1.3-柱坐标系与球坐标系-课件-(北师大选修4-4)

合集下载

1.4《柱坐标系与球坐标系简介》-课件(人教A版选修4-4)

1.4《柱坐标系与球坐标系简介》-课件(人教A版选修4-4)
6
【解析】选D.由于点P的柱坐标为(ρ,θ,z)= (2, , 3) ,故 点P在平面xOy内的射影Q到直线Oy的距离为 cos = 3 ,结合
6
图形,得P到直线Oy的距离为 ( 3)2 +( 3)2 = 6.
5.已知点M的球坐标为 (2 2, , ) ,则点M的柱坐标为(
6 4
一、选择题(每小题6分,共36分)
1.空间直角坐标系Oxyz中,下列柱坐标
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ=
在平面yOz内,故选A.
时,点P 2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
0≤φ≤π,0≤θ<2π.
答案: (4, , ) 6 3
9.已知柱坐标系中,点M的柱坐标为 (2, 2 , 5) ,且点M在数轴Oy
上的射影为N,则|OM|=______,|MN|=______.
【解析】设点M在平面Oxy上的射影为P,连结PN, 则PN为线段MN在平面Oxy上的射影.
3
(ρ ,θ ,z)围成的几何体的体积.
【解析】根据柱坐标系与点的柱坐 标的意义可知,满足ρ=1,0≤θ
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,∴V=Sh=πr2h=
2π(体积单位).
)
【解析】
6.球坐标系中,满足θ =
P(r,φ ,θ )的轨迹为( (A)点 (C)半平面
,r∈[0,+∞), φ ∈[0,π ]的动点 4
)
(B)直线 (D)半球面
【解析】选C.由于球坐标系中,θ=

人教版高中数学选修4-4(1.4)柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4(1.4)柱坐标系与球坐标系简介ppt课件

解析:点 C1 的空间直角坐标为(6 ,6,12),点 C1 的柱坐 π π 标为(12, ,12),点 C1 的球坐标为(12 , , ). 6 6
设点M的直角坐标公式.
解析:由变换公式,得 ρ2=x2+y2=12+12=2,ρ= 2, y 1 π tan θ= = =1,θ= (点 M 在第 1 卦限). x 1 4 π 因此点 M 的柱坐标为 2,4,3 . 点评:要注意点 M 所在的卦限,从而确定 θ 角的范围.
2 设点M的直角坐标为(1,1, ),求它的球坐标.
分析:利用球坐标公式求解.
解析:由坐标变换公式,可得 r= x2+y2+z2= 12+12+ 22=2, 2 2 π 由 rcos φ=z,得 cos φ= = ,φ= . r 2 4 y π 又∵tan θ= =1,θ= (点 M 在第 1 卦限), x 4 π π ∴点 M 的球坐标为2,4,4 . 点评:要注意 φ 角和 θ 角的取值范围.
1.设点 M 的直角坐标为(-1,- 3,3),则它的柱坐 标是( C ) π 2π A.2,3,3 B.2, 3 ,3 4π 5π C.2, 3 ,3 D.2, 3 ,3 2.设点 M 的直角坐标为(-1,-1, 2),则它的球坐 标为( B ) π π π 5π A.2,4,4 B.2,4, 4 5π π 3π π C.2, 4 ,4 D.2, 4 ,4
π 5π 3 y=rsin φsin θ=4sin sin =4×1×- =-2 3, 2 3 2 π z=rcos φ=4×cos =0. 2 ∴点 A 的直角坐标为(2,-2 3,0).
3π 2 点 B:x=8sin cos π=8× ×(-1)=-4 2, 4 2 3π y=8sin sin π=0, 4 3π 2 z=8cos =8×- =-4 2. 4 2 ∴点 B 的直角坐标为(-4 2,0,-4 2). 点 C:∵r=0, ∴x=0,y=0,z=0,即点 C 的直角坐标为(0,0,0).

1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)

1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)

【解析】
6.球坐标系中,满足θ =
P(r,φ ,θ )的轨迹为( (A)点 (C)半平面
,r∈[0,+∞), φ ∈[0,π ]的动点 4
)
(B)直线 (D)半球面
【解析】选C.由于球坐标系中,θ=
φ∈[0,π],故射线OM平分∠xOy,由球坐标系的意义,动点 P(r,φ,θ)的轨迹为二面角x-OP-y的平分面,这是半平面, 如图.
【解析】选D.由于点P的柱坐标为(ρ,θ,z)= (2, , 3) ,故 点P在平面xOy内的射影Q到直线Oy的距离为 cos = 3 ,结合
6
图形,得P到直线Oy的距离为 ( 3)2 +( 3)2 = 6.
5.已知点M的球坐标为 (2 2, , ) ,则点M的柱坐标为(
6 4
)
一、选择题(每小题6分,共36分)
1.空间直角坐标系Oxyz中,下列柱坐标
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ= 时,点P
在平面yOz内,故选A.
2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
3 3 3 3
求|MN|. 【解析】方法一:由题意知, |OM|=|ON|=6,∠MON= ,
3
≨△MON为等边三角形,≨|MN|=6.
=1 12.(14分)在柱坐标系中,求满足 0 2 的动点M 0 z 2
(ρ ,θ ,z)围成的几何体的体积. 【解析】根据柱坐标系与点的柱坐 标的意义可知,满足ρ=1,0≤θ
≨PN⊥直线Oy.
答案:3
6
三、解答题(共40分) 10.(12分)在球坐标系中,方程r=1表示空间中的什么曲 面?方程φ = 表示空间中的什么曲面?

1.3.2 直线的极坐标方程 课件 (北师大选修4-4)

1.3.2 直线的极坐标方程 课件 (北师大选修4-4)

解:圆=4 sin 的化为直角坐标方程是 x 2 y 2 4 y 0即x 2 ( y 2) 2 4 那么一条与此圆相切的 圆的方程为 x 2化为极坐标方程为 cos 2
7、曲线=0,= ( 0)和=4所围成的 3 面积 _________ .
1 3、极坐标方程 sin ( R)表示的曲线是 3 A、两条相交的直线 B、两条射线
C、一条直线
D、一条射线
1 2 2 解:由已知sin 可得 cos 3 3 2 y 2 所以得 tan 即 4 x 4 两条直线l1 : 2 x 4 y 0, l2 : 2 x 4 y 0 所以是两条相交直线
A


(2, ) 4
M


2

4 O 在Rt OMH中, = OM sin , MH
H
即 sin 2 所以,过点A(2, )平行于极轴的直线方程 4 为 sin 2

2、求过A(2,3)且斜率为 的直线的极坐标方程。 2
解:由题意可知,在直 角坐标系内直线方程为 2x y 7 0 设M ( , )为直线上的任意一点, 将x cos , y sin 代入直线方程 2 x y 7 0得 2 cos sin 7 0这就是所求的极坐标方 程
0
为了弥补这个不足,可以考虑允许 极径可以取全体实数。则上面的直 线的极坐标方程可以表示为

4 ( R)

5 ( R) 4
( 0)表示极角为的一条射线。 = ( R)表示极角为的一条直线。
例题2、求过点A(a,0)(a>0),且垂直 于极轴的直线L的极坐标方程。 解:如图,设点 M ( , ) M 为直线L上除点A外的任 意一点,连接OM ﹚ o A x 在 Rt MOA 中有

高中数学人教新课标A版选修4-4第一章坐标系1.1.6柱坐标系与球坐标系课件2

高中数学人教新课标A版选修4-4第一章坐标系1.1.6柱坐标系与球坐标系课件2
φ称为高低角.
3.坐标系是联系数与形的桥梁,利用坐标系可以实现几何
问题与代数问题的相互转化.但不同的坐标系有不同的特点,
在实际应用时,要根据问题的特点选择适当的坐标系,使
研究过程方便、简捷.
提高训练
设地球的半径为R,在球坐标系中,点A的坐标为(R,45°,
70°),点B的坐标为(R,45°,160°),求A,B两点间的球
故点 M 的柱坐标为
π
1, ,5
2
2
.
[A
基础达标]

4, ,3
1.点 P 的柱坐标是
4
,则其直角坐标为(
)
A . 2 2,2 2,3
B . -2 2,2 2,3
C . -2 2,-2 2,3
D . 2 2,-2 2,3


解析:选 C.x=ρcos θ=4cos
=-2 2,y=ρsin θ=4sin
π
6
.故点 M 的球坐标为 2 2, ,
6

4

.
B基础训练达标
4.已知点
则|P1P2|=(



π 5π
π
P1 的球坐标为4, 2, 3 ,P2 的柱坐标为2, 6,1,




)
A. 21
B. 29
C. 30
D.4 2
解析:选 A.设点 P1 的直角坐标为(x1,y1,z1),

数学选修4-4:坐标系与参数方程
第一章 坐标系
1.1.6 柱坐标系与球坐标系
学习目标
思维脉络
1.了解在柱坐标系、
球坐标系中刻画空间 柱坐标系与球坐标系

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)

3 3 3 3
求|MN|. 【解析】方法一:由题意知, |OM|=|ON|=6,∠MON= ,
3
≨△MON为等边三角形,≨|MN|=6.
=1 12.(14分)在柱坐标系中,求满足 0 2 的动点M 0 z 2
(ρ ,θ ,z)围成的几何体的体积. 【解析】根据柱坐标系与点的柱坐 标的意义可知,满足ρ=1,0≤θ
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,≨V=Sh=πr2h=
2π(体积单位).
【解析】选D.由于点P的柱坐标为(ρ,θ,z)= (2, , 3) ,故 点P在平面xOy内的射影Q到直线Oy的距离为 cos = 3 ,结合
6
图形,得P到直线Oy的距离为 ( 3)2 +( 3)2 = 6.
5.已知点M的球坐标为 (2 2, , ) ,则点M的柱坐标为(
6 4
)
≨PN⊥直线Oy. 10.(12分)在球坐标系中,方程r=1表示空间中的什么曲 面?方程φ = 表示空间中的什么曲面?
4
【解析】方程r=1表示球心在原点且半径为1的球面;
方程φ= 表示顶点在原点,半顶角为 的上半个圆锥面,中
4 4
心轴为z轴.
11.(14分)已知球坐标系Oxyz中, M(6, , ),N(6, 2 , ),
,r∈[0,+≦), 4
二、填空题(每小题8分,共24分)
7.若点M的柱坐标为(2, 2 ,-2),则点M的直角坐标为_____.
3
【解析】设M的直角坐标为(x,y,z),
答案:(-1, 3 ,-2)

高中数学 柱坐标系与球坐标系简介课件 新人教版选修44


若地处北半球,高OM 与z轴正向
的夹角为(90 )度,则称此地的
纬度是 北纬度 . 本初
若地处南半球,设
子午 线

z
OM与z轴负向的夹
角为(90 )度,则 西
称此地的纬度是
O 赤道
y东
.
x

课堂练习
3.如图把某地记为空间中的一点M,
若地处北半球,高OM 与z轴正向
的夹角为(90 )度,则称此地的
设P是空间任意一点,连接OP,记|OP|
=r.OP与Oz正向所夹的角为.设P在Oxy
平面上的射影为Q,Ox轴按逆时针方向
旋转到OQ时所转过的最小正角为.这样
点P的位置就可以用
有序数组(r,,)表示.
这样,空间的点与
z P
r
有序数组(r,,)之
间建立了一种对应 关系.
x
O
Q
y
球坐标系
把建立上述对应关系的坐标系叫做 球坐标系(或空间极坐标系),
第一讲 坐标系
四 柱坐标系与球坐标系简介
问题探究
在航空领域,人们怎样确定航天器 的准确位置呢?
问题探究
如何建立坐标系,才能方便地的得
出r,,的值,并由有序实数组(r,,)找
到航天器的具体位置呢?
问题探究
如何建立坐标系,才能方便地的得
出r,,的值,并由有序实数组(r,,)找
到航天器的具体位置呢?
纬度是 北纬度 . 本初
若地处南半球,设
子午 线

z
OM与z轴负向的夹
角为(90 )度,则 西
称此地的纬度是
O 赤道
y东
南纬度 .
x

课后作业 《学案》第一讲 单元检测卷.

高中数学第一章坐标系4柱坐标系与球坐标系简介课件新人教A版选修4-4


1.由直角坐标系中的直角坐标求柱坐标,可以先设出点M的柱坐标为(ρ,
x=ρcos θ, θ,z),代入变换公式y=ρsin θ,
z=z,
求ρ;也可以利用ρ2=x2+y2,求ρ.利用tan θ
=yx,求θ,在求θ的时候特别注意角θ所在的象限,从而确定θ的取值. 2.点的柱坐标和直角坐标的竖坐标相同.
1.在空间直角坐标系中,点P的柱坐标为2,π4,3,P在xOy平面上的射影 为Q,则Q点的坐标为( )
A.(2,0,3)
C.
2,π4,3
B.2,π4,0 D.( 2,π4,0)
【解析】 由点的空间柱坐标的意义可知,选B.
【答案】 B
我还有这些不足: (1) ________________________________________________________ (2) ________________________________________________________ 我的课下提升方案: (1) ________________________________________________________ (2) ________________________________________________________
0≤φ≤π,0≤θ<2π.
2.化点的球坐标(r,φ,θ)为直角坐标(x,y,z),需要运用公式
x=rsin φcos θ, y=rsin φsin θ, z=rcos φ,
转化为三角函数的求值与运算.
空间点的直角坐标化为球坐标
已知长方体ABCD-A1B1C1D1中,底面正方形ABCD的边长为1,棱 AA1的长为 2 ,如图1-4-3所示,建立空间直角坐标系Axyz,Ax为极轴,求点C1 的直角坐标和球坐标.

1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)

一、选择题(每小题列柱坐标
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ= 时,点P
在平面yOz内,故选A.
2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
0≤φ≤π,0≤θ<2π.
答案: , ) (4,
6 3
9.已知柱坐标系中,点M的柱坐标为 (2, 2 , 5) ,且点M在数轴Oy
上的射影为N,则|OM|=______,|MN|=______.
【解析】设点M在平面Oxy上的射影为P,连结PN, 则PN为线段MN在平面Oxy上的射影.
3
≧MN⊥直线Oy,MP⊥平面xOy,
)
2=cos 【解析】选A.设M的柱坐标为(ρ,θ,z),由 0=sin , z=2 =2 解得 =0, ≨点M的柱坐标为(2,0,2). z=2
4.若点P的柱坐标为 (2, , 3),则P到直线Oy的距离为(
6
)
(A)1
(B)2
(C) 3
(D) 6
6
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,≨V=Sh=πr2h=
2π(体积单位).
标为(r,φ ,θ ),则应有( )
【解析】选D.由点M向平面xOy作垂线,垂足N一定在直线Oy
上,由极坐标系的意义知θ= 或 3 .
2 2
3.设点M的直角坐标为(2,0,2),则点M的柱坐标为( (A)(2,0,2) (C)( 2,0,2) (B)(2,π ,2) (D)( 2,π ,2)
3 3 3 3
求|MN|. 【解析】方法一:由题意知, |OM|=|ON|=6,∠MON= ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档