概率一般加法公式(2-6个随机事件)
概率论公式汇总

Pn ( k ) C n p k q n k
k
, k 0,1,2, , n 。
第二章
随机变量及其分布
基本事件 随机事件A P ( A) 随机变量X ( ) a X b F (b) F (a )
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事 件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…, (1)离散 型随机变 量的分布 律 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形 式给出:
P ( A)
(10)加法 公式 (11)减法 公式
L( A) 。其中 L 为几何度量(长度、面积、体积) 。 L ()
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
德摩根率: i 1
A A
i i 1
i
A B A B, A B A B
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满 足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1 (7)概率 的公理化 定义 3° 对于两两互不相容的事件 A1 , A2 ,…有
P(A)= ( 1 ) ( 2 ) ( m ) = P( 1 ) P( 2 ) P( m )
设任一事件 A ,它是由 1 , 2 m 组成的,则有
概率公式大全

第一章随机事件和概率( 1)排列组从 m 个人中挑出 n 个人进行排列的可能数。
合公式从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事): m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种( 2)加法和方法来完成,则这件事可由m+n 种方法来完成。
乘法原理乘法原理(两个步骤分别不能完成这件事): m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
( 3)一些常重复排列和非重复排列(有序)对立事件(至少有一个)见排列顺序问题( 4)随机试如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在验和随机事进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
件试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
( 5)基本事这样一组事件中的每一个事件称为基本事件,用来表示。
件、样本空间基本事件的全体,称为试验的样本空间,用表示。
和事件一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,⋯表示事件,它们是的子集。
为必然事件, ? 为不可能事件。
(6)事件的关系与运算不可能事件( ? )的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系:如果事件 A 的组成部分也是事件 B 的组成部分,( A 发生必有事件 B 发生):如果同时有,,则称事件 A 与事件 B 等价,或称 A 等于 B: A=B 。
A 、B 中至少有一个发生的事件: A B,或者 A+B 。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B ,也可表示为 A-AB 或者,它表示 A 发生而 B 不发生的事件。
概率论与数理统计公式整理(超全免费版)

A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
(6)事件 的关系与
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
(17)伯努 利概型
“由果朔因”的推断。
我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
1
概率论与数理统计 公式(全)
均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b] 上为常数 1 ,即
概率统计公式大全(复习重点)

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列【重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
^这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
概率公式大全

第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第六章样本及抽样分布单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X — E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x e x x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9。
概率论公式总结

概率论公式总结概率论是数学中一门重要的分支,它研究随机事件发生的规律性和概率分布。
在现实生活中,概率论被广泛应用于金融、保险、工程、生物学等领域。
概率论中有许多重要的公式,它们是概率论研究的基础,也是解决实际问题的重要工具。
下面将对概率论中的一些重要公式进行总结和介绍。
首先,我们来介绍一下概率的基本概念。
在概率论中,事件的概率通常用P(A)来表示,其中A表示事件。
如果事件A发生的可能性越大,那么它的概率P(A)也就越大。
概率的计算通常需要依赖于一些基本的公式,下面就来介绍几个常用的概率公式。
1. 加法公式在概率论中,加法公式是计算事件A和事件B的并集的概率的重要公式。
加法公式的表达式为P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A和事件B的并集的概率,P(A)和P(B)分别表示事件A和事件B的概率,P(A∩B)表示事件A和事件B的交集的概率。
加法公式的应用范围很广,可以用于计算多个事件的并集的概率,也可以用于计算两个事件的并集的概率。
2. 乘法公式乘法公式是计算事件A和事件B的交集的概率的重要公式。
乘法公式的表达式为P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B的交集的概率,P(A)表示事件A的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
乘法公式可以用于计算多个事件的交集的概率,也可以用于计算两个事件的交集的概率。
3. 条件概率公式条件概率公式是计算在事件A发生的条件下事件B发生的概率的重要公式。
条件概率公式的表达式为P(B|A) = P(A∩B) / P(A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A∩B)表示事件A和事件B的交集的概率,P(A)表示事件A的概率。
条件概率公式在实际问题中有着广泛的应用,例如在医学诊断中,可以利用条件概率公式计算患病的概率。
4. 贝叶斯定理贝叶斯定理是概率论中一个非常重要的定理,它是由英国数学家贝叶斯提出的。
概率论与数理统计公式大全
第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。
求一批产品通过检验的概率。
解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。
概率公式大全
第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第七章参数估计单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(l i m ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(222221212121)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。
概率统计公式大全(复习重点)汇总情况
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A Y B,或者A+B。
概率论公式大全
F ( x) = ∫ f ( x)dx
−∞
x
,
(2) k =1
∑p
∞
k
=1
。
则称 X 为连续型随机变量。 f ( x ) 称为 X 的概率密度函 数或密度函数, 简称概率密度。 f ( x ) 的图形是一条曲线, 称为密度(分布)曲线。 由上式可知,连续型随机变量的分布函数 F ( x ) 是连续函 数。 所以,
X ~ π (λ ) 或者 P( λ )。
泊松分布为二项分布的极限分布(np=λ,n→∞) 。
( X = x ) 并非是不可能事件 Ø。
x+h
库
∫ f ( x)dx
x
④超几何分布
P ( X = x ) ≤ P ( x < X ≤ x + h) =
令 h → 0 , 则 右 端 为 零 , 而 概 率 P( X = x) ≥ 0 , 故 得
2、五大公式(加法、减法、乘法、全概、 贝叶斯)
(1)加法公式 P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) (2)减法公式 P(A-B)=P(A)-P(AB) 当 B ⊂ A 时,P(A-B)=P(A)-P(B) 当 A=Ω时,P( B )=1- P(B) (3)条件概率和乘法公式 定义 设 A、B 是两个事件,且 P(A)>0,则称
2° P (ω 1 ) = P (ω 2 ) = Λ P (ω n ) =
1 。 n
库
P(A)= {(ω 1 ) Υ (ω 2 ) Υ Λ Υ (ω m )}
= P (ω 1 ) + P (ω 2 ) + Λ + P (ω m )