Layout(集成电路版图)注意事项及技巧总结教案资料

Layout(集成电路版图)注意事项及技巧总结教案资料
Layout(集成电路版图)注意事项及技巧总结教案资料

L a y o u t(集成电路版图)注意事项及技巧总

Layout主要工作注意事项

●画之前的准备工作

●与电路设计者的沟通

●Layout 的金属线尤其是电源线、地线

●保护环

●衬底噪声

●管子的匹配精度

一、layout 之前的准备工作

1、先估算芯片面积

先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。

2、Top-Down 设计流程

先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。

3、模块的方向应该与信号的流向一致

每个模块一定按照确定好的引脚位置引出之间的连线

4、保证主信号通道简单流畅,连线尽量短,少拐弯等。

5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避

免各模块的电源电压不一致。

6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。

二、与电路设计者的沟通

搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方

包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。

(2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。(3)电路中MOS管,电阻电容对精度的要求。

(4)易受干扰的电压传输线,高频信号传输线。

三、layout 的金属线尤其是电源线,地线

1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。

电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。

在接触孔周围,电流比较集中,电迁移更容易产生。

2、避免天线效应

长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。

解决方案:(1)插一个金属跳线来消除(在低层金属上的天线效应可以通过在顶层金属层插入短的跳线来消除)。

(2)把低层金属导线连接到扩散区来避免损害。

3、芯片金属线存在寄生电阻和寄生电容效应

寄生电阻会使电压产生漂移,导致额外的噪声的产生

寄生电容耦合会使信号之间互相干扰

关于寄生电阻:

(1)镜像电流镜内部的晶体管在版图上放在一起,然后通过连线引到各个需要供电的版图。

(2)加粗金属线

(3)存在对称关系的信号的连线也应该保持对称,使得信号线的寄生电阻保持相等。

关于寄生电容:

(1)避免时钟线和信号线的重叠

(2)两条信号线应避免长距离平行,信号线之间交叉对彼此的影响比二者平行要小

(3)输入信号线和输出信号线应该避免交叉

(4)对于易受干扰的信号线,在两侧加地线保护

(5)模拟电路的数字部分需要严格的隔离开

四、保护环

1、避免闩锁效应

最常见的latch up 诱因是电源,地的瞬态脉冲。这种瞬态脉冲可能产生原因是瞬态电源中断等。它可能会使引脚电位高于VDD或低于VSS,容易发生latch-up,因此,对于电路中有连接到电源和地的MOS管,周围需要加保护环。

2、容易发生latch-up的地方:任何不与power, supply, substrate 相连的引脚都有可能,所以精度要求高时,要查看是否有引脚引线既不连power,supply,也不连substrate ,凡是和这样的引线相连的源区,漏区都要接保护环。

3、保护环要起到有效的作用就应该使保护环宽度较宽,电阻较低而且用深扩散材料。

4、N管的周围应该加吸引少子电子的N型保护环(n-sub),n-sub连接vdd

P管的周围应该加吸收少子空穴的P型保护环(p-sub),p-sub连接vss

双环对少子的吸收效果比单环好

五、衬底噪声

1、衬底噪声产生原因

源漏衬底pn结正向导通,或者电源连接节点引入的串扰,使得衬底电位会产生抖动偏差。

2、解决方法:

(1)对于轻掺杂的衬底要用保护环把敏感电路包围起来

(2)把gnd和衬底在片内连在一起,然后由一条线连到片外的全局地线使得gnd 和衬底的跳动一致,也可以消除衬底噪声。

(3)场屏蔽作用:每个block 外围一层金属,使每单元模块同电势而且模块之间不相互影响。

3、衬底可靠电位的连接

(1)尽量把衬底与电源的接触孔的位置和该位置管子的衬底注入极的距离缩小,距离越近越好,因为这种距离的大小衬底电位偏差影响非常大。(2)把衬底接触孔的位置增多,尽量多打孔,保证衬底与电源的接触电阻较小。

六、管子的匹配精度

1、电流成比例的MOS管,应使电流方向一致,版图中晶体管方向相同。

2、配置dummy器件,使版图周围环境一致,结构更加对称。

3、在处理匹配性要求高的对管时,采用交叉对称的结构比较好。

4、MOS管的匹配主要有四方面影响因素

栅面积:匹配度与有源区面积(s=w*l)成反比关系

栅氧化层厚度:一般栅氧化层的管子匹配度较高

沟道长度调制:管子的不匹配与Vgs的不匹配成正比与沟道长度成反比。

方向:沿晶体管不同轴向制作的管子的迁移率不同,这就影响管子跨导的匹配度,把需要匹配的管子放在一个cell 中,避免因旋转cell 而产生方向

不一致。

5、dummy器件的详细描述

如果周边环境不同,会使工艺中的刻蚀率不同。比如,线宽大,刻蚀率大,刻蚀的快慢会影响电阻等电学参数。例子:尺寸较大的管子被拆成小管子并联时,要在两端的小管子的栅旁加上dummy gate,这样可以保证比较精确的电流匹配,而且这种dummy gate 的宽度可以比实际的栅宽小,各个小管子的gate 最好用metal 联起来,如果用poly 连会引起刻蚀率的偏差。

6、主要单元电路的匹配

差分对管位置和连线长短都要对称,能合为一条线的连线就要合。差分对主要使Vgs匹配,而电流镜主要使ID匹配。

7、MOS管匹配的几点主要事项:

(1)接触孔,metal走线不要放在有源区内,如果metal一定要跨过有源区的话应加入dummy走线。

(2)最好把匹配管放在远离深扩散边缘的地方,至少两倍结深,N-well 属深扩散,pmos 要放在阱内距阱边较远处。

(3)尽量使用nmos管来做匹配管,因为nmos 管比pmos 管更易达到匹配。

(4)为避免由梯度引起的mismatch,采用common-centroid layout 同心结构,且尽量紧密,差分对采用cross-coupled pairs(交叉耦合)结

构。

(5)匹配器件要远离功率器件摆放,功率大于50mw就属于功率器件。

8、大功率供电的版图及宽长比较大的器件的版图

(1)w较大的管子应折成小单元并联,原则是每个单元的电阻应小于所有单元连接起来的总和。

(2)如果折成的单元数过多,应分两排摆放。

(3)大功率供电一般出现在有大电流的地方,避免电迁移。

9、电源线,地线,信号线的布线

(1)不同电路的电源线和地线之间会有一些噪声影响。模拟电路和数字电路的电源和地,还有一些敏感电路的电源线和地线都需要把它们保护起来,保证它们不相互影响。

(2)模拟电路和数字电路的gnd要分开。

(3)电源线,地线上尽量多打孔,以保证Nwell的良好接触和p型衬底良好接地。

(4)信号线的布线:

如果两条信号线的走向平行,平行线间的寄生电容会把两个信号耦合,产生噪声。

两临近信号线上的信号相互影响成为串扰,较少crosstalk方法:采用差分结构把crosstalk 化为公模扰动。

对敏感信号进行保护:把敏感信号屏蔽起来

将敏感电路部分与易产生噪声的地方间距增大。

Cadence 快捷键

Ctrl+A:全选

Shift+B:升到上一级试图

B:去某一级

Ctrl+C:中断某个指令,一般用ESC

Shift+C:裁切;首先调用命令,选中要裁切的图形,后画矩形裁切

Ctrl+D:取消选择

Shift+E和E:是控制用户预设的一些选项

Ctrl+F:显示上层等级Hierarchy

Shift+F:显示所有等级

Ctrl+G:Zoom to Grid

G:开关引力吸附到某些节点

I:插入

Shift+K:清除标尺

K:标尺

L:标签工具

M:移动工具

Shift+M:合并工具

Ctrl+N,Shift+N,N:控制线走向的Ctrl+N:先横后竖

Shift+N:直角正交

N:斜45°+正交

Shift+O:旋转工具

O:插入接触孔

P:画金属线

Q:打开设置属性对话框

Ctrl+R:重画

R:矩形工具

Ctrl+S:添加拐点,值的path线打弯Shift+S:search 查找

Shift+T:Hierachy Tree

T:层切换

U:撤销

V:关联,将一个图像关联到另一个图形

Ctrl+W:关闭窗口

W:前一试图

Ctrl+X:适合编辑

Shift+X:下降一等级

X:在Hierarchy 菜单中

Y:区域复制,可以复制一部分cell

Shift+Y:粘贴

Ctrl+Z:放大

Shift+Z:缩小

四.版图技巧

1.对敏感线的处理

对敏感线来说,至少要做到的是在它的走线过程中尽量没有其他走线和它交叉。因为走线上的信号必然会带来噪声,交错纠缠的走线会影响敏感线的信号。

对于要求比较高的敏感线,则需要做屏蔽。具体的方法是,在它的上下左右都连金属线,这些线接地。比如我用M3做敏感线,则上下用M2和M4重叠一层,左右用M3走,这些线均接地。等于把它像电缆一样包起来。

2.匹配问题的解决

电路中如果需要匹配,则要考虑对称性问题。比如1:8的匹配,则可以做成3×3的矩阵,“1”的放在正中间,“8”的放在四周。这样就是中心对称。如果是2:5的匹配,则可以安排成AABABAA的矩阵。

需要匹配和对称的电路器件,摆放方向必须一致。周围环境尽量一致。

3.噪声问题的处理

噪声问题处理的最常用方法是在器件周围加保护环。

Nmos管子做在衬底上因此周围的guardring是Pdiff,在版图上是一层PPLUS,上面加一层DIFF,用CONTACT连M1。Pdiff接低电位。

Pmos管子做在NWELL里面因此周围的GUARDING是Ndiff,在版图上先一层NPLUS,上面加一层DIFF,用CONTACT连M1。Ndiff接高电位。

在一个模块周围为了和其他模块隔离加的保护环,用一圈NWELL,里面加NDIFF,接高电位。

电阻看类型而定,做在P衬底上的周围接PDIFF型guarding接地;做在NWELL里面的则周围接NDIFF型guarding接高电位。

各种器件,包括管子,电容,电感,电阻都要接体电位。

如果不是RF型的MOS管,则一般尽量一排N管一排P管排列,每排或者一堆靠近的同类型管子做一圈GUARDING,在P管和N管之间有走线不方便打孔的可以空出来不打。

4.版图对称性

当电路需要对称的时候,需要从走线复杂度,面积等方面综合考虑。

常见的对称实现方式:

一般的,画好一半,折到另一半去,复制实现两边的对称。

如果对称性要求高的,可以用质心对称的方式,把管子拆分成两个,四个甚至更多。

如把一个管子拆成两个可以AB

BA

的方式

如果有四个管子,可以各拆成三个,用ABCDABCDABCD的方式

五.布局布线

布局布线是一个全局问题。在画较大的电路时候是很重要的。首先确定各模块的位置,在确定位置的时候需要考虑的问题主要有:各输入输出之间的连线最短,最方便;各模块接出去连PAD的各端口方便;高频线距离尽量短;输入输出之间相隔比较远等。这些问题需要在着手画各模块之前先有个安排。在画好各模块后摆放时会做调整,但大局不变。

连线一般的规则是单数层金属和双数层金属垂直,比如一三五层连水平;二四六层连垂直。但这样的主要目的是各层能方便走线,排得密集。所以也不是死规则,在布线较稀疏的情况下可以做适量变通。

在布线时最重要的问题是考虑电路的各支路电流问题。首先要明确各支路电路的峰值,这样就能确定金属线的最小宽度。确保整条支路不会被电流过大而烧断。当然连线也不能太宽,这样的话电容会大。

电路中如果画到电流源可以离得较远,因为电流源理想的时候电阻无穷大,这就意味着电流源连出来的线可以长一些,因为不需考虑连线太长电阻太大的问题。

六.版图流程

整体布局――各模块布局――模块布线――各模块通过DRC,LVS――整体布线――整体通过DRC,LVS,通过天线效应DRC――提取后仿参数

DRC:在线的有DIVA 只需把.rul文件放在相应目录下直接在线跑

Dracula:非在线

LVS:也有DIVA,DRACULA等。本次使用calibre进行lvs。具体流程如下:1.版图生成GDS文件。在icfb窗口的“file”中选“export”的“stream”

2.生成netlist。在ADS中的“tool”里export网表

3.用LVS文件,修改其中对应的layyout和netlist文件名称。

把以上三个文件放在同一目录下。

EDA中在该目录下跑CALIBRE

命令: calibre(空格)-lvs(空格)做lvs的文件名

在生成的lvs.rep中找错误。

注意:layout中,gnd和vdd作为pin。Pin只用.txt对应的metal标识。

在跑好LVS后,要在版图上对应的地方找到可能的错误,需要以下步骤:

在icfb窗口: load“~/calivre.skl”

Calibre-Setup-Socket…

在lvs路径 caliber -rve svdb&

在【svdb】窗口 setup-layout viewer

七.ELLA的心得

1.关于电路的问题

画模拟版图首先要注意的是线宽问题。每条支路上的电流是多少要问清电路设计者。对于比较大电流的支路,线宽一定要满足电流,但也不能太宽,否则寄生电容肯定会大。可以采用几条金属线上下重叠并联的方式,这样的话宽度小了电流又能满足。

画版图的时候也不能一味埋头苦画,远抱着质疑的态度。比如判断设计者给出的电流是否正确可信,给出的结构和器件尺寸是否合理等。这就需要对电路知识有很好的了解,懂电路来画版图才有意思。

2.关于ESD的问题

一般的工艺模型里可能会提供ESD模型。但是本次流片并没有。ESD需要自己画。参考文件中给出ESD的设计规则,有些是DRC做不出来的,需要自己注意。ESD需要在输入输出口,电源和地之间,不同的电源之间等都做,而

且结构不同。

对于栅直接接到PAD的电路,需要特别注意。在栅往外接的时候接一个200欧姆的电阻,这样电流进来的时候不容易将栅极击穿。在该PAD两边最好放GND和VDD的pad,这样电流容易往两边走。

3.关于滤波电容问题

在电路的空隙地方填入滤波电容。具体接法是:

NMOS管的源漏接地,栅接电源;

PMOS管的源漏接电源,栅接地。

本次电路中滤波电容采用mm模型,管子做成10um×10um,四周围相应的GUARDRING。

4.关于天线效应

第一层金属在接栅时候如果面积很大就会收集离子使得电位升高而击穿栅氧层。此时应该将第一层金属断开,往上连接,最好连到最高层。如果需要走第一层就再连回来。

5.关于电源线和地线问题

电源线和地线一般在60um左右。但是线宽超出20um工艺上有问题因此需要打孔。本次电路的处理方式是没有打孔,将线接成三根20um的从pad引出来,布线时,按照

Vdd gnd vdd gnd vdd gnd 这样间隔的布线。

整个版图的电源和地线呈网格状,这样压降小,稳定。

6.学会看参考文件

总的文件是guideline 里面有一些规定。不像DRC那样必须遵守。这次没有仔细看。

关于DRC,LVS,LPE等的相关文件在给出的文件里都有。DESIGN RULE 等文件需要在画之前先有了解。

在画之前应该把这些信息过目一遍,心中有数。至少知道什么信息在什么地方。

7. 本次流片所画版图:

集成电路版图复习课答案总结

1、描述集成电路工艺技术水平的五个技术指标及其物理含义 ⑴集成度(Integration Level):以一个IC芯片所包含的元件(晶体管或门/数)来衡量,(包括有源和无源元件)。 ⑵特征尺寸 (Feature Size) /(Critical Dimension):特征尺寸定义为器件中最小线条宽度(对MOS器件而言,通常指器件栅电极所决定的沟道几何长度),也可定义为最小线条宽度与线条间距之和的一半。 ⑶晶片直径(Wafer Diameter):当前的主流晶圆的尺寸为12寸(300mm),正在向18寸(450mm)晶圆迈进。 ⑷芯片面积(Chip Area):随着集成度的提高,每芯片所包含的晶体管数不断增多,平均芯片面积也随之增大。 ⑸封装(Package):指把硅片上的电路管脚,用导线接引到外部接头处,以便于其它器件连接。封装形式是指安装半导体集成电路芯片用的外壳。 2、简述集成电路发展的摩尔定律。 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律。当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍 3、集成电路常用的材料有哪些? 集成电路中常用的材料有三类:半导体材料,如Si、Ge、GaAs?以及InP?等;绝缘体材料,如SiO2、SiON?和Si3N4?等;金属材料,如铝、金、钨以及铜等。

4、集成电路按工艺器件类型和结构形式分为哪几类,各有什么特点。 双极集成电路:主要由双极晶体管构成(NPN型双极集成电路、PNP型双极集成电路)。优点是速度高、驱动能力强,缺点是功耗较大、集成度较低。 CMOS集成电路:主要由NMOS、PMOS构成CMOS电路,功耗低、集成度高,随着特征尺寸的缩小,速度也可以很高。 BiCMOS集成电路:同时包括双极和CMOS晶体管的集成电路为BiCMOS集成电路,综合了双极和CMOS器件两者的优点,但制作工艺复杂。 5、解释基本概念: 微电子、集成电路、集成度、场区、有源区、阱、外延 微电子:微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和。微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及微电子系统的电子学分支。 集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能。 集成度:集成电路的集成度是指单块芯片上所容纳的元件数目。

集成电路版图设计报告

北京工业大学集成电路板图设计报告 姓名:张靖维 学号:12023224 2015年 6 月 1日

目录 目录 (1) 1 绪论 (2) 1.1 介绍 (2) 1.1.1 集成电路的发展现状 (2) 1.1.2 集成电路设计流程及数字集成电路设计流程 (2) 1.1.3 CAD发展现状 (3) 2 电路设计 (4) 2.1 运算放大器电路 (4) 2.1.1 工作原理 (4) 2.1.2 电路设计 (4) 2.2 D触发器电路 (12) 2.2.1 反相器 (12) 2.2.2 传输门 (12) 2.2.3 与非门 (13) 2.2.4 D触发器 (14) 3 版图设计 (15) 3.1 运算放大器 (15) 3.1.1 运算放大器版图设计 (15) 3.2 D触发器 (16) 3.2.1 反相器 (16) 3.2.2 传输门 (17) 3.2.3 与非门 (17) 3.2.4 D触发器 (18) 4 总结与体会 (19)

1 绪论 随着晶体管的出现,集成电路随之产生,并极大地降低了电路的尺寸和成本。而由于追求集成度的提高,渐渐设计者不得不利用CAD工具设计集成电路的版图,这样大大提高了工作效率。在此单元中,我将介绍集成电路及CAD发展现状,本次课设所用EDA工具的简介以及集成电路设计流程等相关内容。 1.1介绍 1.1.1集成电路的发展现状 2014年,在国家一系列政策密集出台的环境下,在国内市场强劲需求的推动下,我国集成电路产业整体保持平稳较快增长,开始迎来发展的加速期。随着产业投入加大、技术突破与规模积累,在可以预见的未来,集成电路产业将成为支撑自主可控信息产业的核心力量,成为推动两化深度融合的重要基础。、 1.1.2集成电路设计流程及数字集成电路设计流程 集成电路设计的流程一般先要进行软硬件划分,将设计基本分为两部分:芯片硬件设计和软件协同设计。芯片硬件设计包括:功能设计阶段,设计描述和行为级验证,逻辑综合,门级验证(Gate-Level Netlist Verification),布局和布线。模拟集成电路设计的一般过程:电路设计,依据电路功能完成电路的设计;.前仿真,电路功能的仿真,包括功耗,电流,电压,温度,压摆幅,输入输出特性等参数的仿真;版图设计(Layout),依据所设计的电路画版图;后仿真,对所画的版图进行仿真,并与前仿真比较,若达不到要求需修改或重新设

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

集成电路版图设计论文

集成电路版图设计 班级12级微电子姓名陈仁浩学号2012221105240013 摘要:介绍了集成电路版图设计的各个环节及设计过程中需注意的问题,然后将IC版图设计与PCB版图设计进行对比,分析两者的差异。最后介绍了集成电路版图设计师这一职业,加深对该行业的认识。 关键词: 集成电路版图设计 引言: 集成电路版图设计是实现集成电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。近年来迅速发展的计算机、通信、嵌入式或便携式设备中集成电路的高性能低功耗运行都离不开集成电路掩模版图的精心设计。一个优秀的掩模版图设计者对于开发超性能的集成电路是极其关键的。 一、集成电路版图设计的过程 集成电路设计的流程:系统设计、逻辑设计、电路设计(包括:布局布线验证)、版图设计版图后仿真(加上寄生负载后检查设计是否能够正常工作)。集成电路版图设计是集成电路从电路拓扑到电路芯片的一个重要的设计过程,它需要设计者具有电路及电子元件的工作原理与工艺制造方面的基础知识,还需要设计者熟练运用绘图软件对电路进行合理的布局规划,设计出最大程度体现高性能、低功耗、低成本、能实际可靠工作的芯片版图。集成电路版图设计包括数字电路、模拟电路、标准单元、高频电路、双极型和射频集成电路等的版图设计。具体的过程为: 1、画版图之前,应与IC 工程师建立良好沟通在画版图之前,应该向电路设计者了解PAD 摆放的顺序及位置,了解版图的最终面积是多少。在电路当中,哪些功能块之间要放在比较近的位置。哪些器件需要良好的匹配。了解该芯片的电源线和地线一共有几组,每组之间各自是如何分布在版图上的? IC 工程师要求的工作进度与自己预估的进度有哪些出入? 2、全局设计:这个布局图应该和功能框图或电路图大体一致,然后根据模块的面积大小进行调整。布局设计的另一个重要的任务是焊盘的布局。焊盘的安排要便于内部信号的连接,要尽量节省芯片面积以减少制作成本。焊盘的布局还应该便于测试,特别是晶上测试。 3、分层设计:按照电路功能划分整个电路,对每个功能块进行再划分,每一个模块对应一个单元。从最小模块开始到完成整个电路的版图设计,设计者需要建立多个单元。这一步就是自上向下的设计。 4、版图的检查: (1)Design Rules Checker 运行DRC,DRC 有识别能力,能够进行复杂的识别工作,在生成最终送交的图形之前进行检查。程序就按照规则检查文件运行,发现错误时,会在错误的地方做出标记,并且做出解释。

模拟集成电路版图设计和绘制

电子科技大学 实验报告 学生姓名:连亚涛/王俊颖学号:2011031010032/0007指导教师:王向展实验地点:微固楼606实验时间:2014.6. 一、实验室名称:微电子技术实验室 二、实验项目名称:模拟集成电路版图设计和绘制 三、实验学时:4 四、实验原理 参照实验指导书。 五、实验目的 本实验是基于微电子技术应用背景和《集成电路原理》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路版图设计, 掌握基本的IC版图布局布线技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行版图的的设计。 六、实验内容 1、UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。 2、根据设计指标要求,自主完成版图设计,并掌握布局布线的基本技巧。 七、实验仪器设备 (1)工作站或微机终端一台

八、实验步骤 1、根据实验指导书熟悉UNIX操作系统常用命令的使用,掌握CadenceEDA 仿真环境的调用。 2、根据设计指标要求,设计出如下图所示的运算放大器电路版图,过程中应注意设计规则。 九、实验数据及结果分析: 1、通过本次实验掌握了UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。达到了实验目的。 2、根据设计指标要求,设计出运算放大器模拟集成电路版图。 (备注:小组共同完成) 十、实验结论: 通过这次实验,学习并掌握国际流行的EDA仿真软件Cadence的使用方法,完成了运算放大器集成电路版图的设计,其难点是版图的布局布线和设计规则的理解。 十一、总结及心得体会: 2学会了cadence在linux下的使用,在回去安装Ubuntu的过程中发生了很多错误,有了一定的提高,让我了解到使用免费破解的专业软件的不易。其次,cadence使用过程中,有很多技巧值得认真学习,如左手键盘右手鼠标操作,以及先画基本的接触孔,再画mos管,再用已有的Mos管拼接出其他宽长比的方法。同时,学会了如何提高画图效率的“偷懒”的办法。 当然,还有很多的不足,比如有些地方容易忽略版图的规则没有全局考量,造成重复赶工。在一些技巧上,如画不规则多边形保护环的方法还是太笨,没有用聪明的方法(多次shift+c)。

集成电路分析期末复习总结要点

集成电路分析 集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。 集成电路发展:按规模划分,集成电路的发展已经历了哪几代? 参考答案: 按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。它的发展遵循摩尔定律 解释欧姆型接触和肖特基型接触。 参考答案: 半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。 如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。 如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。 、集成电路主要有哪些基本制造工艺。 参考答案: 集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。 光刻工艺: 光刻的作用是什么?列举两种常用曝光方式。 参考答案: 光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。 曝光方式:接触式和非接触式 25、简述光刻工艺步骤。 参考答案: 涂光刻胶,曝光,显影,腐蚀,去光刻胶。 26、光刻胶正胶和负胶的区别是什么? 参考答案: 正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液

中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。常规双极型工艺需要几次光刻?每次光刻分别有什么作用? 参考答案: 需要六次光刻。第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻 第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻 掺杂工艺: 掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。 参考答案: 掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。 掺杂的方法有:热扩散法掺杂和离子注入法掺杂。与热扩散法相比,离子注入法掺杂的优点是:可精确控制杂质分布,掺杂纯度高、均匀性好,容易实现化合物半导体的掺杂等;缺点是:杂质离子对半导体晶格有损伤,这些损伤在某些场合完全消除是无法实现的;很浅的和很深的注入分布都难以得到;对高剂量的注入,离子注入的产率要受到限制;一般离子注入的设备相当昂贵, 试述PN结的空间电荷区是如何形成的。 参考答案: 在PN结中,由于N区中有大量的自由电子,由P区扩散到N区的空穴将逐渐与N区的自由电子复合。同样,由N区扩散到P区的自由电子也将逐渐与P区内的空穴复合。于是在紧靠接触面两边形成了数值相等、符号相反的一层很薄的空间电荷区,称为耗尽层。简述CMOS工艺的基本工艺流程(以1×poly,2×metal N阱为例)。 参考答案: 形成N阱区,确定nMOS和pMOS有源区,场和栅氧化,形成多晶硅并刻蚀成图案,P+扩散,N+扩散,刻蚀接触孔,沉淀第一金属层并刻蚀成图案,沉淀第二金属层并刻蚀成图案,形成钝化玻璃并刻蚀焊盘。 表面贴装技术:电子电路表面组装技术(Surface Mount Technology,SMT), 称为表面贴装或表面安装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。[1]工艺流程简化为:印刷-------贴片-------焊接-------检修 有源区和场区:有源区:硅片上做有源器件的区域。(就是有些阱区。或者说是采用STI等隔离技术,隔离开的区域)。有源区主要针对MOS而言,不同掺杂可形成n或p型有源区。有源区分为源区和漏区(掺杂类型相同)在进行互联

Layout(集成电路版图)注意事项及技巧总结

Layout主要工作注意事项 ●画之前的准备工作 ●与电路设计者的沟通 ●Layout 的金属线尤其是电源线、地线 ●保护环 ●衬底噪声 ●管子的匹配精度 一、l ayout 之前的准备工作 1、先估算芯片面积 先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。 2、Top-Down 设计流程 先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。 3、模块的方向应该与信号的流向一致 每个模块一定按照确定好的引脚位置引出之间的连线 4、保证主信号通道简单流畅,连线尽量短,少拐弯等。 5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避免各模块的 电源电压不一致。 6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。 二、与电路设计者的沟通

搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方 包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。 (2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。 (3)电路中MOS管,电阻电容对精度的要求。 (4)易受干扰的电压传输线,高频信号传输线。 三、layout 的金属线尤其是电源线,地线 1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。 电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。在接触孔周围,电流比较集中,电迁移更容易产生。 2、避免天线效应 长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。 解决方案:(1)插一个金属跳线来消除(在低层金属上的天线效应可以通过在顶层金属层插入短的跳线来消除)。 (2)把低层金属导线连接到扩散区来避免损害。 3、芯片金属线存在寄生电阻和寄生电容效应 寄生电阻会使电压产生漂移,导致额外的噪声的产生 寄生电容耦合会使信号之间互相干扰 关于寄生电阻: (1)镜像电流镜内部的晶体管在版图上放在一起,然后通过连线引到各个需要供电的版图。

集成电路版图设计笔试面试大全

集成电路版图设计笔试面试大全 1. calibre语句 2. 对电路是否了解。似乎这个非常关心。 3. 使用的工具。 , 熟练应用UNIX操作系统和L_edit,Calibre, Cadence, Virtuoso, Dracula 拽可乐(DIVA),等软件进行IC版图 绘制和DRC,LVS,ERC等后端验证 4. 做过哪些模块 其中主要负责的有Amplifier,Comparator,CPM,Bandgap,Accurate reference,Oscillator,Integrated Power MOS,LDO blocks 和Pad,ESD cells以及top的整体布局连接 5. 是否用过双阱工艺。 工艺流程见版图资料 在高阻衬底上同时形成较高的杂质浓度的P阱和N阱,NMOS、PMOS分别做在这两个阱中,这样可以独立调节两种沟道MOS管的参数,使CMOS电路达到最优特性,且两种器件间距离也因采用独立的阱而减小,以适合于高密度集成,但是工艺较复杂。 制作MOS管时,若采用离子注入,需要淀积Si3N4,SiO2不能阻挡离子注入,进行调沟或调节开启电压时,都可以用SiO2层进行注入。 双阱CMOS采用原始材料是在P+衬底(低电阻率)上外延一层轻掺杂的外延层P-(高电阻率)防止latch-up效应(因为低电阻率的衬底可以收集衬底电流)。 N阱、P阱之间无space。

6. 你认为如何能做好一个版图,或者做一个好版图需要注意些什么需要很仔细的回答~答:一,对于任何成功的模拟版图设计来说,都必须仔细地注意版图设计的floorplan,一般floorplan 由设计和应用工程师给出,但也应该考虑到版图工程师的布线问题,加以讨论调整。总体原则是 模拟电路应该以模拟信号对噪声的敏感度来分类。例如,低电平信号节点或高阻抗节点,它们与输入信号典型相关,因此认为它们对噪声的敏感度很高。这些敏感信号应被紧密地屏蔽保护起来,尤其是与数字输出缓冲器隔离。高摆幅的模拟电路,例如比较器和输出缓冲放大器应放置在敏感模拟电路和数字电路之间。数字电路应以速度和功能来分类。显而易见,因为数字输出缓冲器通常在高速时驱动电容负载,所以应使它离敏感模拟信号最远。其次,速度较低的逻辑电路位于敏感模拟电路和缓冲输出之间。注意到敏感模拟电路是尽可能远离数字缓冲输出,并且最不敏感的模拟电路与噪声最小的数字电路邻近。 芯片布局时具体需考虑的问题,如在进行系统整体版图布局时,要充分考虑模块之间的走线,避免时钟信号线对单元以及内部信号的干扰。模块间摆放时要配合压焊点的分布,另外对时钟布线要充分考虑时延,不同的时钟信号布线应尽量一致,以保证时钟之间的同步性问题。而信号的走线要完全对称以克服外界干扰。 二(电源线和地线的布局问题

集成电路版图设计软件LASI使用指南

集成电路版图设计软件----Lasi操作指南 梁竹关 云南大学信息学院电子工程系,zhgliang@https://www.360docs.net/doc/c68777616.html, 1 概述 Lasi是一个集成电路版图设计的软件,可以应用它来画出集成电路原理图、设计集成电路的版图。该软件支持层次设计的思想,上层设计目标可以调用下层设计好的对象,通过一级级(RANK)调用,最终设计出庞大复杂的集成电路版图。 一、软件功能模块 1、设置 (1)不同的图案代表不同物质层 (2)几何尺寸设置 2、输入图案 3、编辑图案 4、设计规则检查(DRC)检查 5、电气规则检查(ERC)LVS 6抽取电路及参数(用于后仿真) 二、下载与安装 进入网址https://www.360docs.net/doc/c68777616.html,/,发现LASI,如图2.1所示,点击它。 图2.1 LASI下载地址 下载后,双击图标LASI进行安装,如图2.2所示。

接着根据提示安装。 图2.3 安装步骤之一 安装成功后,在安装路径下新建一个子目录,并把图2.4所示的选项Copy到该子目录下, 并把Rules文件夹中的文件copy到该子目录下。

图2.4 copy文件三、按键与功能 (一)屏幕上方按键 1、视图 2、编辑 3、系统功能 (二)屏幕右方按键 四、图形文字输入与编辑 (一)图形文字输入

图3.1 Lasi及Attr的界面 如上图3.1所示Menu1和Menu2(按鼠标右键可以在Menu1和Menu2之间选择)提供图形文字输入及编辑等的按键。 1、用Attr按键设置表示器件和互联线的图形 设计集成电路版图时采用一些不同颜色、不同尺寸、不同填充线条的方框代表管子和边线,利用Attr选项可以改变各个表示层的颜色、大小、填充线条。如图3.1所示,CONT表示管子与METAL 1的连接孔。当打开Attr时,选中CONT后,用color选项改变表示CONT的方框颜色,用Fill改变CONT的填充线条类型,用Dash选项改变CONT方框边的线条类型。 PWEL表示P阱工艺中的P阱 NWEL表示N阱工艺中的N阱 ACTV表示有源区 PSEL表示P掺杂区 NSEL表示N掺杂区 POL1表示多晶硅,用做栅极; MET1表示第一层金属 VIA1表示第一层金属与第二层金属之间的连接孔 MET2表示第二层金属 假如Attr界面中的每一层物质层出现的都是0值,如下图3.2所示,用import选项把Lasi 包中给的版图或电路图拉到Lasi程序运行窗口中来就可以。

集成电路版图设计报告

集成电路版图设计实验报告 班级:微电子1302班 学号:1306090226 姓名:李根 日期:2016年1月10日

一:实验目的: 熟悉IC设计软件Cadence Layout Editor的使用方法,掌握集成电路原理图设计,原理图仿真以及版图设计的流程方法以及技巧。 二:实验内容 1.Linux常用命令及其经典文本编辑器vi的使用 ①:了解Linux操作系统的特点。 ②:熟练操作如何登录、退出以及关机。 ③:学习Linux常用的软件以及目录命令。 ④:熟悉经典编辑器vi的基本常用操作。 2.CMOS反相器的设计和分析 ①:进行cmos反相器的原理图设计。 ②:进行cmos反相器的原理图仿真。 ③:进行cmos反相器的版图设计。 3.CMOS与非门的设计和分析 ①:进行cmos与非门的原理图设计。 ②:进行cmos与非门的原理图仿真。 ③:进行cmos与非门的版图设计 4.CMOS D触发器的设计和分析 ①:进行cmosD触发器的原理图设计。 ②:进行cmosD触发器的原理图仿真。 ③:进行cmosD触发器的版图设计。 5.对以上的学习进行总结 ①:总结收获学习到的东西。 ②:总结存在的不足之处。 ③:展望集成电路版图设计的未来。 三:实验步骤(CMOS反相器) 1.CMOS反相器原理图设计 内容:首先建立自己的Library,建立一个原理图的cell,其次进行原理图通过调用库里面的器件来绘制原理图,然后进行检错及修正,具体操作如下:在Terminal视窗下键入icfb,打开CIW; Tool→Library Manager; File→New→Library; 在name栏填上Library名称; 选择Compile a new techfile; 键入~/0.6um.tf; File→New→Cell view,在cell name键入inv,tool选择schematic,单击OK; 点击Schematic视窗上的指令集Add→Instance,出现Add Instance视窗; 通过Browse analogLib库将要用到的元件添加进来;

集成电路版图设计调查报告

关于IC集成电路版图设计的调查报告 IC版图设计是指将前端设计产生的门级网表通过EDA设计工具进行布局布线和进行物理验证并最终产生供制造用的GDSII数据的过程,简单来说,是将所设计的电路转化为图形描述格式,即设计工艺中所需要的各种掩模板,而掩模板上的几何图形包括如下几层:n阱、有源区、多晶硅、n+和p+注入、接触孔以及金属层。 一. 版图设计流程 集成电路从60年代开始,经历了小规模集成,中规模集成,大规模集成,到目前的超大规模集成。单个芯片上已经可以制作含几百万个晶体管的一个完整的数字系统或数模混合的电子系统。在整个设计过程中,版图(layout)设计或者称作物理设计(physical design)是其中重要的一环。他是把每个原件的电路表示转换成集合表示,同时,元件间连接的线网也被转换成几何连线图形。概括说来,对于复杂的版图设计,一般分成若干个子步骤进行: 1.模块划分。为了将处理问题的规模缩小,通常把整个电路划分成若干个模块。版图规划和布局是为了每个模块和整个芯片选择一个好的布图方案。 2.布局布线。布局图应该和功能框图或者电路图大体一致,然后根据各个模块的面积大小进行调整,接着完成模块间的互连,并进一步优化布线结果。 3.版图压缩。压缩是布线完成后的优化处理过程,试图进一步减小芯片的占用面积。 4.版图检查。版图检查主要包括三个部分:1. Design Rules Checker(DR C)。DRC有识别能力,能够进行复杂的识别工作,在生成最终送交的图形之前进行检查,程序就会按照规则检查文件运行,发现错误时,会在错误的地方做出标记与解释。2. Electrical Rules Checker(ERC),它是用来检查线路短路,线路开路以及floating结点。ERC检查短路错误后,会将错误提示局限在最短的连接通路上。3. Layout Versus Schematic(LVS),LVS比较IC版图和原理图,报告版图连接和原理图的不一致,并进行修改直到版图与电路图完全一致为止。 5.版图修改。此时的工作主要包括检查Label是否正确,label所选的lay er是否正确;Power & Ground连接是否有问题,得到的files是否确实可靠,检查netlist中器件类型的命名是否规范等。

郑州大学半导体集成电路复习总结

1.基本概念: 集成电路:是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体有源器件、电阻、电容等元件及它们之间的连接导线全部“集成”在一块半导体单晶片上,封装在一个外壳内,执行特定电路或系统功能的电路。集成度:每块集成电路芯片中包含的元器件数目。 多项目晶圆技术:多项目晶圆就是将多个使用相同工艺的集成电路设计放在同一晶圆片上流片,制造完成后,每个设计可以得到数十片芯片样品,这一数量对于原型设计阶段的实验、测试已经足够。而该次制造费用就由所有参加MPW的项目按照芯片面积分摊,成本仅为单独进行原型制造成本的5%-10%,极大地降低了产品开发风险、培养集成电路设计人才的门槛和中小集成电路设计企业在起步时的门槛。 无生产线集成电路设计: 代工厂:加工厂的铸造车间,无自己产品。优良的加工技术(包括设计和制造)及优质的服务为客户提供加工服务。 2.微电子的战略地位:对人类社会的巨大作用 3.集成电路分类: 按器件结构类型分类:①双极集成电路②金属-氧化物-半导体(MOS)集成电路 ③双极-MOS(BiMOS)集成电路 按集成度分类:①小规模集成电路②中规模集成电路③大规模集成电路 ④超大规模集成电路⑤特大规模集成电路⑥巨大规模集成电路按使用的基片材料分类:①单片集成电路②混合集成电路 按电路的功能结构分类:①数字集成电路②模拟集成电路③数模混合集成电路按应用领域分类:①标准通用集成电路②专用集成电路 4.集成电路按规模划分经历了哪几代?遵循什么定律? 小规模集成(SSI)→中规模集成(MSI)→大规模集成(LSI)→超大规模集成电路(VLSI) →特大规模集成电路(ULSI) → GSI(巨大规模集成) →SoC(系统芯片)。 摩尔定律:集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍。 5.IC(集成电路)、VLSI(超大规模集成电路)、ULSI(特大规模集成电路) 6.高K介质: 问题:90 nm工艺之前,晶体管之间的电流泄露问题并不是很严重,因为晶体管之间有较长的间距。但随着特征尺寸减小,不同晶体管间距变得很短,电流泄露现象变得异常严重,为了抵消泄露电流,芯片不得不要求更大的供电量,造成的直接后果就是芯片功耗增加。无论英特尔还是AMD(超微半导体),90纳米工艺制造的产品都没有在功耗方面表现出应有的优势,而按照惯例,每次新工艺都会让同型芯片的功耗降低30%左右。 解决:采用高K值的氧化物材料来制造晶体管的栅极,英特尔称之为“高K门电介

集成电路版图技巧总结

集成电路版图技巧总结 1、对敏感线的处理对敏感线来说,至少要做到的是在它的走线过程中尽量没有其他走线和它交叉。因为走线上的信号必然会带来噪声,交错纠缠的走线会影响敏感线的信号。 对于要求比较高的敏感线,则需要做屏蔽。具体的方法是,在它的上下左右都连金属线,这些线接地。比如我用M3做敏感线,则上下用M2和M4重叠一层,左右用M3走,这些线均接地。等于把它像电缆一样包起来。 2、匹配问题的解决电路中如果需要匹配,则要考虑对称性问题。比如1:8的匹配,则可以做成33的矩阵,“1”的放在正中间,“8”的放在四周。这样就是中心对称。如果是2:5的匹配,则可以安排成AABABAA的矩阵。 需要匹配和对称的电路器件,摆放方向必须一致。周围环境尽量一致。 3、噪声问题的处理噪声问题处理的最常用方法是在器件周围加保护环。N mos管子做在衬底上因此周围的guardring是Pdiff,在版图上是一层PPLUS,上面加一层DIFF,用CONTACT连M1。Pdiff接低电位。Pmos管子做在NWELL里面因此周围的GUARDING是Ndiff,在版图上先一层NPLUS,上面加一层DIFF,用CONTACT连M1。Ndiff接高电位。在一个模块周围为了和其他模块隔离加的保护环,用一圈NWELL,里面加NDIFF,接高电位。

电阻看类型而定,做在P衬底上的周围接PDIFF型guarding接地;做在NWELL里面的则周围接NDIFF型guarding接高电位。各种器件,包括管子,电容,电感,电阻都要接体电位。如果不是RF型的MOS管,则一般尽量一排N管一排P管排列,每排或者一堆靠近的同类型管子做一圈GUARDING,在P管和N管之间有走线不方便打孔的可以空出来不打。 4、版图对称性当电路需要对称的时候,需要从走线复杂度,面积等方面综合考虑。常见的对称实现方式: 一般的,画好一半,折到另一半去,复制实现两边的对称。 如果对称性要求高的,可以用质心对称的方式,把管子拆分成两个,四个甚至更多。 如把一个管子拆成两个可以AB BA的方式如果有四个管子,可以各拆成三个,用ABCDABCDABCD的方式五、布局布线布局布线是一个全局问题。在画较大的电路时候是很重要的。首先确定各模块的位置,在确定位置的时候需要考虑的问题主要有:各输入输出之间的连线最短,最方便;各模块接出去连PAD的各端口方便;高频线距离尽量短;输入输出之间相隔比较远等。这些问题需要在着手画各模块之前先有个安排。在画好各模块后摆放时会做调整,但大局不变。连线一般的规则是单数层金属和双数层金属垂直,比如一三五层连水平;二四六层连垂直。但这样的主要目的是各层能方便走线,排得密集。所以也不是死规则,在布线较稀疏的情况下可以做适量变通。在布线时最重要的问题

数字集成电路总结

数字集成电路基础学习总结

第一章数字电子技术概念 1.1 数字电子技术和模拟电子技术的区别 模拟信号:在时间上和数值上均作连续变化的电路信号。 数字信号:表示数字量的信号,一般来说数字信号是在两个稳定状态之间作阶跃式变化的信号,它有电位型和脉冲型两种表达形式:用高低不同的电位信号表示数字“1”和“0”是电位型表示法;拥有无脉冲表示数字“1”和“0”是脉冲型表示法。 数字电路包括:脉冲电路、数字逻辑电路。数字电路的特点:1)小、轻、功耗低2)抗干扰力强3)精度高 按电路组成的结构可分立元件电路 集成电路 数数字电路分类 小规模 按集成度的大小来分中规模 大规模 超大规模 双极型电路 按构成电路的半导体器件来分 单极型电路 组合逻辑电路 按电路有记忆功能来分 1.2 1.3 三极管:是一种三极(发射极E、基极B(发射结、集电结)半导体器件,他有NPN和PNP两种,可工作在截止、放大、饱和三种工作状态。 电流公式:I(E)=I(B)+I(C) 放大状态:I(C)=βI(B) 饱和状态:I(C)< βI(B) 1.4 数制,两要素基数 权 二进制,十进制,十六进制之间的转换: 二进制转换成十进制:二进制可按权相加法转化成十进制。 十进制转换成二进制:任何十进制数正数的整数部分均可用除2取余法转换成二进制数。 二进制转化成八进制:三位一组分组转换。 二进制转换成十六进制:四位一组分组转换。 八进制转换成十六进制:以二进制为桥梁进行转换。 1.5 码制 十进制数的代码表示法常用以下几种:8421BCD码、5421BCD码、余3BCD码。 8421BCD码+0011=5421BCD码 第二章逻辑代数基础及基本逻辑门电路

集成电路版图设计-反相器-传输门

集成电路版图设计 实验报告 学院:电气与控制工程学院班级: XXXXXXXXXX 学号:XXXXXXXX 姓名:XXXX 完成日期:2015年1月22日

一、实验要求 1、掌握Linux常用命令(cd、ls、pwd等)。 (1)cd命令。用于切换子目录。输入cd并在后面跟一个路径名,就可以直接进入到另一个子目录中;cd..返回根目录;cd返回主目录。(2)ls命令。用于列出当前子目录下所有内容清单。 (3)pwd命令。用于显示当前所在位置。 2、掌握集成电路设计流程。 模拟集成电路设计的一般过程: (1)电路设计。依据电路功能完成电路的设计。 (2)前仿真。电路功能的仿真,包括功耗,电流,电压,温度,压摆幅,输入输出特性等参数的仿真。 (3)版图设计(Layout)。依据所设计的电路画版图。一般使用Cadence软件。 (4)后仿真。对所画的版图进行仿真,并与前仿真比较,若达不到要求需修改或重新设计版图。 (5)后续处理。将版图文件生成GDSII文件交予Foundry流片。 3、掌握Cadence软件的使用 (1)使用Cadence SchematicEditor绘制原理图。 (2)由Schematic产生symbol。 (3)在测试电路中使用AnalogEnvironment工具进行功能测试。 (4)使用Cadence Layout Editor根据原理图绘制相应版图,以

0.6umCMOS设计规则为准。 (5)对所设计的版图进行DRC验证,查错并修改。 以PMOS为例,部分设计规则如下:(um) N-Well包含P+Active的宽度:1.8 MOS管沟道最小宽度:0.75最小长度:0.6 Active区伸出栅极Ploy的最小延伸长度:0.5 Contact最小尺寸:0.6*0.6 Contact与Contact之间的最小间距:0.7 Active包最小尺寸Contact的最小宽度:0.4 非最小尺寸Contac t的最小宽度:0.6 Active上的Contact距栅极Poly1的最小距离:0.6 Metal1包最小尺寸的Contact:0.3 Metal1与Metal1之间的最小间距:0.8

集成电路版图设计报告

集成电路CAD 课程设计报告 一.设计目的: 1.通过本次实验,熟悉软件的特点并掌握使用软件的流程和设计方法; 2.了解集成电路工艺的制作流程、简单集成器件的工艺步骤、集成器件区域的层 次关系,与此同时进一步了解集成电路版图设计的λ准则以及各个图层的含义和设计规则; 3.掌握数字电路的基本单元CMOS 的版图,并利用CMOS 的版图设计简单的门电路, 然后对其进行基本的DRC 检查; 4. 掌握C)B (A F +?=的掩模板设计与绘制。 二.设计原理: 1、版图设计的目标: 版图 (layout ) 是集成电路从设计走向制造的桥梁,它包含了集成电路尺寸、 各层拓扑定义等器件相关的物理信息数据。版图设计是创建工程制图(网表)的精确的物理描述过程,即定义各工艺层图形的形状、尺寸以及不同工艺层的相对位置的过程。其设计目标有以下三方面: ① 满足电路功能、性能指标、质量要求; ② 尽可能节省面积,以提高集成度,降低成本; ③ 尽可能缩短连线,以减少复杂度,缩短延时,改善可能性。 2、版图设计的内容: ①布局:安排各个晶体管、基本单元、复杂单元在芯片上的位置。 ②布线:设计走线,实现管间、门间、单元间的互连。

③尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连之间的相对尺寸等。 ④版图编辑(Layout Editor ):规定各个工艺层上图形的形状、尺寸和位置。 ⑤布局布线(Place and route ):给出版图的整体规划和各图形间的连接。 ⑥版图检查(Layout Check ):设计规则检验(DRC,Design Rule Check)、电气规则检查(ERC,Electrical Rule Check)、版图与电路图一致性检验(LVS,Layout Versus Schematic )。 三.设计规则(Design Rul e ): 设计规则是设计人员与工艺人员之间的接口与“协议”,版图设计必须无条件的服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差以及寄生效应引起的性能劣化。设计规则主要包括几何规则、电学规则以及走线规则。其中几何设计规则通常有两类: ①微米准则:用微米表示版图规则中诸如最小特征尺寸和最小允许间隔的绝对尺寸。 ②λ准则:用单一参数λ表示版图规则,所有的几何尺寸都与λ成线性比例。 设计规则分类如下: 1.拓扑设计规则(绝对值):最小宽度、最小间距、最短露头、离周边最短距离。 2.λ设计规则(相对值):最小宽度w=mλ、最小间距s=nλ、最短露头t=lλ、离周边最短距离d=hλ(λ由IC制造厂提供,与具体的工艺类型有关,m、n、l、h为比例因子,与图形类形有关)。 ①宽度规则(width rule):宽度指封闭几何图形的内边之间的距离。 ②间距规则(Separation rule):间距指各几何图形外边界之间的距离。

集成电路版图设计

《集成电路版图设计》 学院:_____________ 专业班级:_____________ 学号:_____________ 学生姓名:_____________ 指导教师:_____________

摘要 什么是集成电路?把组成电路的元件、器件以及相互间的连线放在单个芯片上,整个电路就在这个芯片上,把这个芯片放到管壳中进行封装,电路与外部的连接靠引脚完成。 什么是集成电路设计?根据电路功能和性能的要求,在正确选择系统配置、电路形式、器件结构、工艺方案和设计规则的情况下,尽量减小芯片面积,降低设计成本,缩短设计周期,以保证全局优化,设计出满足要求的集成电路。 《集成电路版图设计》基于Cadence软件的集成电路版图设计原理、编辑和验证的方法。本次实验是基于Cadence版图设计软件平台,采用L50C7工艺库,设计一个运算放大器,并且,为了防止电路中各元件间产生闩锁效应,在实际生产流片中每个元件都应该添加保护环,以防止各元件间电流之间产生各种影响。并且增加电路的稳定性和可靠性。 电路的验证采用的是Calibre验证工具,对电路版图进行了DRC验证和LVS验证。 关键词:Calibre,运算放大器

目录 一、电路设计流程 (1) 二、版图的制作流程 (2) 三、二级运算放大器的原理图 (3) 四、器件尺寸的计算 (4) 五、二级运算放大器原理图 (5) 六、二级运算放大器版图 (9) 心得体会 (11) 参考文献 (12)

一、电路设计流程

二、版图的制作流程 由于设计目标已经电路的构造课本已经讲述的十分详细。 所以我讲接着阐述版图的制作过程。首先将电路图转为相应的版图, 意思就是把相对 应的器件进行布局布线。因制造工艺精度有限,所以版图必须满足一定的规则要求。 按照设计规则布局布线后,接着就要对它进行检查。由于版图是人工布局布线,因此 或多或少的存在一些错误。这时就需要软件来进行“设计规则检查”(DRC )。软件所依 据的是DRC 文件,它与画版图时使用的规则是一致的,只不过规则文件是给版图设计 者参考使用的,而DRC 文件是由软件编写的。 当版图没有了DRC 错误,完全符合设计规则之后,再依靠LVS 文件,将其与电路原理 图进行比较。若有不同之处,LVS 将进行报错,经过修改之后还要重复DRC 、LVS 过程。 若两者相同,说版图与原理图一致。到这一步就完成了版图的制作了。完成版图之后, 还可以利用工具提取版图中的寄生参数,对包含这些寄生参数的电路再次进行仿真, 从而更准确确定电路的性能。 最后把图形格式的版图文件转换为通用二进制文件(GDS 文件),提交给生产厂制造。

相关文档
最新文档