圆锥曲线 2011-2017中职对口数学高考分类汇总

圆锥曲线 2011-2017中职对口数学高考分类汇总
圆锥曲线 2011-2017中职对口数学高考分类汇总

河北省对口招生高考数学试卷分类汇总(2011-2017) 圆锥曲线

1、若抛物线方程是24x y =,则其准线方程是( )

A .116x =-

B .18

x =- C .1x =- D . 1y =- 2、抛物线216y x =上一点M 到焦点F 的距离为6,则M 的坐标为。

3、中心在直角坐标系原点,焦点在x 轴上的椭圆与某双曲线有共同的焦点F 1、F 2,并且|F 1F 2圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7,求椭圆和双曲线的标准方程.

4、若抛物线方程是28

1y x =,则其准线方程为( ) A 2-=x B 4-=x C 2-=y D 4-=y

5、渐近线方程为x y 3

2±=的双曲线,经过点(6,0),则该双曲线的标准方程为___________ 6、已知圆O 的标准方程为2522=+y x ,一个椭圆的中心在原点,焦点在x 轴上,并且以圆O 的直径为长

轴,,离心率为5

4, (1) 求椭圆的标准方程; (2) 过原点O ,斜率为

53的直线l ,分别与椭圆 和圆O 交于A 、B 、C 、D 四点(如图所示),

求|AC|+|BD|的大小。

7、椭圆2

2

14y x +=的离心率为( ).A .12 B C .56D .23 8、已知双曲线22

149

x y -=的两焦点分别为12F F 、,经过右焦点2F 的直线与双曲线的右支交于A 、B 两个点,8AB =,则1ABF ?的周长是

9、. 直线y=2x+b(b ≠0)与双曲线2

2

14y x -=的交点有个. 10、设抛物线对称轴为坐标轴,顶点在原点,焦点在圆2220x y x +-=的圆心。过圆与x 轴的右交点作倾斜角为4

π的直线与抛物线交于A 、B 两点,求:(1)直线AB 与该抛物线的方程;(2)线段AB 的中点坐标与OAB ?的面积。 11、抛物线21

4y x =- 的准线方程为( )1y =- B 、1y = C 、12y =-

D 、12y = 12、直线y x k =-与抛物线24y x =交于两个不同的点A 、B ,

且AB 的中点的横坐标为1,则k 的值为( )

A 、1-或2

B 、1-

C 、2

D 、1

13、以抛物线28y x =-的焦点为圆心,且与该抛物线的准线相切的圆的方程为______

14、已知双曲线2

2

1y x m

-=与抛物线28y x =有共同的焦点2F ,过双曲线的左焦点1F ,作倾斜角是030的直线与双曲线交于A ,B 两个点。 (1)求直线和双曲线的方程;(2)求2F AB ?的面积。

15、抛物线24

1y x -=的焦点坐标为A .(0,1) B .(0,-1) C .(1,0) D .(-1,0) 16、设直线2+=x y 与抛物线2x y =交于A ,B 两点,则线段AB 的中点坐标为_________.

17、求以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116

92

2=-y x 的渐近线相切的圆的标准方程.

18、等轴双曲线的离心率为() A B C D .1 19、设抛物线的对称轴为坐标轴,顶点为坐标原点,焦点在圆x 2+y 2+2x=0的圆心,过焦点作倾斜角为

34π

的直线与抛物线交于A 、B 两点.

(1)求直线和抛物线的方程;

(2)求|AB |的长.

20、设方程224kx y +=表示焦点在x 轴上的椭圆,则k 的取值范围为( )

A .(-∞,1)

B .(0,1)

C .(0,4)

D .(4,+∞)

21、已知抛物线顶点在坐标原点,对称轴为x 轴,点A(2,k)在抛物线上,且点A 到焦点的距离为5,则抛物线的方程为 _________________

22、已知椭圆22

14x y m

+=与抛物线24y x =有共同的焦点F 2,过椭圆的左焦点F 1作倾斜角为4π的直线,与椭圆交于M ,N 两点.求:

(1)直线MN 的方程和椭圆的方程;

(2)△OMN 的面积.

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

2013高考试题分类汇编(理科):圆锥曲线

2013年全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .引直线l 与曲线y =A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线l 的斜率等于( ) A . 3 B .3 - C .3 ± D .2 .双曲线2 214 x y -=的顶点到其渐近线的距离等于( ) A . 25 B . 45 C D 3 .已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程是( ) A .22 14x = B .22145x y - = C . 22 125 x y -= D .22 12x -= 4 .已知双曲线C :22221x y a b -=(0,0a b >>) ,则C 的渐近线方程为( ) A .14 y x =± B .13 y x =± C .12 y x =± D .y x =± 5 .已知04π θ<<,则双曲线22122:1cos sin x y C θθ-=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 6 .抛物线2 4y x =的焦点到双曲线2 2 13 y x -=的渐近线的距离是( ) A .12 B C .1 D 7 .如图,21,F F 是椭圆14 :22 1=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( ) A .2 B .3 C . 2 3 D . 2 6 8 .已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( ) A .1 B . 3 2 C .2 D .3 9 .椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ?????? , B .3384 ?????? , C .112?? ???? , D .314?? ???? , 10.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若 0MA MB =uuu r uuu r g ,则k =( ) A . 12 B C D .2 11.若双曲线22 221x y a b -= 则其渐近线方程为( ) A .y =±2x B .y = C .12 y x =± D .2 y x =±

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

2020年高考数学分类汇编:圆锥曲线

2020年高考数学分类汇编:圆锥曲线 一、单选题 1.【2020新课标Ⅲ文7】设O 为坐标原点,直线2x =与抛物线C :2 2(0) y px p =>交于D ,E 两点, 若OD OE ⊥,则C 的焦点坐标为( ) A .1,04?? ??? B .1,02?? ??? C .(1,0) D .(2,0) 1.B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥,根据抛物线的对 称性可以确定4 DOx EOx π ∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦 点坐标为1(,0)2 ,故选B . 2.【2020新课标Ⅲ理】设双曲线C :22 221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2, P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1 B .2 C .4 D .8 2.A 【解析】 5c a = ,c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42 PF F PF F S P = ?=△,即12||8PF PF ?=,12F P F P ⊥,()22212||2PF PF c ∴+=,() 2 2121224PF PF PF PF c ∴-+?=,即22540a a -+=,解得1a =,故选:A. 3.【2020新课标Ⅱ理】设O 为坐标原点,直线x a =与双曲线22 22:1(0,0)x y C a b a b -=>>的两条渐近线分别 交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 3.B 【解析】 22 22:1(0,0)x y C a b a b -=>>,∴双曲线的渐近线方程是b y x a =±,直线x a =与双曲线 22 22:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点.不妨设D 为在第一象限,E 在第四象限,联立x a b y x a =???=??,解得x a y b =??=?,故(,)D a b ,联立x a b y x a =?? ?=-?? ,解得x a y b =?? =-?,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282 ODE S a b ab =?==△.双曲线22 22:1(0,0)x y C a b a b -=>>,

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高考数学圆锥曲线分类大全理

2011-2018 新课标(理科)圆锥曲线分类汇编
一、选择填空
【2011 新课标】7. 设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B
两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为( B )
(A) 2
(B) 3
(C)2
(D)3
【2011 新课标】14. 在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1, F2 在 x 轴上,
离心率为
2 。过 l 的直线 2
交于 A, B 两点,且 △ABF2 的周长为 16,那么 C 的方程为
x2 y2 1

16 8
【2012 新课标】4. 设 F1F2 是椭圆 E :
x2 a2
y2 b2
1(a
b 0) 的左、右焦点,P 为直线 x
3a 2

一点, F2PF1 是底角为 30o 的等腰三角形,则 E 的离心率为( C )
【解析】
F2PF1 是底角为 30o 的等腰三角形 PF2
F2F1
2(3 a c) 2c e c 3
2
a4
【2012 新课标】8. 等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2 16 x 的准线
交于 A, B 两点, AB 4 3 ;则 C 的实轴长为( C )
【解析】设 C : x2 y2 a2 (a 0) 交 y 2 16 x 的准线 l : x 4 于 A(4, 2 3) B(4, 2 3) 得: a2 (4)2 (2 3)2 4 a 2 2a 4
【2013 新课标 1】4. 已知双曲线 C:xa22-yb22=1(a>0,b>0)的离心率为 ,则 C 的渐近线方程 为( C )
A、y=± x
(B)y=± x
(C)y=± x
(D)y=±x
【解析】由题知, c a
5 2
,即
5 4
=
c2 a2
=
a2 b2 a2
,∴ b2 a2
=1 4
,∴
b a
=
1 2
,∴ C
的渐近线方程
为 y 1 x ,故选 C . 2
【2013 新课标 1】10、已知椭圆xa22+yb22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于
A、B 两点。若 AB 的中点坐标为(1,-1),则 E 的方程为 (
D
)
x2 y2 A、45+36=1
x2 y2 B、36+27=1
x2 y2 C、27+18=1
x2 y2 D、18+ 9 =1
【解析】设 A(x1, y1), B(x2 , y2 ) ,则 x1 x2 =2, y1 y2 =-2,

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

相关文档
最新文档