弹性力学 极坐标中的平衡微分方程

弹性力学极坐标法习题法案

矩形板薄板受均布剪力q ,圆孔半径为r ,给出应力解答并计算孔边的最大正应力和剪应力。 解:以小孔的中心为圆心,以a 为半径(a>>r )截取空心圆盘,远场应力为 0x y σσ== xy q τ= 坐标变换后,可得圆盘的外边界应力:()sin 2a q ρρσθ== ()c o s 2a q ρθρτθ== 假设应力函数 ()s i n 2f ρθΦ= 应力函数必须满足相容方程 40?Φ= 4324322 3()2()9()9()sin 20d f d f d f df d d d d ρρρρθρ ρρρρρρ?? +-+=???? 所得方程是欧拉常微分方程,求解可得: 422 ()D f A B C ρρρρ =+++ 则应力函数 422sin 2D A B C θρρρ?? Φ=+++ ???? 应力分量表达式 2 4 24 224 46(2)sin 26(122)sin 226(62)cos 2C D B D A B C D A B ρθρθσθρρσρθρτρθ ρρ=-+ + =++ =-++ - 带入边界条件和()()0r r ρρρθρστ====得方程: 24 2242422446226624620 26620 C D B q a a C D Aa B q a a C D B r r C D Ar B r r + +=-++-=-++=++-= 2 4 022 A q B C q r qr D ==-==- 应力分量为:

2 4 24 4 4 2 4 2 4 43(1)sin 23(1)sin 223(1)cos 2r r q r q r r q ρθρθσθ ρρσθρτθ ρρ=- + =-+=+ - 当4 π θ= 时,4q θσ=-;当4 π θ=- ,4q θσ=

弹性力学第七章平面问题的极坐标解

第七章 平面问题的极坐标解 知识点 极坐标下的应力分量 极坐标下的应变分 量 极坐标系的 Laplace 算符 轴对称应力分量 轴对称位移和应力表达式 曲梁纯弯曲 纯弯曲位移与平面假设 带圆孔平板拉伸问题 楔形体问题的应力函数 楔形体应力 楔形体受集中力偶作用 、内容介绍 在弹性力学问题的处理时,坐标系的选择从本质 上讲并不影响问题的求解, 但是坐标的选取直接影响 边界条件的描述形式,从而关系到问题求解的难易程 度。 对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统 要方便的多。 本章的任务就是推导极坐标表示的弹性力学平面问题基本方程, 且求解一些典型问题。极坐标平衡微分方程 几何方程的极坐标表达 应 力函数 轴对称位移 厚 壁圆筒作用均匀压力 曲 梁弯曲应力 曲梁作用径 向集中力 孔口应力 楔形体边界条件 半无限平面作用集中力

二、重点 1、基本未知量和基本方程的极坐标形式; 2、双调和方程的极坐标形式; 3、 轴对称应力与厚壁圆筒应力;4、曲梁纯弯曲、楔形体和圆孔等典型问题 §7.1平面问题极坐标解的基本方程 学习思路: 选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。 本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式; 并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。 应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解 的基本概念仍然适用于极坐标。 学习要点: 1、极坐标下的应力分量; 2、极坐标平衡微分方程; 3、极坐标下的应变分量; 4、几何方程的极坐标表达; 5、本构方程的极坐标

平衡微分方程与切应力互等定理

第二章应力状态分析 一. 内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。 应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二. 重点

1.应力状态的定义:应力矢量;正应力与切应力;应力分量; 2.平衡微分方程与切应力互等定理; 3.面力边界条件; 4.应力分量的转轴公式; 5.应力状态特征方程和应力不变量 三.知识点 体力、应力矢量、应力分量、平衡微分方程、面力边界条件、主平面与主应力、主应力性质、截面正应力与切应力、三向应力圆、八面体单元、偏应力张量不变量、面力、正应力与切应力、应力矢量与应力分量、切应力互等定理、应力分量转轴公式、平面问题的转轴公式、应力状态特征方程、应力不变量、最大切应力、球应力张量和偏应力张量 §2.1 体力和面力 学习思路: 本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。

流体的平衡微分方程及其积分

流体的平衡微分方程及其积分 一、流体平衡微分方程——欧拉平衡方程 如图所示,在平衡流体中取一微元六面体,边长分别为d x ,d y ,d z ,设中心点的压强为p (x,y,z )=p ,对其进行受力分析: 根据平衡条件,在x 方向有0F x =∑,即: 0zX y z y x p 21z y )21=+)+-((d dxd d d dx p d d dx x p p ρ????- 01X =-x p ??ρ 式中:X ——单位质量力在x 轴的投影 流体平衡微分方程(即欧拉平衡微分方程): ?????????=??-=??-=??- 010101z p Z y p Y x p X ρρρ 物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量力分量彼此相等。 压强沿轴向的变化率(z p y p x p ??????,,)等于轴向单位体积上的质量力的分量(ρX ,ρY ,

ρZ )。 二、平衡微分方程的积分 将欧拉平衡微分方程中各式,分别乘以dx 、dy 、dz ,整理: Zdz)Ydy (Xdx dz z p dy y p x ++=??+??+??ρdx p 因为p = p (x,y,z ) ∴ Zdz)Ydy (Xdx dp ++=ρ ρ为常量; Xdx +Ydy +Zdz 应为某函数W =F (x ,y ,z )的全微分: dz z W dy y W dx x W dz dy dx d ??+??+??=++=)Z Y (X W dW dp =ρ 平衡流体中压强p 的全微分方程 积分得:p=ρW +c 假定平衡液体自由面上某点(x 0,y 0,z 0)处的压强p 0及W 0为已知,则: c =p 0-ρW 0 ∴ p=p 0+ρ(W-W 0) 欧拉平衡微分方程的积分 三、帕斯卡定律 处于平衡状态下的不可压缩流体中,任意点M 处的压强变化值△p 0,将等值地传递到此平衡流体的其它各点上去。 说明:只适用于不可压缩的平衡流体; 盛装液体的容器是密封的、开口的均可。 四、等压面 平衡流体中压强相等的各点所组成的面。 等压面:dp =ρ(Xdx +Ydy +Zdz )=0 ρ为常量,则:Xdx +Ydy +Zdz =0 即:质量力在等压面内移动微元长度所作的功为零。 等压面的特征:平衡流体的等压面垂直于质量力的方向 只有重力作用下的等压面应满足的条件: 1.静止; 2.连通; 3.连通的介质为同一均质流体;

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

弹性力学极坐标公式的记忆规律_张长平

文章编号:1671-9662(2007)03-0073-02 弹性力学极坐标公式的记忆规律 张长平,余东明 (平顶山工学院,河南平顶山467001) 摘 要: 利用直角坐标系与极坐标系相关量的对应关系及微元体在两个坐标系中的不同特点,提出弹 性力学极坐标公式的记忆规律。 关键词: 弹性力学;极坐标公式 中图分类号: O343.1 文献标识码:A 0 概述 弹性力学平面问题直角坐标公式有一定规律性,容易记忆。在掌握直角坐标系中的下标记号法后,也非常方便地推广到空间问题的直角坐标公式中。但极坐标公式比直角坐标公式复杂,学生学习起来不易掌握。笔者通过教学实践,采用两坐标系之间相关量的对比和找出极坐标条件下微元体产生附加项的原因,去寻求极坐标公式的记忆规律,使学生较方便地掌握了极坐标公式。1 两种坐标系下物理量对应关系 为了说明极坐标公式的记忆规律,首先建立直角坐标和极坐标之间变量和微分算符的对应关系。直角坐标系中的位移、应变、应力、体力各量的x 向分量和极坐标系中的位移、应变、应力、体力各量的径向分量分别对应;直角坐标系中的位移、应变、应力、体力各量的y 向分量和极坐标系中的位移、应变、应力、体力各量的环向分量分别对应。对应关系见表1。 表1 两种坐标系下物理量对应关系 坐标系位移应变体力 应力 直角坐标系 u v εx εy γxy F x F y σx σy τxy 极坐标系 u p u φ ερ εφ γρφ F ρ F φ σρ σφ τρφ 2  两种坐标系下一阶微分算符的对应关系图1 直角坐标系微元体 一阶微分算符的对应关系见表2 表2 两种坐标系下一阶微分算符的对应关系 坐标系一阶微分算符直角坐标系 x y 极坐标系 ρ ρ φ 对于第二个微分算符的对应关系可解释为,由于角度φ的量纲是1,为了保证前后量纲的一致性,对角度的一阶微分必须除以ρ。3 两种坐标系条件下所取微元体的不同特点 直角坐标下的微元体是一矩形,见图1,相对的两边平行且等长。微元体的这一特征,使得平衡微分方程、几何方程,公式简洁,意义鲜明,便于记忆。 极坐标下的微元体是圆环的一部分,两条环向线PB 与A D 平行但不等长,两条径向线PA 与BD 等长但不平行,见图2。微元体的这一特征,使得在推导平衡微分方程、几何方程过程中比直角坐标系的对应公式增加部分附加项。3.1 平衡微分方程对比见表3收稿日期:2007-04-20 第一作者简介:张长平(1954-),男,湖南澧县人,平顶山工学院高级讲师,主要从事力学教学研究。 第16卷第3期2007年5月 平顶山工学院学报Journal of Pingdingshan Institute of Technology Vol .16No .3 May .2007

平衡微分方程的适用范围

1、 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 2、 张量:怎样判断? (1)商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 (2)能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子(拉普拉斯算子),▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量? 对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 8、 动力学的平衡微分方程如何表示?(达朗贝尔原理) 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压(v=1/2): 从体积弹性模量() ν213-=E K 来看,当5.0=ν时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。 14、弹性力学为什么可用逆解法、半逆解法: 解的唯一性定理表明,无论用什么方法求得的解,只要能满足全部基本方程和边界条件,就一定是问题的真解。 15、叠加原理建立在什么条件下: 基本方程和边界条件满足线弹性条件,举例:在线弹性条件下,复杂问题可通过简单叠加处理。 16、圣维南原理的思想: 在物体内,距外加载荷作用处相当远的各点的应力状态,在外载荷的合力和合力矩相同时,与外载荷的具体分布形式关系很小。

弹性力学 第七章 平面问题的极坐标解

第七章平面问题的极坐标解知识点 极坐标下的应力分量 极坐标下的应变分量 极坐标系的Laplace算符轴对称应力分量 轴对称位移和应力表达式曲梁纯弯曲 纯弯曲位移与平面假设带圆孔平板拉伸问题 楔形体问题的应力函数楔形体应力 楔形体受集中力偶作用极坐标平衡微分方程几何方程的极坐标表达应力函数 轴对称位移 厚壁圆筒作用均匀压力曲梁弯曲应力 曲梁作用径向集中力孔口应力 楔形体边界条件 半无限平面作用集中力 一、内容介绍 在弹性力学问题的处理时,坐标系的选择从本质上讲并不影响问题的求解,但是坐标的选取直接影响边界条件的描述形式,从而关系到问题求解的难易程度。 对于圆形,楔形,扇形等工程构件,采用极坐标系统求解将比直角坐标系统要方便的多。本章的任务就是推导极坐标表示的弹性力学平面问题基本方程,并且求解一些典型问题。

二、重点 1、基本未知量和基本方程的极坐标形式; 2、双调和方程的极坐 标形式;3、轴对称应力与厚壁圆筒应力;4、曲梁纯弯曲、楔形 体和圆孔等典型问题 §7.1 平面问题极坐标解的基本方程 学习思路: 选取极坐标系处理弹性力学平面问题,首先必须将弹性力学的基本方程以及边界条件通过极坐标形式描述和表达。 本节的主要工作是介绍基本物理量,包括位移、应力和应变的极坐标形式;并且将基本方程,包括平衡微分方程、几何方程和本构关系转化为极坐标形式。 由于仍然采用应力解法,因此应力函数的极坐标表达是必要的。 应该注意的是坐标系的选取与问题求解性质无关,因此弹性力学直角坐标解的基本概念仍然适用于极坐标。 学习要点: 1、极坐标下的应力分量; 2、极坐标平衡微分方程; 3、极坐标下 的应变分量;4、几何方程的极坐标表达;5、本构方程的极坐标

第七章_弹性力学平面问题的极坐标系解答

第七章 弹性力学平面问题的极坐标系解答 在平面问题中,有些物体的截面几何形状(边界)为圆形、扇形,对于这类形状的物体采用极坐标 (r,θ) 来解,因为此时边界条件用极坐标易描述、简便。本章将讨论采用极坐标求解平面问题一些基本方程和解法以及算例。 第1节 平面极坐标下的基本公式 采用极坐标系则平面内任一点的物理量为 r,θ 函数。 体力:f r =K r , f θ=K θ 面力:θθF K F K r r ==, 应力:r , θ ,r θ= θ r 应变: r , θ ,γr θ=γθ r 位移:u r , u θ 直角坐标与极坐标之间关系: x=rcos θ, y=rsin θ θ θθθ??-??=????+????=??r r x x r r x sin cos θ θθθθ?? -??=????+????=??r r y y r r y cos sin 1.1 平衡微分方程 0)(11=+-+??+??r r r r f r r r θθσσθτσ 021=++??+??θθ θθτθστf r r r r r x y o P r θ

1.6按位移法求解 基本未知函数为位移u r , uθ,应变、应力均由位移导出。

在极坐标按应力求解的基本方程为(平面应力问题) ???? ? ??? ? +??+??+-=+?=++??+??=+-+??+??) 1)(1()(021012r f f r r f f r r r f r r r r r r r r r r r r θνσστθστσσθτσθθ θθθθθθ 其中 22 2 222 11θ??+??+???r r r r = 力的边界条件如前所列。 1.8 应力函数解法 当体力为零 f r =f θ=0时, 应力法基本方程中的应力分量可以转为一个待求的未知函数 φ( r, θ) 表示,而应力函数 φ( r, θ) 所满足方程为 4φ( r, θ) =0 或 0)11(2 2222=??+??+??φθr r r r 而极坐标系下的应力分量 r , θ, r θ 由 φ( r, θ)的微分求得,即: r r r r ??+??=φ θ φσ112 22, 2 2r ??=φ σθ, θ φ θφθφττθθ???- ??=????-==r r r r r r r 2211)1( 第2节 轴对称问题 2.1 轴对称问题的特点 1. 截面的几何形状为圆环、圆盘。 2. 受力和约束对称于中心轴,因此,可知体积力分量 f θ=0 ; 在边

弹性力学简明教程-第四章-平面问题的极坐标解答习题详解

第四章 平面问题的极坐标解答 典型例题讲解 例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。 例4-1图 【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角α0 max min 2x y σσσσ+?=??其中0,,x y x q σστ===得 max min ,q q σσ==-。 最大正应力σmax 所在截面的方位角为α0 max 0max 0tan 10 4 y q q τασσπ α=- =- =-→--=- q q x

若在该纯剪切的矩形薄板中,沿与板边成π 4 方向截取矩形ABCD ,则在其边界 上便承受集度为q 的拉力和压力,如图所示。这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。 (2)取极坐标系如图。由 2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ? =--? ? ?? =-+? ?? =--+? ?? 得矩形薄板ABCD 内的应力分量为 ()()() 22 224 422 22cos 2(1)(13) cos 2(13) sin 2(1)(13) ρφρφ a a σq φa ρρa σq φ b ρa a τq φ c ρρ =--=-+=--+ 其中α为小孔的半径,而孔边最大与最小正应力由式(b ),在ρ=α处得到 4 4cos 2(13)4cos 2,φa σq φa ?=-+=- 当φ=0,π时,孔边最小正应力为(σφ) min =?4q , 当φ=±π 2时,孔边最大正应力为(σφ)max =4q 。 分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。 习题全解 4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。

最新常微分方程平衡点及稳定性研究

常微分方程平衡点及稳定性研究

摘要 本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。关键词:自治系统平衡点稳定性全局吸引性

Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x= of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

[平衡微分方程的适用范围]平衡微分方程

[平衡微分方程的适用范围]平衡微分方程 平衡微分方程的适用范围 弹性力学、塑性力学、弹塑性力学。 张量:怎样判断? 商判则:和任意矢量点积为K-1阶张量的量一定为K 阶张量。 能否满足分量转换规律是判断某个数的集合是否表示一个张量的基本准则。 3、n 维张量的举例 标量零阶张量,矢量为一阶张量,应力、应变为二阶张量,应力、应变之间的弹性关系可用四阶张量表示。 4、▽的意义? ▽为一个梯度,▽2为调和算子,▽4为重调和算子。 5、柯西应变张量与格林应变张量的区别? 柯西应变张量适用于线弹性小变形,格林应变张量适用于任何情况。 6、任意斜面上的应力的本质是? 平衡微分方程和转轴公式。 7、如何描述正应变,剪应变,体积应变,应力的球张量,应力的偏张量?

对于各向同性材料,正应力引起正应变,引起线元长度变化;剪应力引起剪应变,引起角度的变化;应力的球张量,只引起体积变化,不会引起形状的变化;应力的偏张量,只引起形状变化,不会引起体积的变化。 动力学的平衡微分方程如何表示? 根据达朗贝尔原理,把惯性力当作体力来满足力平衡和力矩平衡条件。 9、转轴公式的理论依据:柯西公式。 10、等效应力、等效应变物理意义、公式: 等效应力将6个应力分量的对变形体的作用,等效于一个单向拉伸力的作用;等效应变将6个应变分量等效于一个单向拉伸力所产生的应变。利用实验,就可以直接建立等效应变与等效应力的数值关系 11、体积不可压: 从体积弹性模量来看,当时,K 趋向于无穷大,也就是说体积变化无限小,即表示体积不可压缩。 12、为什么等值拉压是纯剪切 等值拉压时,线元只有角度发生变化,长度有发生变化,故等值拉压是纯剪切。 13、里茨和伽辽金法的物理思想 均是利用利用最小势能原理,寻找满足约束边界条件的试验函数。

弹性力学第四章 用极坐标解平面问题

第四章 用极坐标解平面问题 4.1.极坐标中的平衡微分方程 工程上常常可以遇到圆形、环形、楔形或扇形类的结构物。在这些情况下,用直角坐标描述边界条件会变得相当复杂,由于极坐标使得结构的边界与坐标线一致,因而使边界条件的描述更加简单,使问题更易于求解。 首先我们定义极坐标中的应力分量和体积力分量。用夹角为?d 的两条极径和两条半径相差为ρd 的同心圆弧截取一个微元体(图4.1)。圆弧截面称为ρ面。面的法向沿径向而且指向ρ增加方向,这一圆弧面称为正ρ面,反之称为负ρ面。极径截面称为?面。面的法向沿环向而且指向?增加方向,这一极径截面称为正?面。反之称为负?面。 ρ面上的正应力用ρσ表示,剪应力用ρ?τ表示。?面 上的正应力用?σ表示,剪应力用?ρτ表示。用ρf 表示体积力在径向的分量,用?f 表示体积力在环向的分量。应力的符 号规定与直角坐标下的规定完全相同:正面上指向正向(坐标增加的方向)的应力为正值应力,负面上指向负向(坐标 减小的方向)的应力亦为正值应力,反之,为负值的应力。体积力符号规定也与直角坐标下的规定相同,指向坐标轴正向(坐标增加的方向)的体积力为正值,反之,为负值。 直角坐标和极坐标之间具有严格的变换关系。从理论上说,我们完全可以通过坐标变换的方法由直角坐标的基本方程导出极坐标下的相应方程。但是,为了加深对极坐标下平衡方程物理意义的理解,我们仍然通过极坐标下的微分单元体的平衡导出极坐标下的平衡微分方程。我们取一个微分单元体研究,各个面上的应力分量和体积力如图4.2所示。 负ρ面上的正应力为ρσ,剪应力为ρ?τ;正ρ面的坐标比负ρ面增加了ρd ,所以 正ρ面的应力和负ρ面相比,应力产生了一个增量,分别为ρρ σ σρρd ??+和ρρ ττρ?ρ? d ??+ 。 负?面上的正应力为?σ,剪应力为?ρτ ;正?面的坐标比负?面增加了?d ,所以正?面的应力和负?面相比,应力产生了一个增量,分别为?? σσ??d ??+ 和?? ττ?ρ?ρd ??+ 。 y 图4.1极坐标下的应力符号 y ? σ??? ?ρ? 图4.2单元体上的应力

相关文档
最新文档