么可以得到 2X+(35-X)*4=94
整理得到如下方程式
2X+(35-X)*4=94 求解X=23 小鸡为23只 小兔子=35-X=12
如果我们用出我们的“洪荒之力”设想笼子里动物 如果都是两只脚呢
每个动物都是2只脚 那么就是2✖35=70只
的腿数)。 总结公式为:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡
的脚数)。
抬腿法 假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股
坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有 24÷2=12只兔子,就有35-12=23只鸡。
方程法 鸡+兔=总数 2×鸡的只数+4×兔的只数=脚总数
假设法 总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡
设捐2元的同学有X人,则捐5元的同学有(34-X)人
设捐2元的同学设有捐X人2,元则捐的5元同的学同学有有X(人34-,X)人则捐5元的同学有(34-X)人
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
可求捐2元和5列元的方同程学总式人为数为425X-1+1=53(4人34-x)=89
假设每只动物是4只 总数是140
同学们开动你结们聪得明X的=头2脑7,设那想笼么子捐里动2物元如的果都同是学四只人脚呢数为27
问笼中各有多少只鸡和兔?
那么剩余的24捐只是5元谁的的呢 同学人数为34-27=7人
总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
那么 小鸡就是35-12=23只喽
知识点回顾
鸡兔同笼课件PPT
是的,教学是一件很费心思的事情,世界上不可能存在一 种万能的教学方法,至少我还没听说过那些低效的教师 在课堂上往往只是简单地给全体学生布置一项任务(而 且很可能没有仔细考虑自己布置的任务是不是学生感兴 趣的或是需要的),然后要求学生用二十分钟完成。同样, 不用亲历现场你也能猜到,有些学生五分钟就能完成任 务,而这段时间里还有些学生甚至都没有开始,总有些学 生无法在二十分钟内完成任务因此,这个二十分钟的规 定会带来课堂纪律的问题。教师需要不断提醒学生集中 注意力,但有的学生会抱怨自己还没听懂,而那些提前完 成的学生则会感到无聊,并且着急地等着新任务。
预设:(2)如果都是女生栽树。
① 如果都是女生栽树,就栽了12×2=24棵树,比 题目中少32-24=8棵树。
② 那么需要用男生换女生,一名男生比一名女生 多栽1棵树,有8÷1=8名男生。
③ 所以有12-8=4名女生。
2. 新星小学“环保卫士”小分队12人参加植树活动。男生 每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。 男、女生各有几人?
预设:(2)如果都是龟。 ① 如果都是龟,就有40×4=160条腿,比题目中多 160-112=48条腿。 ② 那么需要用鹤换龟,换上一只鹤,腿的总数就少 2条,有48÷2=24只鹤。 ③ 所以有40-24=16只龟。
1. 有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各 有几只?
预设:(3)抬腿法。 ① 假如让鹤抬起一条腿,龟抬起两条腿,还有112÷2=56 条腿。 ② 这时,只要有一只龟,则腿的总数就比头的总数多1。 ③ 这时腿的总数与头的总数之差56-40=16,就是龟的 只 数,所以有40-16=24只鹤。
鸡有2只脚,兔有4只脚。
鸡8 7 6 5 兔0 1 脚 16 18
四年级下9数学广角——鸡兔同笼
四年级下9数学广角——鸡兔同笼在我们四年级下册数学的学习中,有一个非常有趣且具有挑战性的内容,那就是“鸡兔同笼”问题。
鸡兔同笼,这个名字听起来就很有意思,它其实是一个古老而经典的数学问题。
想象一下,在一个笼子里关着鸡和兔子,我们只知道鸡和兔子的总数,以及它们脚的总数,然后要算出笼子里鸡和兔分别有多少只。
咱们先来说说最常见的一种情况。
假设笼子里有35 个头,94 只脚,那怎么来算出鸡和兔各有多少只呢?这时候,我们可以用一种叫做“假设法”的办法来解决。
我们先假设笼子里全是鸡。
因为每只鸡有 2 只脚,那么 35 只鸡就应该有 35×2 =70 只脚。
但题目中说一共有 94 只脚,这就比我们假设的情况多了 94 70 = 24 只脚。
为什么会多出来脚呢?这是因为我们把兔子也当成鸡来算了。
每只兔子有 4 只脚,而每只鸡只有 2 只脚,每把一只兔子当成鸡就会少算 4 2 = 2 只脚。
现在一共少算了 24 只脚,所以兔子的数量就是 24÷2 =12 只。
那么鸡的数量就是 35 12 = 23 只。
咱们再换一种思路,这次假设笼子里全是兔子。
35 只兔子就应该有35×4 = 140 只脚,可实际上只有 94 只脚,多算了 140 94 = 46 只脚。
这是因为把鸡当成兔子来算了,每把一只鸡当成兔子就多算 2 只脚,所以鸡的数量就是 46÷2 = 23 只,兔子的数量就是 35 23 = 12 只。
除了假设法,还有一种列方程的方法也能解决鸡兔同笼问题。
我们设鸡的数量为 x 只,兔子的数量就是 35 x 只。
因为每只鸡有 2 只脚,每只兔子有 4 只脚,所以可以列出方程 2x + 4×(35 x) = 94 。
解这个方程,首先展开括号得到 2x + 140 4x = 94 ,然后移项得到 4x 2x = 140 94 ,合并同类项得到 2x = 46 ,最后解得 x = 23 ,也就是鸡有 23 只,兔子有 35 23 = 12 只。
人教版数学四年级下册9.1 鸡兔同笼教学课件.pptx
数学广角——鸡兔同笼 鸡兔同笼
第二节
教学内容
输入你的文本 根据你所需的内容输入你想要的文本 点击输入本栏的具体文字,简明扼要的说明分项内容,此为概念图解,
请根据您的具体内容酌情修改。
数学广角——鸡兔同笼 鸡兔同笼
假设笼子里全是鸡
兔的数量=(实际脚的数量-每只鸡 的脚的数量×鸡兔总数)÷(每只兔 的脚的数量-每只鸡的脚的数量) 鸡的数量=鸡兔的总数量-兔的数量
假设笼子里全是兔
鸡的数量=(每只兔的脚的数量×鸡 兔的总数量-实际脚的数量)÷(每只 兔的脚的数量-每只鸡的脚的数量) 兔的数量=鸡兔的总数量-鸡的数量
Lorem Ipsum simply
dummy text of the printing.
数学广角——鸡兔同笼 鸡兔同笼
THANKS!
感谢聆听 请多指点
MORE THAN TEMPLATE
点击此处添加副标题
QUISQUE VELIT NISI.
Quisque velit nisi, pretium ut lacinia in, elementum id enim. Cras ultricies ligula sed magna dictum porta
各几只?
返回
笼子里有若干只鸡和兔。从上面数,有8个
例1
头,从下面数,有26只脚。鸡和兔各几只?
理解题意 一个头
一个头 头共有8个
各几只?
2只脚
4只脚 总脚数是26只
返回
01
02
03
04
……
列表法
点击添加文字说明或 复制文本黏贴自此内 容要言简意赅
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东圣学苑四年级数学提高班讲义课题鸡兔同笼问题与假设法课次第9讲时间2013年5月4日星期六姓名专题简析:鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。
例4 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只)。
答:有鸡70只,兔30只。
例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?分析:本题与例4非常类似,仿照例4的解法即可。
解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。
根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。
这样每辆小卡车能装144÷9=16(吨)。
由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。
实际上只得到115.5元,少得120-115.5=4.5(元)。
搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。
因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。
可求出小乐每分钟跳(780——60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳780——270×2=240(下)。
1、三轮车和自行车共7辆放成一排,总共有17个车轮,问:三轮车和自行车各有多少辆?2、一个教室放着一些好凳子,都是4条腿,小英把几条只有三条腿的坏凳子也放了进去后共9条凳子31条腿,问好凳子究竟有几条?3、买甲、乙两种戏票20张,共用去人民币4元5角,甲种票每张3角,乙种票每张2角,两种票各买了几张?4、鸡有5只,兔有10只,鸡脚与兔脚共有多少只?5、王芳有31枚2分的硬币,9枚5分的硬币,她一共有多少钱?6、吴老师带了四(1)班同学去公园划船,租了4条大船,每条大船坐6人,7条小船,每条小船坐4人,刚好坐满,他们共有多少人?7、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只,问鸡、兔各有多少只?8、鸡与兔共有30只,共有脚70只,鸡与兔各有多少只?9、鸡与兔共有20只,共有脚50只,鸡与兔各有多少只?10、面值是2元、5元的人民币共27张,合计99元,面值是2元、5元的人民币各有多少张?11、孙佳有2分、5分硬币共40枚,一共是1元7角,两种硬币各有多少枚?12、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人,问大船和小船各几只?13、一批水泥,用小车装载,要用45辆,用大车装载,只要36辆,每辆大车比小车多装4吨,这批水泥有多少吨?14、一批货物用大卡车装要16辆,如果用小卡车装要48辆,已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?15、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,需运80次,每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?16、某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为 1元,如果打碎一个,这个不但不给运费,而且要赔偿3元,结果运到目的地后结算时,玻璃杯厂共得运费920元,求打碎了几个玻璃杯?17、搬运1000只玻璃瓶,规定安全运到一只可得搬运费3角。
但打碎一只,不仅不给搬运费,还要赔5角,如果运完后共得运费260元,那么,搬运中打碎了多少只?18、某次数学竞赛共20道题,评分标准是每做对一道得5分,每做错或不做一题倒扣1分,刘亮参加了这次竞赛,得了64分,刘亮做对了多少道题?19、某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?20、某场乒乓球比赛售出40元、30元、50元的门票共400张,收入15600元,其中40元和50元的张数相等,每种票各售出多少张?21、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?22、动物园里一群鸵鸟和长颈鹿,它们共有30只眼睛44只脚,问鸵鸟和长颈鹿各有多少只?23、电影院一天售出甲种电影票900张,每张6元,乙种电影票800张,每张4元,这天电影院共收款多少元?24、鸡与兔共有100只,鸡的脚比兔的脚多80只,鸡与兔各有多少只?25、12张乒乓球台上同时有34人在进行乒乓球赛,正在进行单打的球台有多少张?26、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?27、某校举行化学竞赛共有15道题,规定每对一题得10分,每错一题或不做题倒扣4分,小华在这次竞赛中共得66分,问他做对了几道题?28、有8个谜语让60个人猜,猜对共338人次。
每人至少猜对3个,猜对3个的有6人,猜对4个的有10人,猜对5个和7个的人数同样多。
8个全猜对的有多少人?课后作业:1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
问:象棋与跳棋各有多少副?3.班级购买活页簿与日记本合计32本,花钱74元。
活页簿每本1.9元,日记本每本3.1元。
问:买活页簿、日记本各几本?4.龟、鹤共有100个头,鹤腿比龟腿多20只。
问:龟、鹤各几只?5.小蕾花40元钱买了14张贺年卡与明信片。
贺年卡每张3元5角,明信片每张2元5角。
问:贺年卡、明信片各买了几张?6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。
问:这几天中共有几个雨天?7.振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣3分。
小建得了60分,那么他做对了几道题?8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。
已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
问:每种小虫各有几只?10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。