09年中考数学模拟试卷(1)

合集下载

2024年中考数学第一次模拟试卷(四川成都卷)(全解全析)

2024年中考数学第一次模拟试卷(四川成都卷)(全解全析)

2024年中考第一次模拟考试(成都卷)数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

A卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.2024年央视春晚主题、主标识近日正式发布,本次龙年春晚主题为“龙行龖龖(dá),欣欣家国”,请问2024的相反数是()A.12024B.2024-C.2024D.12024-【答案】B【分析】本题考查了相反数的定义,根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2024的相反数是2024-,故选:B.2.杭州亚运会已闭幕,中国代表团共收获201金、111银、71铜,总计383枚奖牌,创历史.图①是2023年10月2日乒乓球男单颁奖现场.图②是领奖台的示意图,则此领奖台主视图是()A.B.C.D.【答案】B【分析】本题考查了组合体的主视图.熟练掌握从正面看到的是主视图是解题的关键.根据从正面看到的是主视图进行判断作答即可.【详解】解:由题意知,是主视图,故选:B .3.俄罗斯和乌克兰的战争从去年2月24日开始到现在还在持续,战争持续的主要原因是:以美国为首的北约在不断拱火,据不完全统计仅美国就先后向乌克兰提供军火价值275.8亿美元,275.8亿用科学记数法如何表示()A .82.75810⨯B .92.75810⨯C .102.75810⨯D .11275810.⨯【答案】C【分析】根据科学记数法的表示方法求解即可.【详解】解:275.8亿用科学记数法表示为102.75810⨯.故选:C .【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4.若关于x 的方程230x mx -+=的一个根是11x =,则另一个根2x 及m 的值分别是()A .234x m ==-,B .214x m ==,C .224x m ==-,D .234x m ==,【答案】D【分析】本题考查了一元二次方程的解,把11x =代入方程先求出m 的值,从而确定出方程,再解方程即可求出2x ,理解方程的解并准确计算是解题的关键.【详解】解:∵11x =是方程230x mx -+=的一个根,∴130m -+=,∴4m =,∴方程为2430x x -+=,解得11x =,23x =,∴另一个根2x 为3,m 的值为4,故选:D .5.关于x 的方程112 22x x x-=---,下列做法正确的是()A .方程两边都乘以2x -得:()1122x x -=--B .2x =是方程的解C .方程两边都乘以2x -得:()1122x x -=--D .2x =是方程的增根【答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:A 、方程两边同乘以()2x -,得:()1122x x -=---,故本选项不符合题意;B 、解方程得2x =,当2x =时分母20x -=,2x =是方程的增根,故本选项不符合题意;C 、方程两边同乘以()2x -,得:()1122x x -=--,故本选项不符合题意;D 、解方程得2x =,当2x =时分母20x -=,2x =是方程的增根,故本选项符合题意;故选:D .【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.如图,矩形OABC 与矩形ODEF 是位似图形,点P 是位似中心.若点()23B ,,点E 的横坐标为1-,则点P 的坐标为()A .()20-,B .()02-,C .302⎛⎫- ⎪⎝⎭,D .302⎛⎫- ⎪⎝⎭,【答案】A【分析】本题考查的是位似图形的概念、相似三角形的性质,根据位似图形的概念得出EF OC ∥,DE OP ∥是解题的关键.根据位似图形的概念得到EF OC ∥,DE OP ∥,进而证明CED CPO POD PAB ∽,∽,根据相似三角形的性质求出OP ,得到答案.【详解】解:∵四边形OABC 为矩形,()23B ,,∴32AB OC OA ===,,∵矩形OABC 与矩形ODEF 是位似图形,∴EF OC ∥,DE OP ∥,∴CED CPO POD PAB ∽,∽∴CD DECO OP=,PO OD PA AB =∴31323OD OP OD OP OP -==+,,解得:2OP =,32OD =∴点P 的坐标为()20-,,故选:A .7.每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数=该题参考人数得分的平均分÷该题的满分.上期全市八年级期末质量监测,有11623名学生参考.数学选择题共设置了12道单选题,每题5分.最后一道单选题的难度系数约为0.34,学生答题情况统计如表:选项留空多选ABCD人数11224209393420571390占参考人数比(%)0.090.1936.2133.8517.711.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A .AB .BC .CD .D【答案】B【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可.【详解】解: 题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A ,则参考人数得分的平均分为:36.21%5 1.8⨯≈,如果正确答案应为B ,则参考人数得分的平均分为:33.85%5 1.7⨯≈,如果正确答案应为C ,则参考人数得分的平均分为:17.7%50.9⨯≈,如果正确答案应为D ,则参考人数得分的平均分为:11.96%50.6⨯≈,故选:B .【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.8.对于抛物线2y ax bx c =++,y 与x 的部分对应值如下表所示:x (3)-1-034…y…102-5-2-3…下列说法中正确的是()A .开口向下B .当0x >时,y 随x 的增大而增大C .对称轴为直线1x =D .函数的最小值是5-【答案】C【分析】本题主要考查了求二次函数解析式以及二次函数的性质,把二次函数化简成顶点式即可解题.【详解】解:把()1,2--,()0,5-,()3,2-代入2y ax bx c =++,得:25932a b c c a b c -+=-⎧⎪=-⎨⎪++=-⎩,解得∶125a b c =⎧⎪=-⎨⎪=-⎩,∴()222516y x x x =--=--,∴10a =>抛物线开口向上,对称轴为直线1x =,顶点坐标为()1,6-,即当1x =时,函数取最小值6-,当1x >时,y 随x 的增大而增大,故A ,B ,D 错误,C 正确,故选:C .二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的倍.【答案】1.2【分析】设被称物的重量为a ,砝码的重量为1,根据图中可图列出方程即可求解.【详解】解:设被称物的重量为a ,砝码的重量为1,依题意得,2.531a =⨯,解得 1.2a =,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.10.若关于x 的一元二次方程2210x x k +-+=没有实数根,则k 的值可以是.(写出一个即可)【答案】1-(答案不唯一)【分析】本题考查了一元二次方程根的情况求参数.根据题意得()2=24110k ∆-⨯⨯-+<,进行计算即可得.【详解】解:∵一元二次方程2210x x k +-+=没有实数根,∴()2=24110k ∆-⨯⨯-+<,∴0k <,∴k 的值可能是1-(答案不唯一),故答案为:1-(答案不唯一).11.如图所示是地球截面图,其中AB ,EF 分别表示南回归线和北回归线,CD 表示赤道,点P 表示太原市的位置.现已知地球南回归线的纬度是南纬()23262326BOD ''︒∠=︒,太原市的纬度是北纬()37323732POD ''︒∠=︒,而冬至正午时,太阳光直射南回归线(光线MB 的延长线经过地心O ),则太原市冬至正午时,太阳光线与地面水平线PQ 的夹角α的度数是.【答案】292'︒【分析】设PQ 与OM 交于点K ,先由三角形内角和定理求出.292OKP '∠=︒,再根据平行线的性质求解即可.【详解】如图,设PQ 与OM 交于点K ,∵2326BOD '∠=︒,3732POD '∠=︒,∴6058POM POD BOD '∠=∠+∠=︒,在OPK 中,180POK OPK OKP ∠+∠+∠=︒,90OPK ∠=︒,∴292OKP '∠=︒,∵PN OM ∥,∴292OKP α'∠=∠=︒,故答案为:292'︒.【点睛】本题考查了三角形内角和定理,平行线的性质,读懂题意并熟练掌握知识点是解题的关键.12.已知11(,)M x y ,22(,)N x y 两点都在反比例函数5y x-=的图象上,且120x x >>,则1y 2y (填“>”“<”或“=”).【答案】<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵11(,)M x y ,22(,)N x y 两点都在反比例函数5y x-=的图象上,50k =-<,且120x x >>,∴该图象在第二、四象限上,且每个分支上y 随x 的增大而增大,12,00y y <>,∴12y y <.故答案为:<.【点睛】本题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题的关键.13.如图,四边形ABCD 是平行四边形,以点B 为圆心,任意长为半径画弧分别交AB 和BC 于点P ,Q ;分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧交于点H ,作射线BH 交边AD 于点E :分别以点A ,E 为圆心,大于12AE 的长为半径画弧,两弧相交于M ,N 两点,作直线MN 交边AD 于点F ,连接CF ,交BE 于点G .若4CD DE =,则EGGB的值为.【答案】25【分析】本题考查了基本作图,掌握相似三角形的判定定理和性质定理是解题的关键.先根据作图得出AE 平分ABC ∠,MN 垂直平分AE ,再根据平行四边形的性质和相似三角形的性质求解.【详解】解: 四边形ABCD 是平行四边形,4AB CD DE ∴==,AD BC ∥,AD BC =,AEB CBE ∴∠=∠,由作图得:AE 平分ABC ∠,MN 垂直平分AE ,ABE CBE ∴∠=∠,AF EF =,AEB ABE ∴∠=∠,4AB AE CD ED ∴===,2EF DE ∴=,5BC AD DE ∴==,AD BC ,EFG BCG ∴ ∽,∴25EG EF GB BC ==,故答案为:25.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)(1)计算:1312cos 301327sin 453-⎛⎫︒--+-+︒ ⎪⎝⎭;(2)解一元一次不等式组:()33215126x x x x ⎧+>-⎪⎨+-≤-⎪⎩.【答案】(1)212+;(2)1x ≤-【分析】(1)先代入三角函数值、计算负整数指数幂、化简二次根式,再去绝对值符号、计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找大大小小找不到确定不等式组的解集;【详解】(1)1312cos301327sin 453-⎛⎫︒--+-+︒⎪⎝⎭()322313322=⨯--+-+(4分)2331332=-++-+(5分)212=+;(6分)(2)将()332x x +>-去括号得:336x x +>-(7分)解得:92x <;(8分)将15126x x+-≤-去分母得:()()3165x x +≤--(9分)去括号得:3365x x +≤-+(10分)解得:1x ≤-;(11分)故方程组的解集为:1x ≤-.(12分)【点睛】本题主要考查解一元一次不等式组、实数的运算,特殊角三角函数,解题的关键是掌握实数的混合运算顺序和运算法则.15.(满分8分)中国城市基础设施的现代化程度显著提高,新技术、新手段得到广泛应用,基础设施的功能日益增加,承载能力、系统性和效率都有了显著的提升.城市经济发展了,居民生活条件改善了,如5G 基础进设、新能源汽车充电桩、人工智能等,其中,随着人们对新能源汽车的认可,公共充电桩的需求量逐渐增大.根据巾商情报网信息:某月“特来电”“星星充电”“国家电网”“云快充”等企业投放公共充电桩的数量及市场份额的统计图如图所示请根据图中信息,解答下列问题:(1)①将统计图中“国家电网”的公共充电桩数量和市场份额补充完整;②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是万台.(2)小辉收集到下列四个企业的图标,并将其制成编号分别为A ,B ,C ,D 的四张卡片(除编号和内容外,其余部分完全相同),将四张卡片背面朝上洗匀,放在桌面上,从中任意抽取一张,不放回,再抽取一张.请你用列表或画树状图的方法,求抽取到的两张卡片恰好是“A ”和“D “的概率.【答案】(1)①见解析;②2(2)16【分析】本题考查的是从统计图中获取信息,求解中位数,利用画树状图求解随机事件的概率,掌握以上基础的统计知识是解本题的关键;(1)①由星星充电10万台充电桩占比20%求解总的充电桩的数量,再求解国家电网的充电桩的数量与占比即可;②根据11家企业的充电桩是数量按照从大到小顺序排列后,排在第6的数据是中位数,从而可得答案;(2)先画树状图得到所有的等可能的结果数,再得到符合条件的结果数,结合概率公式可得答案.【详解】(1)解:①公共充电桩的总数为1020%50÷=(万台),∴“国家电网”的公共充电桩数量为5015105222 1.510.538----------=(万台),“国家电网”的公共充电桩的市场份额为8100%=16%50⨯;如图,(2分)②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是2万台.(4分)(2)画树状图为:(6分)共有12种等可能的结果,其中抽取到的两张卡片恰好是“A ”和“D “的结果数为2,(7分)所以抽取到的两张卡片恰好是“A ”和“D “的概率21126==.(8分)16.(满分8分)“日照间距系数”反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数()1:L H H =-,其中L 为楼间水平距离,H 为南侧楼房高度,1H 为北侧楼房底层窗台至地面高度,如图②,山坡EF 朝北,EF 长为15m ,其坡度为1:0.75,山坡顶部平地EM 上有一高为24.3m 的楼房AB ,底部A 到E 点的距离为5m .欲在AB 楼正北侧山脚的平地FN 上建一楼房CD ,已知该楼底层窗台P 处至地面C 处的高度为1.1m ,要使该楼的日照间距系数不低于1.25,底部C 距F 处至少多远?【答案】要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远【分析】本题考查了解直角三角形的应用-坡度坡角问题,过点E 作EH CF ⊥,垂足为点H ,根据EF 的坡度为1:0.75,设4m EH x =,则3m FH x =,求得3x =,进而求得1,,L H H 的长,根据该楼的日照间距系数不低于1.25,列出不等式141.2536.3 1.1CF +≥-,解不等式即可.【详解】解:过点E 作EH CF ⊥,垂足为点H (1分)90H ∴∠=︒,在Rt EFH △中,EF 的坡度为1:0.75,43EH FH ∴=,(2分)设4m EH x =,则3m FH x =,2222(4)(3)5m EF EH FH x x x ∴=+=+=,(3分)15m EF =Q ,515m x ∴=,3x =,39m FH x ∴==,412m EH x ==.(4分)9514L CF FH EA CF CF ∴=++=++=+,(5分)24.31236.3H AB EH =+=+=,1 1.1H =,(6分)由题意得:14 1.2536.3 1.1CF +≥-解得:30CF ≥(7分)答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远(8分)17.(满分10分)如图1,AB 是O 的一条弦,BC 是O 的切线.AD 是O 的直径.E 是AB 上一动点,过点E 作直线EF AD ⊥于点G ,交BC 于点H .(1)求证BH EH =.(2)如图2,若E 是AB 的中点.8AB =,103BH =,求AG 的长.【答案】(1)见解析(2)163AG =【分析】(1)本题考查等腰三角形的性质和判定和切线的性质,连接OB ,利用切线性质和等角的余角相等,再结合题干的条件证明HBE HEB ∠=∠,即可解题.(2)本题考查等腰三角形性质、勾股定理和相似三角形的性质和判定,作HM BE ⊥于点M ,利用等腰三角形性质、勾股定理和题干的条件,求得HM 、BM 、EM 、AE ,再证明AGE HME ∽△△,利用相似比,即可解题.【详解】(1)解:连接OB ,如图所示:BC 是O 的切线.90OBH ∴∠=︒,90HBE OBA ∴∠+∠=︒,(1分)直线EF AD ⊥于点G ,有90A GEA ∠+∠=︒,(2分)GEA HED ∠=∠ ,90A HEB ∴∠+∠=︒,(3分)OA OB = ,A OBA ∴∠=∠,HBE HEB ∴∠=∠,BH EH ∴=.(4分)(2)解:作HM BE ⊥于点M ,如图所示:90HMB HME ∴∠=∠=︒,(5分)BH EH = ,BM EM ∴=,(6分) E 是AB 的中点,8AB =,4AE BE ∴==,2BM EM ∴==,(7分)103BH = ,2283HM BH BM ∴=-=,(8分)90AGE HME ∠=∠=︒ ,则AEG HEM ∠=∠,AGE HME ∴∽△△,(9分)AE AG ME HM ∴=,有4823AG =,解得163AG =.(10分)18.(满分10分)如图1,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,反比例函数k y x=(0,0k x ≠>)在第一象限内的图象经过点D 、E ,(1)点F 为对角线OB 上一点,满足2OF BF =,点()6,E m 在边BC 上,且1tan 2BOC ∠=,求反比例函数解析式;(2)在(1)的条件下,反比例函数上是否存在点Q ,满足:2:1OBC OBQ S S = ,若存在,求点Q 的横坐标;(3)我们把有一个内角为45︒的三角形称为“美好三角形”,这个45︒的内角称为“美好角”,这个角的两边称为“美好边”,如图2,若点B 的坐标为()2,1,则当ODE 为“美好三角形”时,直接写出反比例函数表达式中k 的值.【答案】(1)8y x =;(2)存在,点Q 的横坐标为3732+或3732-+,理由见解析;(3)5412-+或10.【分析】(1)过F 作FH x ⊥轴于H ,由矩形的性质得90BCO FHO ∠=∠=︒,根据相似三角形的判定和性质得4OH =,根据三角函数的定义得到2FH =,求得()4,2F ,代入即可;(2)分情况①当Q 在OB 下方时,②当Q 在OB 上方时讨论即可得解;(3)分45DOE ∠=︒和45OED ∠=︒两种情况讨论,构造全等三角形,然后根据交点坐标及直线解析式求出k 的值即可.【详解】(1)如图,过F 作FH x ⊥轴于H ,∵四边形OABC 是矩形,∴90BCO FHO ∠=∠=︒,∴FH BC ∥,∴OHF OCB ∽,∴OF OH OB OC=,(1分)∵2OF BF =,点()6,E m ,∴6OC =,∴263OH =,∴4OH =,∵1tan 2FH BOC OH ∠==,∴2FH =,∴()4,2F ,∴428k =⨯=,∴反比例函数解析式为8y x=;(2分)(2)存在,理由:①当Q 在OB 下方时,满足:2:1OBC OBQ S S = ,则需平行OB 且过OC 中点的直线,找OC 中点P ,过1PQ OB 交反比例函数图象于点1Q ,由(1)得:()4,2F ,∴直线OB 解析式为:12y x =,∵()6,B m ,∴()6,0C ,则点()3,0P ,∴设直线1PQ 为12y x a =+,∴1032a =⨯+,解得:32a =-,∴直线1PQ 为1322y x =-,(3分)联立13228y x y x ⎧=-⎪⎪⎨⎪=⎪⎩,解得37327334x y ⎧+=⎪⎪⎨-⎪=⎪⎩或37327334x y ⎧-=⎪⎪⎨+⎪=-⎪⎩(舍去)∴点1Q 的横坐标为3732+;(4分)②当Q 在OB 上方时,满足:2:1OBC OBQ S S = ,则需平行OB 且过OA 中点的直线,找OA 中点M ,过2MQ OB ∥交反比例函数图象于点2Q ,同(1)理:直线OB 解析式为:12y x =,∵()6,B m ,∴3m =,∴点()0,3A ,∴30,2M ⎛⎫ ⎪⎝⎭,则直线2MQ 为1322y x =+,(5分)联立13228y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得37327334x y ⎧-+=⎪⎪⎨+⎪=⎪⎩或37327334x y ⎧--=⎪⎪⎨-⎪=-⎪⎩(舍去)∴点2Q 的横坐标为3732-+,综上可知:点Q 的横坐标为3732+或3732-+;(6分)(3)∵()2,1B ,(),1D k ,2,2k E ⎛⎫ ⎪⎝⎭,①如图,当45DOE ∠=︒时,作EM OE ⊥,交OD 延长线于点M ,作MN BC ⊥,交CB 延长线于N ∴OEM △是等腰直角三角形,∴=OE EM ,∵90OEC EOC ∠+∠=︒,90OEC MEN ∠+∠=︒,∴EOC MEN ∠=∠,又∵90OCE ENM ∠=∠=︒∴()AAS OCE ENM ≌,∴EN OC =,MN EC =,(7分)∴2,222k k M ⎛⎫-+ ⎪⎝⎭,设直线OD 的解析式为y gx =,∴1kg =,解得:1g k =,∴直线OD 的解析式为x y k =,∴12222k k k ⎛⎫-=+ ⎪⎝⎭,解得:5412k -+=或5412k --=(负值舍去),(8分)②当45OED ∠=︒,作OG OE ⊥,交ED 延长线于点G ,过点G 作GH x ⊥轴于点H ,同理①可证:GHO OCE ≌,∴OH EC =,GH OC =,∴,22k G ⎛⎫- ⎪⎝⎭,(9分)设直线DE 的解析式为y sx t =+,∴62122k s t ks t k s t ⎧-+=⎪⎪+=⎨⎪⎪+=⎩,解得:10124k s t =⎧⎪⎪=⎨⎪=⎪⎩或43734k s t ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩(不合题意,舍去)综上,符合条件的k 的值为5412-+或10.(10分)【点睛】本题主要考查了反比例函数,熟练掌握反比例函数的图象和性质,一次函数的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定和性质等知识是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)19.如果2320a a +-=,那么代数式2231393a a a a -⎛⎫+⋅ ⎪-+⎝⎭的值为.【答案】12/0.5【分析】先算括号里,再算括号外,然后把2a 3a +的值代入化简后的式子进行计算即可解答.【详解】解:22313()93a a a a -+⋅-+2333(3)(3)a a a a a +--=⋅+-23(3)(3)a a a a a -=⋅+-1(3)a a =+213a a =+,2320a a +-= ,232a a ∴+=,∴原式12=,故答案为:12.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.20.我们在学习许多代数公式时,可以用几何图形来推理验证.观察图1,()()()()211111a a a a a a -=-+-=-+.接下来,观察图2,通过类比思考,因式分解31a -==.【答案】()()()2111a a a a a -+-+-()()211a a a -++【分析】把图2可有两种计算方法:①三个长方体相加;②大正方体减去小正方体,按要求列出式子,即可解答.【详解】解:将图2看作三个长方体相加时,可得式子:()()()()()()2111111111a a a a a a a a a a a ⨯⨯-+⨯⨯⨯---+⨯=+-+-;原式两边提取1a -,可得原式()()211a a a =-++.故答案为:()()()2111a a a a a -+-+-;()()211a a a -++.【点睛】本题考查了整式的乘法,因式分解,观察图形的体积如何计算是解题的关键.21.在如图所示的图形中随机撒一把豆子,计算落在A ,B ,C 三个区域中的豆子数,若落在这三个区域中的豆子数依次为m ,n ,34n m -,则估计图中a 的值为【答案】1【分析】本题考查了几何概率及频率估计概率,根据落在三个区域的豆子数比等于各部分面积比,用各个区域面积比估计概率计算即可.【详解】解:A 区域面积为22π24πcm ´=,B 区域面积为()22π224π=12πcm ´+-,C 区域面积为()()()2222π22π22=8ππcm a a a ´++-´++,又 落在这三个区域中的豆子数依次为m ,n ,34n m -,4π112π3m n \==,即3n m =,238ππ44πn m a a m -+\=,解得:121,9a a ==-(不合题意,舍去),故答案为:1.22.如图,抛物线213222y x x =--与x 轴交于,A B 两点,抛物线上点C 的横坐标为5,D 点坐标为()3,0,连接,AC CD ,点M 为平面内任意一点,将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),若A C D '''△中恰有两个点落在抛物线上,则此时点C '的坐标为(点C '不与点A 重合)【答案】533,28⎛⎫-- ⎪⎝⎭或()2,3-【分析】根据题意,分别求出点,A C 的坐标,设(,)M m n ,根据旋转的性质,可用含,m n 的式子表示出对应点,,A C D '''的坐标,分类讨论,①当点,A C ''在抛物线213222y x x =--上时;②当点,A D ''在抛物线213222y x x =--上时;③当点,C D ''在抛物线213222y x x =--上时;列二元一次方程组并求解即可.【详解】解:抛物线213222y x x =--与x 轴交于,A B 两点,令0y =,∴2132022x x --=,解得,11x =-,24x =,∴(1,0)A -,(4,0)B ,∵点C 的横坐标为5,∴213552322y =⨯-⨯-=,即(5,3)C ,∵将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),且(1,0)A -,(5,3)C ,()3,0D ,∴设(,)M m n ,根据旋转的性质,则点A 与点A '关于点M 中心对称,点C 与点C '关于点M 中心对称,点D 与点D ¢关于点M 中心对称,∴()21,2A m n '+,()25,23C m n '--,(23,2)D m n '-,①当点,A C ''在抛物线213222y x x =--上时,如图所示,()()()()22132121222213252522322m m n m m n ⎧+-+-=⎪⎪⎨⎪----=-⎪⎩,解方程组得,232m n =⎧⎪⎨=⎪⎩,∴点32,2M ⎛⎫ ⎪⎝⎭,则C '的坐标为(1,0)-,与点A 重合,不符合题意;②当点,A D ''在抛物线213222y x x =--上时,如图所示,()()()()2213212122221323232222m m n m m n ⎧+-+-=⎪⎪⎨⎪----=⎪⎩,解方程组得,54916m n ⎧=⎪⎪⎨⎪=-⎪⎩,∴点59,416M ⎛⎫- ⎪⎝⎭,则C '的坐标为533,28⎛⎫-- ⎪⎝⎭,符合题意;③当点,C D ''在抛物线213222y x x =--上时,如图所示,()()()()22132525223221323232222m m n m m n ⎧----=-⎪⎪⎨⎪----=⎪⎩,解方程组得,720m n ⎧=⎪⎨⎪=⎩,∴点7,02M ⎛⎫ ⎪⎝⎭,则C '的坐标为()2,3-,符合题意;综上所示,点C '的坐标为533,28⎛⎫-- ⎪⎝⎭或()2,3-,故答案为:533,28⎛⎫-- ⎪⎝⎭或()2,3-.【点睛】本题主要考查二次函数图形与几何图形的综合,掌握二次函数图像的性质,旋转的性质求点坐标,解二元方程组是解题的关键.23.在边长为4的正方形ABCD 中,E 是AD 边上一动点(不与端点重合),将ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,连接BF ,BE ,BF 分别与AC 交于点P 、Q ,连接PD ,PF .则以下结论中正确的有________(写出所有正确结论的序号).①PB PD =;②2EFD FBC ∠=∠;③PQ AP QC =+;④BPF △为等腰直角三角形;⑤若连接DH ,则DH 的最小值为424-.【答案】①②④⑤【分析】①正确.由正方形ABCD 的性质可证明SAS BCP DCP ≌(),可得结论;②正确.证明CFB EFB ∠=∠,推出90CBF CFB ∠∠=︒+,推出22180CBF CFB ∠∠=︒+,由2180EFD CFB ∠∠=︒+,可得结论;③错误.可以证明PQ PA CQ <+;④正确.利用相似三角形的性质证明90BPF ∠=︒,可得结论;⑤正确.求出BD ,BH ,根据DH BD BH ≥-,可得结论.【详解】解:∵四边形ABCD 是正方形,∴CB CD =,190452BCP DCP ∠=∠=⨯︒=︒,在BCP 和DCP 中CB CD BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCP DCP ≌△△,∴PB PD =,故①正确;∵ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,∴ABE BHE ≌,则BH AB BC ==,90BHF BCF ∠=∠=︒,∵BF BF =,∴()HL BHF BCF ≌,则HBF CBF ∠=∠,∵ABE HBE ∠=∠,∴190452EBF HBE HBF ∠=∠+∠=⨯︒=︒,∵45QCF EBF ∠=∠=︒,PQB FQC ∠=∠,∴PQB FQC ∽,则BQ PQ CQ FQ =,BPQ CFQ ∠=∠,∴BQ CQ PQ FQ=,∵PQF BQC ∠=∠,∴PQF BQC ∽,则QPF QBC ∠=∠,∵90QBC CFQ ∠+∠=︒,∴90BPF BPQ QPF ∠=∠+∠=︒,∴45PBF PFB ∠=∠=︒,∴PB PF =,则BPF △为等腰直角三角形,故④正确;∵90BPF BPQ QPF ∠=∠+∠=︒,∴90EPF ∠=︒,∵90EDF ∠=︒,∴P ,E ,D ,F 四点共圆,∴PEF PDF ∠=∠,∵PB PD PF ==,∴PDF PFD ∠=∠,∵180AEB DEP ∠∠=︒+,180DEP DFP ∠∠=︒+,∴AEB DFP ∠=∠,∴AEB BEH ∠=∠,∵BH EF ⊥,∴90BAE BHE ∠=∠=︒,∵BE BE =,∴()AAS BEA BEH ≌,∴AB BH BC ==,∵90BHF BCF ∠∠=︒,BF BF =,∴()Rt Rt HL BFH BFC ≌,∴BFC BFH ∠=∠,∵90CBF BFC ∠∠=︒+,∴22180CBF CFB ∠∠=︒+,∵2180EFD CFH EFD CFB ∠∠=∠∠=︒++,∴2EFD CBF ∠=∠,故②正确,将ABP 绕点B 顺时针旋转90︒得到BCT ,连接QT ,∴ABP CBT ∠=∠,∴90PBT ABC ∠=∠=︒,∴45PBQ TBQ ∠=∠=︒,∵BQ BQ =,BP BT =,∴()SAS BQP BQT ≌,∴PQ QT =,∵QT CQ CT CQ AP <=++,∴PQ AP CQ <+,故③错误,连接BD ,DH ,∵224442BD =+=,4BH AB ==,∴424DH BD BH ≥-=-,∴DH 的最小值为424-,故⑤正确.故答案为:①②④⑤.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.24.(满分8分)(1)【阅读理解】倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司采购一批包含A 、B 两款不同型号的垃圾分拣机器人.已知1台A 型机器人和1台B 型机器人同时工作10小时,可处理垃圾5吨;若1台B 型机器人先工作5小时后,再加入1台A 型机器人同时工作,则还需工作8小时才能处理完5吨垃圾.问1台A 型机器人和1台B 型机器人每小时各处理垃圾多少吨?分析可以用线段图(如图)来分析本题中的数量关系.由图可得如下的数量关系:①1台A型10小时的垃圾处理量1+台B型10小时的垃圾处理量5=吨;②________+________5=吨.(2)【问题解决】请你通过列方程(组)解答(1)中的问题.(3)【拓展提升】据市场调研,机器人公司对A、B两款机器人的报价如下表:型号A型B型报价(万元/台)2014若垃圾处理厂采购的这批机器人(A、B两款机器人的总台数不超过80台)每小时共能处理垃圾20吨,请利用(2)中的数据回答:如何采购才能使总费用最省?最少费用是多少万元?【答案】(1)1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量(2)1台A型机器人和1台B型机器人每小时分别处理垃圾0.3吨和0.2吨(3)当采购A型机器人66台,B型机器人1台时,采购费用最低,为1334万元【分析】(1)根据第二个线段图可以得到解答;(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,由题意得到关于x、y的二元一次方程组并解方程组即可;(3)设采购A型机器人t台,由题意可以用t表示B型机器人的台数,并求得t的取值范围.然后用t表示出采购费用,根据一次函数的增减性即可得解.【详解】解:(1)根据第二个线段图可得:1台A型8小时的垃圾处理量1+台B型13小时的垃圾处理量5=吨;故答案为:1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量;(2分)(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,则:101058135x yx y+=⎧⎨+=⎩,解之可得:0.30.2xy=⎧⎨=⎩,(3分)经检验,0.30.2xy=⎧⎨=⎩是原方程组的解,且符合题意,答:1台A 型机器人和1台B 型机器人每小时分别处理垃圾0.3吨和0.2吨;(4分)(3)设采购A 型机器人t 台,则采购B 型机器人200.3100 1.50.2t t -=-(台),则:()100 1.5800.3200.2100 1.520t t t t ⎧-+≤⎪≤⎨⎪-≤⎩,解之可得:4066t ≤≤(t 为整数),(5分)由题意可知,采购费用为:()2014100 1.51400w t t t =+-=-+,(6分)∵10-<,∴w 随t 的增大而减小,∴当66t =时,采购费用最低,为1400661334-=(万元),(7分)此时100 1.51t -=台,即采购A 型机器人66台,B 型机器人1台,答:当采购A 型机器人66台,B 型机器人1台时,采购费用最低,为1334万元.(8分)【点睛】本题考查一次函数的综合应用,熟练掌握二元一次方程组的应用、一元一次不等式组的应用及一次函数的增减性是解题关键.25.(满分10分)如图,在平面直角坐标系中,抛物线23y ax bx =++交x 轴于B C ,两点(B 在C 的左边),交y 轴正半轴于点3A OA OB OC ==,.(1)求抛物线的解析式;(2)若点D 在抛物线上,E 在抛物线的对称轴上,以A B D E ,,,为顶点的四边形是平行四边形,且AB 是此平行四边形的一条边,求点D 的坐标;(3)抛物线的对称轴交x 轴于点G F ,在对称轴上,且在第二象限,2FG BC =,不平行于y 轴的直线l 分别交线段BF CF ,(不含端点)于M N ,两点,直线l 与抛物线只有一个公共点,求证:MF NF +的值是个定值.【答案】(1)223y x x =--+(2)D 的坐标为()4,5--或()2,5-;(3)证明见解析【分析】(1)先求解A 的坐标,再求解B ,C 的坐标,再利用待定系数法求解解析式即可;(2)设()1,E t -,()2,23D n n n --+,而AB DE ∥,分两种情况讨论:当平行四边形为平行四边形ABDE ,当平行四边形为平行四边形ABED ,再结合平行四边形的性质可得答案;(3)先求解()1,8F -,直线FB 为412y x =+,直线FC 为44y x =-+,设直线MN 为y kx e =+,由()2230x k x e +++-=有两个相等的实数根,可得()21234e k =++,求解直线MN 为()21234y kx k =+++,再求解M ,N 的坐标,结合勾股定理进行计算即可.【详解】(1)解:∵抛物线23y ax bx =++,当0x =时,3y =,即3OA =,()0,3A ,∵3OA OB OC ==,∴1OC =,3OB =,∴()3,0B -,()1,0C ,(1分)∴933030a b a b -+=⎧⎨++=⎩,解得:12a b =-⎧⎨=-⎩,∴抛物线为:223y x x =--+;(2分)(2)∵抛物线223y x x =--+,∴对称轴为直线()2121x -=-=-⨯-,设()1,E t -,()2,23D n n n --+,而AB DE ∥,()0,3A ,()3,0B -,(3分)由平行四边形ABDE 的性质可得:2013233n t n n +=--⎧⎨=--++⎩,解得:42n t =-⎧⎨=-⎩,∴()4,5D --,(4分)由平行四边形ABED 的性质可得:231323n t n n -=-⎧⎨+=--+⎩,解得:28n t =⎧⎨=-⎩,∴()2,5D -;综上:D 的坐标为()4,5--或()2,5-;(5分)(3)∵抛物线223y x x =--+,∴对称轴为直线()2121x -=-=-⨯-,∵4BC =,2FG BC =,∴8FG =,即()1,8F -,设直线FB 为y mx n =+,∴308m n m n -+=⎧⎨-+=⎩,解得:412m n =⎧⎨=⎩,∴直线FB 为412y x =+,(6分)同理可得:直线FC 为44y x =-+,设直线MN 为y kx e =+,∴223y kx e y x x =+⎧⎨=--+⎩,∴结合题意可得:223x x kx e --+=+即()2230x k x e +++-=有两个相等的实数根,∴()21234e k =++,∴直线MN 为()21234y kx k =+++,(7分)。

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学模拟复习卷(答案在卷尾)

2023年河北省中考数学综合复习卷考试范围:初中;考试时间:120分钟;满分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(本大题有16个小题,共42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23a <<时,化简23a a -+-=( )A .1B .25a -C .1-D .52a -2.把长为2023个单位长度的线段AB 放在单位长度为1的数轴上,则线段AB 能盖住的整点有( ) A .2022个 B .2023个 C .2022或2023个 D .2023或2024个3.如图,将一个含45︒的三角板ABC ,绕点A 按顺时针方向旋转60︒,得到ADE ,连接BE ,且2,90AC BC ACB ==∠=︒,则线段BE =( )A BC D .1 4.下列计算:①()011-=-;②()2124-=;③55-=±.其中正确的有( ) A .3个 B .2个 C .1个 D .0个5.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为( )A .70.421110⨯B .64.21110⨯C .4421.110⨯D .3421110⨯6.如图,在矩形ABCD 中,6cm AB =,对角线AC 与BD 相交于点O ,DE AC ⊥,垂足为E ,3AE CE =,则BD 的长为( )A .B .C .12cmD .7.如图,索玛立方块是由丹麦数学家皮亚特·海恩发明的,它是由7个不规则的积木单元,拼成一个333⨯⨯的立方体,有400多种拼法,则下列四个积木单元中,俯视图面积最大的是( )A .B .C .D .8.用换元法解方程222131x x x x-+=-时,若设21x y x =-,则原方程可化为关于y 的方程是( ) A .22310y y -+= B .21203y y C .2320y y -+= D .2320y y ++=9.已知3,7a b ab +=-=,则多项式22a b ab a b +--的值为( )A .24B .18C .24-D .18-10.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°11.如图,边长为4的正方形ABCD 内接于O ,E 是劣弧AB 上的动点(不与点A ,B 重合),F 是劣弧BC 上一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且90EOF ∠=︒,则在点E 运动过程中,下列关系会发生变化的是( )甲:AE 与BF 之间的数量关系;乙:GH 的长度;丙:图中阴影部分的面积和A .只有甲B .只有甲和乙C .只有乙D .只有乙和丙12.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理13.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图②,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL14.2022年12月4日11时01分,神州十四号载人飞船与空间站组合体成功分离返回地球,为了欢迎在中国空间站出差183天的航天员陈冬、刘洋、蔡旭哲回家,北京市育英学校举行了“我的航天梦”英语演讲比赛.有9名学生通过海选进入决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .频率C .平均数D .中位数15.如图,在矩形ABDC 中,AC =4cm ,AB =3cm ,点E 以0.5cm/s 的速度从点B 到点C ,同时点F 以0.4cm/s 的速度从点D 到点B ,当一个点到达终点时,则运动停止,点P 是边CD 上一点,且CP =1,且Q 是线段EF 的中点,则线段QD +QP 的最小值为( )A .B .5CD 16.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A .4月份的利润为50万元B .治污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元二、填空题(本大题共3个小题,每小题3分,共9分.其中19小题第一空1分,第二空2分)17.小明在学习圆的相关知识时,看到书本上提到可以用一把丁字尺(如图1)来找圆心,他想到爸爸的工具箱里有丁字尺,于是想利用丁字尺还原一个破损的圆,已知尺头4cm AB =,尺身刻度线l 垂直平分AB ,他摆出的情况如图2,发现两次测量丁字尺的尺身交于刻度为6cm 的位置,则这个破损的圆的直径是_______cm.18.在ABC 中,AB AC =,点G F ,分别为AB BC ,的中点,22AG AD EC ==,连接EG DF ,,将ABC 分成四块,如图(1)中∠,∠,∠,∠,四块图形恰好能拼成如图(2)的矩形,则tan B =___________.19.如图①,1234,,,O O O O 为四个等圆的圆心,,,,A B C D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是___;如图②,12345,,,,O O O O O 为五个等圆的圆心,,,,,A B C D E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 __.(答案不唯一)三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤) 20.(7分)已知:整式21A n =+,2B n =,21C n =-,整式0C >.(1)当1999n =时,写出整式A B +的值______(用科学记数法表示结果);(2)求整式22A B -;(3)嘉淇发现:当n 取正整数时,整式A 、B 、C 满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.21.(8分)我们定义:一个整数能表示22a b a b +++(a ,b 是整数)的形式,则这个数为“和谐数”,例如8是“和谐数”,理由:因为2282121=+++,所以8是“和谐数”.(1)请判断14______“和谐数”(填“是”或“不是”);(2)请你写出一个大于14且小于20的“和谐数”:______;(3)当整数m ,n 满足()222817x m n x x ++=-+时,求“和谐数”22m n m n +++的值;(4)若实数x ,y 满足992280x y xy +--=,求22x y x y +++的最小值.22.(8分)小红、小明、小亮要参加某电视台组织的主持人演讲比赛,按程序分别进行答辩、笔试和网络投票,(1)在进行答辩之前,需要抽签决定答辩次序,直接写出小红抽到第一个答辩的概率;(2)答辩、笔试成绩如下表,网络投票每张选票只限填写小红、小明、小亮其中的一人,且每张得票记1分,统计选票后,绘出不完整的统计图.答辩、笔试成绩统计表根据以上信息,请解答: ①网络选票总数是________;补全条形统计图:②比赛组委会将答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,分数最高者为冠军,请你通过计算说明谁是冠军.23.(10分)对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90°后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为()00,,点P 关于点A 的“垂链点”为点Q ; ①若点P 的坐标为()20,,则点Q 的坐标为_______________; ②若点Q 的坐标为()21-,,则点P 的坐标为__________; (2)如图2,已知点C 的坐标为()10,,点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标; (3)如图3,已知图形G 是端点为()10,和()02-,的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点()0T t ,,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.24.(10分)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB 的两端都在圆O 上,A 、B 两端可沿圆形钢轨滑动,支撑杆CD 的底端C 固定在圆O 上,另一端D 是滑动杆AB 的中点,(即当支架水平放置时直线AB 平行于水平线,支撑杆CD 垂直于水平线),通过滑动A 、B 可以调节CD 的高度.当AB 经过圆心O 时,它的宽度达到最大值10cm ,在支架水平放置的状态下:(1)当滑动杆AB 的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD 的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE AB =),求该手机的宽度.25.(12分)在平面直角坐标系中,抛物线223(0)y ax ax a a =--≠的顶点为P ,且该抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧).我们规定抛物线与x 轴围成的封闭区域称为“区域G ”(不包括边界);横、纵坐标都是整数的点称为整点.(1)如果抛物线223y ax ax a =--经过点(13),. ①求a 的值;②直接写出“区域G ”内整数点的个数;(2)当a<0时,如果抛物线223y ax ax a =--在“区域G ”内有4个整数点,求a 的取值范围;(3)当0a >时,抛物线与直线x a =交于点C ,把点C 向左平移5个单位长度得到点D ,以CD 为边作等腰直角三角形CDE ,使90DCE ∠=︒,点E 与抛物线的顶点始终在CD 的两侧,线段DE 与抛物线交于点F ,当2tan 3ECF ∠=时,直接写出a 的值.26.(14分)ABC 的边BC 在直线l 上,AC BC ⊥,且AC BC =,EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)如图1,直接写出AB 与AP 的数量关系:______,AB 与AP 的位置关系:______;(2)将EPF 沿直线l 向左平移到图2的位置时,EP 交AB 于点O ,交AC 于点Q ,连接AP ,BQ ,求证:ABQ APQ ∠=∠;(3)将EPF 沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连接AP ,BQ ,试探究ABQ ∠与APQ ∠满足的数量关系,并说明理由;(4)若1cm AC BC ==,AB =,点P 在CB 的延长线上继续向左平移,当:3:2CBQ CBA ∠∠=时,请直接写出CBQ △与CBA △的面积之比.参考答案:1.B 【分析】直接利用绝对值的性质化简求出答案.【详解】解:23a <<,20a ∴-<,()222a a a ∴-=--=-,23a a ∴-+-23a a =-+-25a =-.故答案为:B .【点睛】此题主要考查了绝对值的性质,正确利用a 的取值范围化简是解题关键.2.D【分析】根据题意把长为1个单位长度的线段AB 放在单位长度为1的数轴上,可能盖住2个或1个点,以此类推,找出规律即可解答.【详解】解:1个单位长度的线段放在数轴上,两端的放在整数点上,盖住2个点,两端不在整数点上,盖住1个点;2个单位长度的线段放在数轴上,两端的放在整数点上,盖住3个点,两端不在整数点上,盖住2个点; 3个单位长度的线段放在数轴上,两端的放在整数点上,盖住4个点,两端不在整数点上,盖住2个点; ⋯n 个单位长度的线段放在数轴上,两端的放在整数点上,盖住()1n +个点,两端不在整数点上,盖住n 个点;∴2023个单位长度的线段放在数轴上,两端的放在整数点上,盖住2024个点,两端不在整数点上,盖住2023个点;故答案为:D .【点睛】此题考查了数轴规律题,解题的关键是根据题意分情况找出规律.3.A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,由此得出ABD △为等边三角形,然后进一步通过证明BAE BDE ≌得出ABE DBE ∠∠=,根据等腰三角形三线合一可知BF AD ⊥,且AF DF =,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE BF EF =-进一步计算即可得出答案.【详解】解:如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB AD =,60DAB ∠=︒,90AED ∠=︒,2AE DE AC BC ====,ABD ∴为等边三角形,AB BD ∴=,在BAE 与BDE △中,AE DE =,BA BD =,BE BE =,BAE BDE ∴≌(SSS ), ABE DBE ∴∠=∠,∠BF AD ⊥,且AF DF =,2AC BC ==,90ACB ∠=︒,AB ∴=22222+=AB BD AD ∴===22AF ∴=2BF ∴=226AB AF -90AED ∠=︒,AE DE =,45FAE ∴∠=︒,BF AD ⊥,45FEA ∴∠=︒,EF AF ∴==2BE BF EF ∴=-=62故选:A .【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.4.D【分析】根据零指数幂,有理数的乘方,绝对值的计算法则求解即可.【详解】解:①()011-=,计算错误,不符合题意;②()224-=,计算错误,不符合题意;③55-=,计算错误,不符合题意; ∠计算正确的有0个,故选D .【点睛】本题主要考查了零指数幂,有理数的乘方,绝对值,熟知相关知识是解题的关键,注意非零底数的零次幂的结果为1.5.B【分析】科学记数法的表示形式为10(110)n a a ⨯≤<,根据小数点移动的位数确定n 的值即可. 【详解】解:421.1万=4211000=64.21110⨯.故选:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是正确确定a 的值以及n 的值.6.C【分析】由矩形的性质得出OA OD OC ==,由已知条件得出OE CE =,由线段垂直平分线的性质得出OD CD =,即可求出BD 的长. 【详解】解:3AE CE =,4AC CE ∴=,四边形ABCD 是矩形,122OA OC AC CE ∴===,12OD BD =,AC BD =,6cm CD AB ==, 2OA OD OC CE ∴===,OE CE ∴=DE AC ⊥,6cm OD CD ∴==,212cm BD OD ,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,证明OD CD =是解决问题的关键.7.D【分析】根据俯视图中正方形的个数作出判断即可.【详解】解:A 、B 、C 三个选项中俯视图都是由3个小正方形组成,D 选项俯视图中有4个小正方形组成,因此俯视图面积最大的是D 选项中的图形,故D 正确.故选:D . 【点睛】本题主要考查了几何体的俯视图,解题的关键是分别判断出四个选项俯视图中正方形的个数.8.A【分析】把原方程按按照所给条件换元,整理即可.【详解】解:设21x y x =-, 222131x x x x-+=-可化为123y y +=, ∠2213y y +=,∠22310y y -+=,故选:A .【点睛】本题考查换元法解方程,解题的关键是熟练掌握换元法.9.D【分析】先将22a b ab a b +--进行因式分解,然后整体代入求值即可.【详解】解:∠3,7a b ab +=-=,∠22a b ab a b +--()()ab a b a b =+-+()(1)a b ab =+-(3)(71)=-⨯-18=-.故选:D .【点睛】本题主要考查了代数式求值以及因式分解的应用,解决本题关键是正确完成分解因式.10.A【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出312∠∠∠、、的度数是多少,进而求出312∠+∠-∠的度数即可. 【详解】解:正三角形的每个内角是:180360︒÷=︒,正方形的每个内角是:360490︒÷=︒,正五边形的每个内角是:()521805-⨯︒÷31805=⨯︒÷5405=︒÷108=︒,正六边形的每个内角是:()621806-⨯︒÷41806=⨯︒÷7206=︒÷120=︒,则()()()312906012010810890∠+∠-∠=︒-︒+︒-︒-︒-︒301218=︒+︒-︒24=︒.故选:A .【点睛】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和()()2?1803n n =-≥且n 为整数).(2)多边形的外角和指每个顶点处取一个外角,则n 边形取n 个外角,无论边数是几,其外角和永远为360°.11.C【分析】连接,OB OA ,根据题意可得AOB EOF ∠=∠,45OAB OBH ∠=∠=︒,从而得到AOE BOF ∠=∠,进而得到AE BF =;再证得AOG BOH △≌△,可得OGH 是等腰直角三角形,从而得到2GH OG =,再由在点E 运动过程中,OG 的长度在发生变化,可得GH 的长度会改变;分别求出EOF S 扇形,OGBH S 四边形,再由阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,即可.【详解】解:如图,连接,OB OA ,∠正方形ABCD 内接于O ,∠90AOB ∠=︒,45OAB OBH ∠=∠=︒,∠90EOF ∠=︒,∠AOB EOF ∠=∠,∠AOE BOF ∠=∠,∠AE BF =,即AE 与BF 之间的数量关系不变;∠45OAB OBH ∠=∠=︒,OA OB =,AOE BOF ∠=∠,∠AOG BOH △≌△,∠OG OH =,∠OGH 是等腰直角三角形,∠222GH OG OH OG +=,而在点E 运动过程中,OG 的长度在发生变化,∠GH 的长度会改变;根据题意得4AB =, ∠22OA OB OE AB ==== ∠(29022360EOF S ππ⨯==扇形,∠AOG BOH △≌△,∠AOG BOH S S =,∠112222422BOG BOH BOG AOG AOB OGBH S S S S S S OA OB =+=+==⋅=⨯四边形, ∠图中阴影部分的面积和为24OGBH EOF S S π-=-四边形扇形,不变;综上所述,关系会发生变化的是乙.故选:C【点睛】本题主要考查了圆的综合题,正方形的性质,熟练掌握圆周角定理,扇形面积公式,根据题意得到AOG BOH △≌△是解题的关键.12.B【分析】根据定理证明的一般步骤进行分析判断即可解答.【详解】解:∠证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∠A 的说法不正确,不符合题意;B 的说法正确,符合题意;C 、∠定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∠C 的说法不正确,不符合题意;D 、∠定理的证明必须经过严谨的推理论证,与测量次数的多少无关,∠D 的说法不正确,不符合题意,综上,B 的说法正确,故选:B .【点睛】本题主要考查了三角形的外角的性质的证明以及定理的证明的一般步骤,依据定理证明的一般步骤分析解答是解题的关键.13.C【分析】根据题意可知:王师傅用角尺平分一个角时使得:OM ON =,PM PN =,OP OP =,故王师傅的依据为:SSS ;学生小顾用三角尺平分一个角时使得:OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,故学生小顾的依据为:HL ;即可得到结果【详解】∠王师傅用角尺平分一个角,在AOB ∠两边上分别取OM ON =,使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;∠OM ON =,PM PN =,OP OP =,∠()SSS OMP ONP ≌△△,故王师傅的依据为:SSS ;∠学生小顾用三角尺平分一个角,在AOB ∠两边上分别取OM ON =,分别过M ,N 作OA ,OB 的垂线,交点为P ,∠OM ON =,90OMP ONP ∠=∠=︒,且OP OP =,∠()HL OMP ONP △≌△,故学生小顾的依据为:HL ;故答案为:C【点睛】本题考查了全等三角形的判定和角平分线的概念,熟练掌握全等三角形的判定方法是解决问题的关键14.D【分析】根据题意,可以选取合适的统计量,从而可以解答本题.【详解】解:∠有9名学生参加比赛,一名学生想知道自己能否进入前5名,∠这名学生要知道这组数据的中位数,故选:D .【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.15.A【分析】如图,建立如图所示的平面直角坐标系,连接QB ,PB .首先用t 表示出点Q 的坐标,发现点Q 在直线y =2上运动,求出PB 的值,再根据PQ +PD =PQ +QB ≥PB ,可得结论.【详解】解:如图,建立如图所示的平面直角坐标系,连接QB ,PB .∠四边形ABDC 是矩形,∠AC =BD =4cm ,AB =CD =3cm ,∠C (-3,0),B (0,4),∠∠CDB =90°,∠BC 222234CD CB +=+(cm ),∠EH ∠CD ,∠△BEH ∠∠BCD ,∠BE EH BH BC CD BD==,∠0.5534t EH BH==,∠EH=0.3t,BH=0.4t,∠E(-0.3t,4-0.4t),∠F(0,0.4t),∠QE=QF,∠Q(-320t,2),∠点Q在直线y=2上运动,∠B,D关于直线y=2对称,∠QD=QB,∠QP+QD=QB+QP,∠QP+QB≥PB,PB2224+5,∠QP+QD5∠QP+QD的最小值为5故选:A.【点睛】本题考查轴对称最短问题,矩形的性质,相似三角形的判定和性质,轨迹等知识,解题的关键是构建平面直角坐标系,发现点Q在直线y=2上运动.16.C【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】A、设反比例函数的解析式为kyx =,把(1,200)代入得,k=200,∠反比例函数的解析式为:200yx =,当x=4时,y=50,∠4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则200 100x=,解得:x =2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D 、设一次函数解析式为:y =kx +b ,则4506110k b k b +=⎧⎨+=⎩,解得:3070k b =⎧⎨=-⎩, 故一次函数解析式为:y =30x −70,故y =200时,200=30x −70,解得:x =9, 则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .【点睛】此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键. 17.10【分析】依题意,确定圆心位置,利用垂径定理构造直角三角形,求解即可.【详解】如图:确定圆心O ,依题意:OC AB ⊥122AC AB ∴== 在直角OCA 中:222222640OA AC OC =+=+=210OA =故答案为210OA =【点睛】本题考查了垂径定理和勾股定理的综合运用,关键是根据题意建立圆的模型,利用垂径定理确定线段长度,从而求解.1815【分析】以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,设BF CF m AF n ===,,用相似三角形性质可求出113113,,,,,224444G m n E m n D m n ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而可得直线DF 解析式为3n y x m =,直线GE 解析式为255n y x n m =-+,即可求出()3,,2,088m n M H m ⎛⎫ ⎪⎝⎭,根据四块图形恰好能拼成如图(2)的矩形,得222FM MH FH +=,即()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简整理有15n =,在Rt ABF 中,15tan AF n B BF m ===. 【详解】解:AB AC =,A ∴在BC 的垂直平分线上,点G F ,分别为AB BC ,的中点, AG BG BF CF ∴==,,22AG AD EC ==,1144AD EC AC AB ∴===, 以F 为原点,BC 所在直线为x 轴,建立直角坐标系,设DF 交GE 于M ,过G 作GN BC ⊥于N ,过E 作EP BC ⊥于P ,延长GE 交x 轴Y 于H ,如图:设BF CF m AF n ===,,GN BC AF BC ⊥⊥,,90AFB GNB ∴∠=∠=︒,又ABF GBN ∠=∠,ABF GBN ∴∽,GN BN BG AF BF AB∴==,即12GN BN n m ==, 1122GN n BN m ∴==,, 12NF m ∴=, 1122G m n ⎛⎫∴- ⎪⎝⎭,, 同理CEP CAF ∽,14PE CP CE n m AC ∴===, 1144PE n CP m ∴==,, 34PF m ∴=, 3144E m n ⎛⎫∴ ⎪⎝⎭,, 同法可得1344D m n ⎛⎫ ⎪⎝⎭,, 设直线DF 解析式为1y k x =,把1344D m n ⎛⎫ ⎪⎝⎭,代入得:11344mk n =, 解得:13n k m=, ∠直线DF 解析式为3n y x m =, 设直线GE 解析式为22y k x b =+,把1131,,,2244G m n E m n ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭代入得: 222211223144mk b n mk b n ⎧-+=⎪⎪⎨⎪+=⎪⎩,解得:22525n k m b n ⎧=-⎪⎪⎨⎪=⎪⎩, ∠直线GE 解析式为255n y x n m =-+, 联立得3255n y x m n y x n m ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:838m x n y ⎧=⎪⎪⎨⎪=⎪⎩,388m n M ⎛⎫∴ ⎪⎝⎭,, 在255n y x n m =-+中,令0y =得2x m =, ()2,0H m ∴,四块图形恰好能拼成如图(2)的矩形,90FMH ∴∠=︒, 222FM MH FH ∴+=,()0,0F ,()22222332028888m n m n m m ⎛⎫⎛⎫⎛⎫⎛⎫∴++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简整理可得2253n m =, 00m n >>,,15n ∴=, 在Rt ABF 中,15tan AF n B BF m === 15 【点睛】本题考查锐角三角函数,矩形的性质,解题的关键是读懂题意,建立直角坐标系,求出M 的坐标.19. 作图见解析,1O 和3O (答案不唯一) 作图见解析,13O O 与24O O 的交点O 和5O (答案不唯一)【分析】利用中心对称图形进行分析,对于图①,过13,O O 的直线即可满足题意;对于图②过13O O 和24O O 的交点O 和5O 的直线即可满足题意.【详解】解:图①既是轴对称图形,也是中心对称图形,则只需过它的对称中心任意画一条直线即可,如图所示:∴如过13,O O 的一条直线(答案不唯一),故答案为:1O 和3O ;图②它不是中心对称图形,图①中,直线过图形的对称中心即可;一个圆时,只要过圆心即可,则画一条过13O O 和24O O 的交点O 和5O 的直线即可,如图所示:故答案为:13O O 与24O O 的交点O 和5O .【点睛】本题考查利用对称性质作图,借助图形,准确分析图形的对称特征是解决问题的关键. 20.(1)6410⨯(2)22(1)n -(3)正确,理由见解析【分析】1()根据题意可得,()()22121A B n n n +=++=+,把1999n =代入计算应用科学记数法表示方法进行计算即可得出答案;2()把21A n =+,2B n =,代入22A B -中,可得()()22212n n +-,应用完全平方公式及因式分解的方法进行计算即可得出答案;3()先计算()()2222221B C n n +=+-,计算可得()221n +,应用勾股定理的逆定理即可得出答案.【详解】(1)解:()()22121A B n n n +=++=+, 当1999n =时,原式()219991=+22000=6410=⨯; 故答案为:6410⨯;(2)()()2222212A B n n -=+- ()2222214n n n =++- ()22221n n =-+ 22(1)n =-;(3)嘉淇的发现正确,理由如下:()()2222221B C n n +=+-()2222421n n n =+-+ ()221n =+,222B C A ∴+=,∴当n 取正整数时,整式A 、B 、C 满足一组勾股数.【点睛】本题主要考查了勾股定理及逆定理,科学记数法,熟练掌握勾股定理及逆定理,科学记数法的计算方法进行求解是解决本题的关键.21.(1)是(2)18(3)12或14(4)12【分析】(1)根据“和谐数”的定义,即可求解;(2)根据“和谐数”的定义,即可求解;(3)根据()222817x m n x x ++=-+,可得22228217x n m x m x x +=+++-,从而得到41m n =-⎧⎨=±⎩,再代入,即可求解;(4)根据992280x y xy +--=,可得()2928xy x y =+-,再代入把原式变形为()2241x y +-+,即可求解.【详解】(1)解:∠22143131=+++,∠14是“和谐数”;故答案为:是(2)解:∠22183232=+++,∠18是“和谐数”;故答案为:18(3)解:∠()222817x m n x x ++=-+,∠22228217x n m x m x x +=+++-, ∠222817m m n =-⎧⎨+=⎩,解得:41m n =-⎧⎨=±⎩, ∠当1n =时,()()2222414114m n m n +++=-++-+=,当1n =-时,()()()()2222414112m n m n +++=-+-+-+-=,综上所述,“和谐数”22m n m n +++的值为12或14;(4)解:∠992280x y xy +--=,∠()2928xy x y =+-,∠22x y x y +++2222y xy x y x y x =-++++ ()22x y x y xy -=+++()()2928y x x y x y -++=+++()()2828x y x y =+-++,()2241x y +-+=∠()204x y +-≥,∠()212124x y -≥++,即2212x y x y +++≥,∠22x y x y +++的最小值为12.【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式,理解“和谐数”的定义是解题的关键.22.(1)13; (2)①300张;条形图见解析;②小明;【分析】(1)根据概率公式解答即可;(2)①利用小红的票数和票数所占百分比求出总票数,便可得到小亮的票数;进而补全条形图;②根据答辩分数占50%,笔试分数占40%,投票分数占10%,分别计算三人的加权平均得分;分数最高的即为冠军.(1)解:∠三人抽到第一个答辩的概率相等,∠小红抽到第一个答辩的概率为13. (2)解:①由小红的得票数和百分比可得:总票数=102÷0.34=300(张);小亮的票数=300-102-108=90(张);∠完整条形图为:②由答辩、笔试和网络投票三项得分按5∠4∠1的比例确定每人的总成绩,可得:小红得分=92×0.5+85×0.4+102×0.1=90.2(分);小明得分=89×0.5+88×0.4+108×0.1=90.5(分);小亮得分=90×0.5+89×0.4+90×0.1=89.6(分);小明分数最高,故:小明是冠军.【点睛】本题考查了概率公式,条形统计图和扇形统计图的联系,利用加权平均数作决策;掌握加权平均数的计算方法是解题关键.23.(1)①()()02? 12,②, (2)413D ⎛⎫ ⎪⎝⎭,或()01D , (3)713t ≤≤或1133t -≤≤- 【分析】(1)根据旋转的性质,即可求解;(2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ⊥轴,即可求解;②当点D 在第二象限时,证明DHC COD '≌即可求解;(3)分点N 落在正方形右边一条边上、上边一条边上两种情况,分别求解即可.【详解】(1)点A 的坐标为()00,,即点A 是原点,根据旋转性质得:①点()02Q ,②点()12P ,, 故答案为()02,,()12, (2)①当点D 在第一象限时,点D 关于点C 的“垂链点”在x 轴上,CD x ∴⊥轴,故点413D ⎛⎫ ⎪⎝⎭,; ②当点D 在第二象限时,如下图,设点1m 13D m ⎛⎫+ ⎪⎝⎭,,点D (0,n ),点D 的“垂链点”D 在y 轴上,过点D 作DH x ⊥轴于点H ,9090DCH HDC OCD DCH ∠∠∠+=︒+∠'=︒,,HDC OCD ∠∠∴=',90DHC COD ∠∠︒'==,DC D C '=,DHC COD '≌,则DH OC =,即1113m +=,解得:0m =, 故点()01D ,, 综上,点413D ⎛⎫ ⎪⎝⎭,或()01D , (3)图形G 所在的直线表达式为:22y x =-,设点()22M m m -,,其中01m ≤≤, 当N 落在正方形的右边的一条边上,①当T 在x 轴上方时,如下图:分别过M 、N 作y 轴的垂线交于点H '、G ',同理可证:NG T TH ''≌M ,TH NG '=',即()223t m --=,21t m =+,而01m ≤≤,且3N y ≤,则713t ≤≤; ②当T 在x 轴下方时,当3t =-时,点M 关于点T 的“垂链点”恰好为N 在正方形的边上,故3t =-;当点T 在3t =-下方时,且3N x ≥-,同理可得:3m t =--,解得:3t 且0t >,不符合题意舍去;当N 点落在正方形的上面的一条边上时,同理可得:3t m =-,而01m ≤≤,且3N y ≤,解得:1133t -≤≤-, 综上,t 的取值范围是:713t ≤≤或1133t -≤≤-. 【点睛】本题考查一次函数综合运用,正方形的性质,图形的旋转,解不等式等,这种新定义类的题目,通常按照题设顺序逐次求解,解题时注意分类讨论,避免遗漏.24.(1)支撑杆CD 的高度为9cm .(2)手机的宽度为8cm .【分析】(1)如图,连结OA ,由题意可得:O 的直径为10,6,AB = 由,OD AB ⊥ 先求解,OD 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明,AE CD BF AB 设,AD BD x ==则2,AE CD BF AB x 则25,OD x 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:O 的直径为10,6,AB =5,OA,CD AB ⊥ 即,OD AB ⊥ 3,AD BD ∴==22534,OD9.CD OC OD所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:,90,AB AE E EAB ABF∠四边形AEFB 为正方形,,CD EF,AE CD BFAB ,CD AB ⊥∴ 设,AD BD x ==则2,AE CD BF AB x5,OA OC25,OD x由勾股定理可得:2225=25,x x 解得120,4,x x ==经检验0x =不符合题意,舍去,取4,x = 8AB =(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.25.(1)①34a =-;②6个 (2)当3142a -<-时,“区域G ”内有4个整数点; (3)12a =或32a =【分析】(1)①将点(13),代入223y ax ax a =--,求出a 的值即可;。

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)一、选择题(共30分)1.(3分)6﹣1=()A.﹣6B.6C.﹣D.2.(3分)下列各组数中互为相反数的是()A.与﹣2B.﹣1与﹣(+1)C.﹣(﹣3)与﹣3D.2与|﹣2| 3.(3分)如图是由6个相同的小正方体组成的几何体,其俯视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)5.(3分)将一把直尺与一块直角三角板按如图所示的方式放置,若∠1=125°,则∠2的度数为()A.35°B.40°C.45°D.55°6.(3分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.则斜坡CD的长度为()米.A.80B.40﹣60C.120﹣60D.120﹣407.(3分)某公司今年1~6月份的利润增长率的变化情况如图所示.根据图示条件判断,下列结论正确的是()A.该公司1~6月份利润在逐渐减少B.在这六个月中,该公司1月份的利润最大C.在这六个月中,该公司每月的利润逐渐增加D.在这六个月中,该公司的利润有增有减8.(3分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若AC=12,则在△ABD中AB边上的高为()A.3B.4C.5D.69.(3分)随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片a元下降到每片b元,已知第一次下降了10%,第二次下降了20%,则a与b满足的数量关系是()A.b=a(1﹣10%﹣20%)B.b=a(1﹣10%)(1﹣20%)C.a=b(1+10%+20%)D.a=b(1+10%)(1+20%)10.(3分)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,点G是BC上的一点且AE=EG,连结AG,交BD于点H.满足AH2=HE•HD,现给出下列结论:①EG⊥AF;②BG+DF=FG;③若tan∠DAF=,则.其中正确的有()个.A.0B.1C.2D.3二、填空题(共15分)11.(3分)分解因式:2m3﹣8m=.12.(3分)一个不透明的口袋中,装有4个红球,2个黄球,1个白球,这些球除颜色外完全相同.从口袋中随机摸一个球,则摸到红球的概率是.13.(3分)如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.14.(3分)已知x=m是一元二次方程x2﹣x+1=0的一个根,则代数式2m﹣2m2+2021的值为.15.(3分)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.三、解答题(共75分)16.(8分)计算:(2022﹣π)0+3tan30°+|﹣3|﹣()﹣1.17.(8分)解不等式组:.18.(8分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.19.(9分)如图,四边形ABCD内接于⊙O,对角线AC,BD交于点E,过点A作⊙O的切线MN,若MN∥BD,CE=4,AC=5.(1)求证:∠ACD=∠ACB;(2)求AD的长.20.(9分)2019年10月1日是中华人民共和国成立70周年纪念日,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.(9分)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.22.(12分)在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求m的取值范围.23.(12分)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.2023年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共30分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:D.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数幂计算公式.2.【分析】根据相反数的定义及符号的化简逐一进行判断即可得到答案.【解答】解:A、与﹣2互为倒数,不符合题意;B、﹣(+1)=﹣1与﹣1相同,不符合题意;C、﹣(﹣3)=3与﹣3是相反数,符合题意;D、|﹣2|=2与2相同,不符合题意;故选:C.【点评】本题考查了相反数,绝对值化简,掌握相反数的定义:只有符号不同的两个数叫做互为相反数是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用关于x轴对称点的性质进而得出答案.【解答】解:点(2,﹣1)关于x轴对称的点是:(2,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【分析】由平行线的性质可得∠3=∠1=125°,再利用三角形的外角性质即可求解.【解答】解:如图,由题意得:∠E=90°,AB∥CD,∴∠3=∠1=125°,∵∠3是△ABE的外角,∴∠2=∠3﹣∠E=35°,故选:A.【点评】本题主要考查平行线的性质,熟记平行线的性质是解题的关键.6.【分析】在直角三角形ABC中,利用锐角三角函数定义求出AC的长,然后设CD=2x,则DE=x,CE=x,构建方程即可解决问题.【解答】解:在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,AC===20(米),∵∠DCE=30°,设CD=2x米,则DE=x米,CE=x米,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴AB﹣AF=AC+CE,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=(80﹣120)(米),∴CD的长为(80﹣120)米.故选:A.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.7.【分析】根据折线统计图中数据的变化以及折线的变化情况进行分析即可.【解答】A.该公司1~4月份的利润率在逐渐减少,4~6月份的利润率在逐渐增加,则A选项错误,不合题意;B.在图中可以看出:在这六个月中,该公司1月份的利润率最大,不代表1月份的利润最大,则B选项错误,不合题意;C.在这6个月中,利润增长率为正数,说明利润每月在上月基础上都在增加,则C选项正确,符合题意,D有误,不合题意.故选:C.【点评】本题考查了折线统计图,准确识图分析是解题的关键.8.【分析】作DE⊥AB于E,利用BD是角平分线以及直角三角形30°所对的直角边是斜边的一半即可求解.【解答】解:作DE⊥AB于E.如图:由作图可知,BD是△ABC的角平分线,∴DE=CD,∵∠A=30°,∠AED=90°,∴AD=2DE,∵AC=12,∴AD+DC=2DE+DE=12,∴DE=4.故选:B.【点评】本题主要考查了含30°角的直角三角形,以及30°角的直角三角形三边的关系,解答本题的关键在于利用其性质进行解答.9.【分析】利用经过两次降价后的价格=原价×(1﹣第一次价格下降的百分率)×(1﹣第二次价格下降的百分率),即可找出a与b满足的数量关系.【解答】解:根据题意得:b=a(1﹣10%)(1﹣20%).故选:B.【点评】本题考查了列代数式,根据各数量之间的关系,找出a与b满足的关系式是解题的关键.10.【分析】①把它AH2=HE•HD化为=,证明△AHE∽△DHA,推出∠HAE=∠ADH,再根据正方形的性质得出∠ADH=45°,再根据AE=EG和三角形内角和求出∠AEG=90°,进而得出EG⊥AF;②将△ADF绕点A顺时针旋转90°到△ABM,推出AF=AM,DF=BM,∠DAF=∠BAM,进而证明△FAG≌△MAG(SAS),推出FG=MG,最后得出BG+DF=FG;③设正方形的边长为4,BG=a,根据tan∠DAF=,求出DF=FC=BM=2,进而得CG=4﹣a,MG=GF=2+a,根据勾股定理求出a,进而求出=.【解答】解:∵AH2=HE•HD,∴=,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴∠HAE=∠ADH,∵四边形ABCD是正方形,∴∠ADC=90°,AC平分∠ADC,∴∠ADH=45°,∴∠HAE=∠EGA=45°,∵AE=EG,∴∠EAH=∠EGA=45°,∴∠AEG=90°,∴EG⊥AF,∴①正确;将△ADF绕点A顺时针旋转90°到△ABM,∴△ADF≌△ABM,∴AF=AM,DF=BM,∠DAF=∠BAM,∵∠FAG=45°,∠DAB=90°,∴∠DAF+∠GAB=45°,∴∠GAB+∠BAM=45°,∴∠FAG=∠MAG,在△FAG和△MAG中,,∴△FAG≌△MAG(SAS),∴FG=MG,∴MB+BG=FG,∴BG+DF=GF,∴②正确;设正方形的边长为4,BG=a,∵tan∠DAF=,∴DF=FC=BM=2,∴CG=4﹣a,MG=GF=2+a,在Rt△FCG中,CG2+CF2=GF2,∴(4﹣a)2+4=(a+2)2,解得:a=,即BG=,GC=,∴=,∴③错误.正确的有2个.故选:C.【点评】本题考查三角形相似的判定和性质、全等三角形的判定与性质、正方形的性质、解直角三角形,熟练掌握这四个知识点的综合应用,将△ADF绕点A顺时针旋转90°到△ABM是证明△FAG≌△MAG的解题关键.二、填空题(共15分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有4+2+1=7个球,其中红球有4个,∴摸到红球的概率是,故答案为:.【点评】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.14.【分析】根据题意可得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,从而可得m2﹣m=﹣1,然后代入式子中进行计算即可解答.【解答】解:由题意得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,∴m2﹣m=﹣1,∴2m﹣2m2+2021=﹣2(m2﹣m)+2021=﹣2×(﹣1)+2021=2+2021=2023,故答案为:2023.【点评】本题考查了一元二次方程的解,一元二次方程的定义,熟练掌握一元二次方程的解的意义是解题的关键.15.【分析】作F关于AC的对称点F',延长AF'、BC交于点B',当B、E、F'共线且与AB'垂直时,求BD的长即可.【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',作BD⊥AB'于D,∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,在△ABD中,BD=AB=,故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,将BE+EF转化为求线段BD是解题的关键.三、解答题(共75分)16.【分析】直接特殊角的三角函数值、零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=1+3×+3﹣﹣=1++3﹣﹣=.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<2,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.【解答】解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M﹣﹣﹣(M,M)(N,M)(N,M)M(M,M)﹣﹣﹣(N,M)(N,M)N(M,N)(M,N)﹣﹣﹣(N,N)N(M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.【分析】(1)由切线的性质得到半径OA⊥MN,而MN∥BD,得到OA⊥BD,由垂径定理推出=,即可证明问题;(2)由圆周角定理推出△ADE∽△ACD,得到AD:AC=AE:AD,即可求出AD的长.【解答】(1)证明:连接OA,∵MN切⊙O于A,∴半径OA⊥MN,∵MN∥BD,∴OA⊥BD,∴=,∴∠ACD=∠ACB;(2)∵∠ADE=∠ACB,∠ACD=∠ACB,∴∠ADE=∠ACD,∵∠DAE=∠DAC,∴△ADE∽△ACD,∴AD:AC=AE:AD,∵AE=AC﹣CE=5﹣4=1,∴AD:5=1:AD,∴AD=.【点评】本题考查切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,熟练掌握以上知识点是解题的关键.20.【分析】(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据购进了第二批这种纪念衫数量是第一批购进量的2倍列出方程,求出方程的解即可得到结果;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,由题意列出不等式,求出不等式的解集确定出y的最小值即可.【解答】解:(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据题意得:×2=,解得:x=80,经检验x=80是分式方程的解,且符合题意,则该商家购进的第一批纪念衫单价是80元;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,根据题意得:40y﹣3200+60y+20×80%y﹣7200≥3520,解得:y≥120,则每件纪念衫的标价至少是120元.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.21.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A(1,2),C(4,0)代入y=kx+b,得,解得:,∴直线AC的解析式为y=﹣x+,将A(1,2)代入y=(x>0),得m=2,∴双曲线的解析式为y=(x>0);(2)∵直线AC的解析式为y=﹣x+与y轴交点D,∴点D的坐标为(0,),∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,∴,∴,,∴点B的坐标为(3,),∴△AOB的面积=4×﹣4×﹣×1=;(3)观察图象,∵A(1,2),B(3,),∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.22.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.【解答】解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.【点评】本题是二次函数综合题,考查了二次函数的图象及其性质,二次函数图象上点的坐标特征,平移的性质等知识,熟练利用数形结合的解题方法是解决本题的关键.23.【分析】(1)利用等边三角形的性质解决问题即可;(2)证明△FAB≌△DAC(SAS),推出BF=CD,∠ABF=∠ACD=60°,再证明△EFB 是等边三角形,可得结论;(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.利用相似三角形的性质,等高模型解决问题.【解答】解:(1)∵△ABC,△ADF都是等边三角形,∴EF=AB=CD,∠ADC=∠FED,∴EF∥CD,故答案为:CD=EF,CD∥EF;(2)结论成立.理由:如图2中,连接BF.∵△ABC,△ADF都是等边三角形,∴∠FAD=∠BAC,AF=AD,AB=AC,∴∠FAB=∠DAC,∴△FAB≌△DAC(SAS),∴BF=CD,∠ABF=∠ACD=60°,∵AE=BD,AB=BC,∴BE=CD=BF,∴△EFB是等边三角形,∴EF=BF=CD,∠FEB=∠ABC=60°∴EF∥CD;证法二:先证△CAE≌△ABD,得到CE=AD=DF,再证明CE∥DF,即可得四边形CDFE是平行四边形,即可得出结论平行且相等.(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.此时四边形BDEF是菱形.理由:如图3中,连接DF.由(2)可知,△BEF是等边三角形,BE=CD,∵BD=CD,∴BE=CB,∵△BEF∽△ABC,∴=()2=,∵EF∥CD,EF=CD,∴四边形EFDC是平行四边形,=2S△EFB,∴S平行四边形EFDC∴=.连接DE.∵BE=BD,∠EBD=60°,∴△BDE是等边三角形,∵△BEF是等边三角形,∴四边形BDEF是菱形.【点评】本题属于四边形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题。

2012年中考最新数学模拟试卷(1)

2012年中考最新数学模拟试卷(1)

赣州市2009年九年级课改中考综合练习数学试卷(一)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、填空题(本大题共10小题,每小题3分,共30分)1.计算:(-4)÷2=.2.如图,数轴上两个点表示的数分别为a、b,则13ab0(填写“>、<、=”).3. 在中国的园林建筑中,很多建筑图形具有对称性,下图是一个破损花窗的图形,请把它补画成中心对称图形.4.根据机器零件的设计图形(如图),用不等式表示零件长度L的合格尺寸为.5.圆内接正△ABC,如图,则∠1+∠2+∠3=度.6.如图,已知△ABC的面积是36厘米2,则阴影部分的面积是_______.7.小敏中午放学回家自己煮面条吃。

有下面几道工序:①洗锅盛水2分钟,②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用_____分钟.8.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为__________.9.有一个骰子,它的三种放法如图所示,则这三种放法的底面..上的点数之和是_____ .10.圆铁环内直径为3cm,外直径为5cm,将这样的圆铁环一个接一个地环套环连成一条锁链. (如上图)(1)4个环连成的锁链拉直后的最长长度是_______cm.; (2)n 个环连成的锁链拉直后的最大长度是 _______ cm . 二、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 11. 在一节数学复习课上,王老师在小黑板上写出四道判断题:(1)科学计数法:453000 = 45.3×104.(2)分解因式:16x 4-1 =(4x 2+1)(4x 2-1). (3)计算:8 - 2 = 2 . (4)化简:x 3·x + 2x 5÷x =3x 4. 其中正确的个数是( ).A.1个;B. 2个;C.3个D.4个;12. 下列图形既是轴对称图形又是中心对称图形的是( ).13. 一个圆柱的侧面展开图是一个面积为4平方单位的矩形,那么这个圆柱的母线长L 和底面半径r 之间的函数关系是( ).A. 反比例函数B. 正比例函数C.一次函数D.二次函数14. 一张桌子上重叠摆放了若干枚面值为 1元的硬币,它的三种视图如图所示,则 这张桌子上共有1元硬币( ).A.7枚B.9枚C.10枚D.11枚15. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?设每个支干分出x 个小分支,则下面所列方程正确的是( ). A. x + x 2 = 91B. 1+ x 2 = 91C. 1+ x + x 2 =91D. 1+ x (x -1)=9116. 下图中每个小正方形边长为1个单位.黑色部分的面积最接近多少个平方单位?( ).A. 10个平方单位B. 12个平方单位C. 14个平方单位D. 16个平方单位三、(本大题共3小题,第17小题6分,第18、19小题7分,共20分) 17. 计算:( 5 +2)( 5 -2)+(π-3)0-(2 2 )2A B C D18. 先化简,再求值: 22)222(+÷+-x x x ,其中x = 2sin45°.19. 有两个可以自由转动的均匀转盘A 、B 均被分成4等份,并在每个扇形内都标有数字(如图所示),七年级的刘朋和何东同学用这两个转盘做游戏.阅读下面的游戏规则,并回答下列问题:(1)用树状图或列表法,求两数相加和为零的概率;(2)你认为这个游戏规则对双方公平吗?若公平,请说明理由;若不公平,请修改游戏规则中的赋分..标准,使游戏变得公平.四、(本大题共2小题,每小题8分,共16分)20.某中学新建一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中还发现,紧急情况时因学生拥挤,出门的效率将降低了20%;安全检查规定,在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.21.如图,是五个边长相等的正方形拼成的图形(1)连接DJ ,DJ 与BE 的交点为M ,求BMME的值. (2)连接AG ,请你判断AG 与DJ 是否互相垂直,并说明理由.五.(本大题共2小题,第22小题8分,第23题9分,共17分)22.如图,矩形OABC 的两边OA 和OC 所在直线分别为l 1、l 2,l 1和l 2的交点为O ,OA =3,AB =4.将矩形OABC 绕O 点逆时针旋转,使B 点落在射线OC 上,旋转后的矩形为AO 1B 1C 1,BC 、A 1B 1相交于点M . (1)求tan ∠OB 1A 1的值.(2)将图1中的矩形OA 1B 1C 1沿射线OC 向上平移,如图2,矩形P A 2B 2C 2是平移过程中的某一位置,BC 、A 2B 2相交于点M 1,点P 运动到C 点停止.设点P 运动的距离为x ,CM 1 = y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为P A 3B 3C 3.请你思考如何通过使用最少图形变换次数使矩形P A 3B 3C 3与原矩形OABC 重合,请简述你的做法.23.某抛物线是由抛物线y = -2x 2向左平移2个单位得到. (1)求抛物线的解析式,并画出此抛物线的大致图象.CDJIl 1 l 1 l 1l 2l 2l 2(2)设抛物线的顶点为A,与y轴的交点为B.①求线段AB的长及直线AB的解析式.②在此抛物线的对称轴上是否存在点C,使△ABC为等腰三角形.若存在,求出这样的点C的坐标.若不存在,请说明理由.六.(本大题共2小题,第24小题9分,第25题10分,共19分)24.营养配餐中心为学生准备了若干种菜肴,一份菜中的能量、脂肪和蛋白质的含量由下表所示(能量、脂肪和蛋白质分别记住N、Z、D),根据学生的营养需求,学生需要从每餐午饭菜肴中获取的能量不低于700ke,脂肪在35g~55g之间,每餐午饭要由三种不同的菜肴来搭配.(1)求出1~13种菜肴能量的中位数、脂肪的众数、蛋白质的平均数;(2)①请补全星期三500人吃午饭打1~13种菜肴的人数与菜肴名(或符号的编号)的条形图;②若该校该天有1500名学生及100名老师吃午饭,估计吃炸鸡排的人数有多少人? (3)为配餐中心设计三种配餐的方案,使你学生营养在满足上面关于能量和脂肪的前提下获取尽可能多的蛋白质.25.如图1所示,一张三角形纸片ABE ,已知AB=AE=10,BE=12,AC ⊥BE ,垂足为C.先沿△ABE 的高AC 剪开,得到Rt △ABC (如图2所示);沿斜边AB (如图3所示)的中线CD 把这张纸片剪成△AC 1D 1和△BC 2D 2两个三角形(如图4所示).将纸片△AC 1D 1沿直线D 2B (AB )方向平移(点A ,D 1,D 2,B 始终在同一直线上),当点D 1与点B 重合时,停止平移.在平移的过程中,C 1D 1与BC 2交于点E ,AC 1与C 2D 2、BC 2分别交于点F 、P.(1)当△AC 1D 1平移到如图5所示的位置时,猜想图中D 1E 与D 2F 的数量关系,并证明你的猜想;(2)设平移距离D 2D 1为x ,△AC 1D 1与△BC 2D 2重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;(3)对于(2)中的结论是否存在这样的x ,使得重叠部分面积等于原△ABC 纸片面积号 号 号 号 号 号 号 号 号 号 号 号 号菜肴的编号的14 ?若存在,请求出x 的值;若不存在,请说明理由.图3图4 图5A BCE图2B参考答案一. 填空题(本大题共10小题,每小题3分,共30分)1. -22. <3. 略4. 39. 8≤L ≤40. 25. 1206. 12cm 27. 128. 8139. 1410. 14; (3n+2)二.选择题(本大题共6小题,每小题3分,共18分)11. B12. B13. A14. D15. C16. C三.(本大题共3小题,第17小题6分,第18、19小题各7分,共20分)17. -618.x1, 2 2 19. 14 ……4分; 改为:如果和为0,刘朋得3分,何东不得分. ……7分 四.(本大题共2小题,每小题8分,共16分)20. (1)CJ ∥DI ,△BMJ ∽ △EMD ,BM ME = BJDE = 2 ……4分(2)AG 与DJ 互相垂直,设AG 与BK 交于P 点,与DJ 交于Q 点, ∠BAP =∠PJQ ,∠APB =∠JPQ ,∠BAP + ∠APB =90°,∠PJQ +∠JPQ =90°,AG ⊥DJ ……8分21. (1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,可得: 解得:(2)(120+80)×(1-20%)×2×5=1600 >8×4×45=1440符合安全规定.……8分五.(本大题共2小题,第22小题8分,第23题9分,共17分)22. (1)34 ……2分; (2)y = 34 x + 34 ,0 ≤ x ≤ 115 ……6分(3)将矩形PA 3B 3C 3绕点C 顺时针旋转∠A 3CB ,再向下平移4得到原矩形OABC ……8分;23. (1)y = -2 (x +2) 2,画图略 ……2分; (2)①AB = 217 ,y = ―4x ―8;……5分②存在四个点,C 1(-2,217 ),C 2(-2,-217 ),C 3(-2,-16), C 4(-2,-174 ).…………………9分六.(本大题共2小题,第24小题9分,第25题10分,共19分)2 (x +2y ) =560, 4(x +2y ) = 800; x = 120, y = 80. ……5分24.(1)228(KC ),12(g ),15513 (g )……3分; (2)①略……5分;② 1600×100500 =320 ……6分;(3)2号、3号、10号; 2号、3号、5号; 2号、3号、8号 (9)分25. (1)D 1E = D 2F ……1分因为C 1D 1∥C 2D 2,所以∠C 1 = ∠AFD 2,又因为∠ACB =90°,CD 是斜边上的中线,所以DC = DA = DB , 即C 1D 1 = C 2D 2 = BD 2 = AD 1。

2024年安徽省九年级中考数学模拟试卷(含解析)

2024年安徽省九年级中考数学模拟试卷(含解析)

2024年安徽数学中考模拟试温馨提示:1试卷满分150分,考试时间120分钟。

2 本试卷共六页,共23题。

一、选择题(本题10小题,每小题4分,共40分)1.的倒数是( )A .B .C.D .2.天宫二号空间实验室的运行轨道距离地球约393000米,将393000用科学记数法表示应为( )A .B .C .D .3. 下列运算正确的是( )A .B .CD4.某物体如图所示,其俯视图是( )A .B .C .D .5.已知直线,将一块含角的直角三角板ABC 按如图方式放置,若,则的度数是( )A .B .C .D .6.如图,在Rt 中,4,点是斜边BC 的中点,以AM 为边作正方形AMEF.若S 正方形AMEF =16,则( )20232023-20231202312023-70.39310⨯53.9310⨯63.9310⨯339310⨯22a b ab +=()32528x x -=-4=-=a b 45︒124∠=︒2∠56︒66︒76︒86︒ABC AB =M ABC S =A .B .C .12D .167.已知(a+b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .28.将分别标有“大”、“美”、“织”、“金”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“织金”的概率是( )A.B .C .D .9.已知点,,在同一个函数图象上,这个函数图象可以是( )A .B .C .D .10.如图,在矩形 中, 、 分别是边 、 上的点, ,连接 、, 与对角线 交于点 ,且 , , ,则的长为( )18161412()21A a --,()1B a -,()1C a ,ABCD E F AB CD AE CF =EF BF EF AC O BE BF =2BEF BAC ∠=∠2FC =ABA .B .C .4D .6二、填空题(本题4小题,每小题5分,共20分)11.已知,则  .12.关于的方程的解是,则的值是  .13.如图,四边形为⊙O 的内接四边形,已知,则度数为  .14.如图,将一把矩形直尺和一块含角的三角板摆放在平面直角坐标系中,在轴上,点与点重合,点在上,三角板的直角边交于点,反比例函数的图象恰好经过点,若直尺的宽,三角板的斜边,则  .三、(本题2小题,每小题8分,共16分)15.先化简,再求值:,其中.16.如图,为了测量旗杆的高度,在离旗杆底部米的处,用高米的测角仪测得旗杆顶端处的仰角为求旗杆的高.精确到米参考数据:,,23(4)0x y ++-=x y -=x 323x k -=1-k ABCD 140BOD ∠=︒BCD ∠ABCD 30︒EFG AB x G A F AD EF BC M ky (x 0)x=>F M.CD 2=FG =k =236214422x x x x x x --÷-++++260430x tan sin =︒-︒BC 12A 1.5DA C α47.︒BC (0.1)[sin470.73︒≈cos470.68︒≈tan47 1.07]︒≈四(本题2小题,每小题8分,共16分)17.某水果商从批发市场用16000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)在运输过程中大樱桃损耗了,若大樱桃售价为每千克80元,要使此次销售获利不少于6700元,则小樱桃的售价最少应为每千克多少元?18.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x ,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.五、(本题2小题,每小题10分,共20分)19.如图所示,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABO的三个顶点分别为 A(-1,3),B(-4,3),O(0,0).(1)画出△ABO 关于原点对称的图形△A 1B 1O ,并写出点B 1的坐标;(2)画出△ABO 绕O 点顺时针旋转90°后得到的图形△A 2B 2O ,并写出点B 2的坐标.20.如图,内接于,,它的外角的平分线交于点D ,连接交于点F.15%ABC O 90ABC ∠>︒EAC ∠O DB DC DB ,,AC(1)若,求的度数.(2)求证:.(3)若,当,求的度数(用含的代数式表示).六、(本题2小题,每小题12分,共24分)21.我市教育局为深入贯彻落实立德树人根本任务,2022年在全市中小学部署开展“六个一”德育行动.某校为了更好地开展此项活动,随机抽取部分学生对学校前段时间开展活动的情况进行了满意度调查,满意度分为四个等级:A :非常满意;B :满意;C :一般;D :不满意.根据调查数据绘制了如下两幅不完整的统计图表:等级人数A 72B 108C 48Dm请你根据图表中的信息,解答下列问题:(1)本次被调查的学生人数是多少?(2)求以上图表中m ,n 的值及扇形统计图中A 等级对应的圆心角度数;(3)若该校共有学生1200人,估计满意度为A ,B 等级的学生共有多少人?75EAD ∠=︒ BCDB DC =DA DF =αABC ∠=DFC ∠α22.(1)问题如图1,在四边形中,点P 为上一点,当时,求证:.(2)探究若将角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A 为直角顶点作等腰.点D 在上,点E 在上,点F 在上,且,若,求的长.七、(本题1小题,共14分)23.如图,已知抛物线经过、、三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当的值最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使为等腰三角形,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.答案解析ABCD AB 90DPC A B ∠=∠=∠=︒AD BC AP BP ⋅=⋅90︒ABCAB =45B ∠=︒Rt ADE BC AC BC 45EFD ∠=︒CE =CD 2y ax bx c =++(10)A -,(30)B ,(03)C ,PA PC +MAC【解析】【解答】解:由题意得的倒数是,故答案为:C【分析】根据有理数的倒数结合题意即可得到2023的倒数,进而即可求解。

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

2024年中考数学第一次模拟试卷(湖南长沙卷)(全解全析)

2024年中考第一次模拟考试(湖南长沙卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列四个实数中,最小的是()A.2-B.4C.1D.5-【答案】D【分析】此题主要考查了实数大小比较的方法.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.>,【详解】解:∵54∴52>,∴52-<-,∴5214-<-<<,∴最小的数是5-,故选:D.2.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形的概念:一个图形沿某个点旋转180度后能与原图完全重合的;由此问题可求解.【详解】解:选项A、B、D不能找到一个点绕其旋转180度后能与原图完全重合,所以都不是中心对称图形,而C选项可以找到一个点绕其旋转180度后能与原图完全重合,所以是中心对称图形;故选C.【点睛】本题主要考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.3.下列计算中,正确的是()A .()326x x -=-B .()2211x x =++C .632x x x=D .235+=【答案】A 【分析】根据积的乘方,完全平方公式,同底数幂的除法,二次根式的加法对各选项进行判断即可.【详解】解:由题意知,()326x x -=-,正确,故A 符合要求;()2221211x x x x +=++≠+,错误,故B 不符合要求;6432x x x x=≠,错误,故C 不符合要求;235+≠,错误,故D 不符合要求;故选:A .【点睛】本题考查了积的乘方,完全平方公式,同底数幂的除法,二次根式的加法.熟练掌握积的乘方,完全平方公式,同底数幂的除法,二次根式的加法是解题的关键.4.据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为()A .7.358×107B .7.358×103C .7.358×104D .7.358×106【答案】A【分析】本题主要考查了科学记数法,表示较大的数,利用科学记数法的法则解答即可.【详解】解:7358万77.3581735800000=⨯=,故选:A .5.如图,把一个含有45︒角的直角三角板放在两条平行线m ,n 上,若123α∠=︒,则∠β的度数是()A .48︒B .88︒C .78︒D .75︒【答案】C 【分析】可求1123α∠=∠=︒,178ACB B ∠=∠-∠=︒,即可求解.【详解】解:如图:m n ∥,1123α∴∠=∠=︒,1∠ 是ABC 的一个外角,45B ∠=︒,178ACB B ∴∠=∠-∠=︒,78ACB β∴∠=∠=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,掌握性质是解题的关键.6.如图,AB 是O 的直径,42D ∠=︒,则CAB ∠=()A .52︒B .58︒C .48︒D .42︒【答案】C 【分析】本题考查圆周角的性质.由AB 是O 的直径可得90ACB ∠=︒,又由“同弧或等弧所对圆周角相等”可得42B D ∠=∠=︒,从而可求得CAB ∠.【详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵ AC AC=∴42B D ∠=∠=︒,∴90904248CAB B ∠=︒-∠=︒-︒=︒.故选:C7.一元一次方程不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解在数轴上表示正确的是()A .B .C .D .【答案】D 【分析】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11112x x +≥-⎧⎪⎨<⎪⎩①②,由①得,x ≥−2,由②得,2x <,故原不等式组的解集为:22x -≤<.在数轴上表示为:故答案为:D .8.如图,在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法错误的是()A .众数是90分B .方差是10C .平均数是91分D .中位数是90分【答案】B 【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:A 、∵90出现了5次,出现的次数最多,∴众数是90;故此选项不符合题意;B 、方差是:()()()()2222128591295915909110091191010⎡⎤⨯⨯-+⨯-+-+-=≠⎣⎦;故此选项符合题意;C 、平均数是(85×2+100×1+90×5+95×2)÷10=91;故此选项不符合题意;D 、∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故此选项不符合题意.故选:B .【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,能从统计图中获得有关数据,求出众数、中位数、平均数、方差是解题的关键.9.在同一平面直角坐标系中,函数y ax =和()0y x a a =+≠的图象可能是()A .B .C .D .【答案】D【分析】本题主要考查正比例函数的系数和一次函数常数项决定图象所过象限的知识点.【详解】解:A .由函数y ax =得0a >,与()0y x a a =+≠图象的a<0矛盾,故本选项不符合题意;B .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;C .函数()0y x a a =+≠所过象限错误,故本选项不符合题意;D .由函数y ax =得a<0,与()0y x a a =+≠图象的a<0一致,故本选项符合题意.故选:D .10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A .19B .16C .13D .12【答案】C【分析】分别用,,A B C 表示写有“福”字、春联、灯笼的三张卡片,利用列表法求出概率即可.【详解】解:分别用A ,B ,C 表示写有“福”字、春联、灯笼的三张卡片,列表如下:AB C AA ,A A ,B A ,C BB ,A B ,B B ,C C C ,A C ,B C ,C共有9中等可能的结果,其中他们恰好领取同一类礼品有3种等可能的结果,∴3193P ==;故选C .【点睛】本题考查列表法求概率,解题的关键是正确的列出表格.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若22x -在实数范围内有意义,则x 的取值范围是.【答案】2x ≥【分析】此题主要考查了二次根式有意义的条件,正确掌握相关定义是解题关键.直接利用二次根式有意义则被开方数大于或等于零即可得出答案.【详解】解:22x -在实数范围内有意义,故20x -≥,解得:2x ≥.故答案为:2x ≥.12.分式方程422x x =-的解是.【答案】2x =-【分析】先去分母,再解出整式方程,然后检验,即可求解.【详解】解:去分母得:()224x x -=,解得:2x =-,检验:当2x =-时,()20x x -≠,∴原方程的解为2x =-.故答案为:2x =-【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验.13.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,实数m 的取值范围是.【答案】1m </1m>【分析】利用方程有两个不相等的实数根时,0∆>,建立关于m 的不等式,求出m 的取值范围.【详解】解: 关于x 的一元二次方程220x x m -+=有两个不相等的实数根,∴()2240m ∆=-->,即440m ->,解得:1m <,故答案为:1m <.【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.14.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,35BOP ∠=︒,则 AB 的长l =(结果保留π).【答案】718π/718π【分析】先求解223570AOB BOP ∠=∠=⨯︒=︒,再利用弧长公式计算即可.【详解】解:由作图知:OP 垂直平分AB ,∵OA OB =,∴223570AOB BOP ∠=∠=⨯︒=︒,∵扇形的半径是1,∴ AB 的长70π17π18018⨯==.故答案为:7π18.【点睛】本题考查的是线段的垂直平分线的作图,等腰三角形的性质,弧长的计算,熟记弧长公式是解本题的关键.15.如图,反比例函数k y x=的图象经过ABCD Y 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD Y 的面积为16,则k =.【答案】8-【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【详解】解:如图,过点P 做PE y ⊥轴于点E .四边形ABCD 为平行四边形,AB CD ∴=,又BD x ⊥Q 轴,ABDO ∴为矩形,AB DO ∴=,16ABCD ABDO S S ∴== 矩形,P 为对角线交点,PE y ⊥轴,∴四边形PDOE 为矩形面积为8,即8DO EO ⋅=,∴设P 点坐标为(,)x y ,8k xy ==-.故答案为:8-.【点睛】本题考查了反比例函数k 的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.16.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为.【答案】6017/9317【分析】先设正方形的边长为x ,再表示出DE ,AD ,然后说明ADE V ∽ACB △,并根据对应边成比例得出答案.【详解】根据题意可知=5AC ,=12BC .设正方形的边长为x ,则=DE CD x =,5AD x =-.∵四边形CDEF 是正方形,∴==90C ADE ∠∠︒.∵A A ∠=∠,∴ADE V ∽ACB △,∴AD DE AC BC =,即5512x x -=,解得6017x =.所以正方形的边长为6017.故答案为:6017.【点睛】本题主要考查了正方形的性质,相似三角形的性质和判定,相似三角形的对应边成比例是求线段长的常用方法.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25每题10分,共72分)17.计算:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭【答案】237+【分析】本题考查实数的混合运算,先计算特殊角三角函数值,零次幂,负整数次幂,绝对值,再进行加减运算即可,正确计算是解题的关键.【详解】解:()2012sin60π2133-⎛⎫︒--++- ⎪⎝⎭2312131213=⨯-++-⎛⎫ ⎪⎝⎭31931=-++-237=+18.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中3a =.【答案】21-a a ,336+【分析】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式22212111a a a a a ---+=÷-+()()()21112a a a a a a -+=⋅+--21a a =-当3a =时,原式133633+==-.19.如图,从水平面看一山坡上的通讯铁塔PC ,在点A 处用测角仪测得塔顶端点P 的仰角是45︒,向前走9米到达B 点,用测角仪测得塔顶端点P 和塔底端点C 的仰角分别是60︒和30︒.(1)求BPC ∠的度数;(2)求该铁塔PC 的高度.(结果精确到0.1米;参考数据:3 1.73≈,2 1.41≈)【答案】(1)30︒(2)14.3米【分析】本题考查了仰角的定义、解直角三角形、三角函数;(1)延长PC 交直线AB 于点F ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,根据AF PF =,构建方程求出x 即可.【详解】(1)延长PC 交直线AB 于点F ,则AF PF ⊥,依题意得:45PAF ∠=︒,60PBF ∠=︒,∴906030BPC ∠=-=︒︒︒.(2)设PC x =米,∵60PBF ∠=︒,30CBF ∠=︒,∴30PBC ∠=︒,∴PBC BPC ∠=∠,∴PC CB x ==米,在Rt CBF △中,3cos302BF CB x =︒=,1sin 302CF CB x =︒=,在Rt PAF △中,45PAF APF ∠=∠=︒,∴PF AF =,∴3139222x x x x +=+=,∴933x =+,∴93393 1.7314.3PC =+≈+⨯≈(米),即该铁塔PC 的高度约为14.3米.20.为了进一步加强中小学国防教育,教育部研究制定了《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织七、八年级全体学生参加了国防知识竞赛(百分制),并规定90分及以上为优秀,8089~分为良好,6079~分为及格,59分及以下为不及格.该学校七、八两个年级各有学生300人,现随机抽取了七、八年级各20名学生的成绩进行了整理与分析,下面给出了部分信息.a .抽取七年级20名学生的成绩如下:65875796796789977710083698994589769788188b .抽取七年级20名学生成绩的频数分布直方图如图1所示(数据分成5组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100)x ≤≤)c .抽取八年级20名学生成绩的扇形统计图如图2所示.d .七年级、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表:年级平均数中位数方差七年级81m 167.9八年级8279.5108.3请根据以上信息,回答下列问题:(1)补全七年级20名学生成绩的频数分布直方图,写出表中m 的值;(2)估计七、八两个年级此次竞赛成绩达到优秀的学生共有多少人;(3)若本次竞赛成绩达到81分及以上的同学可以获得参加挑战赛的机会,请根据样本数据估计,七、八两个年级中哪个年级获得参加挑战赛的机会的学生人数更多?并说明理由.【答案】(1)补全条形统计图见解析;82m =(2)七、八两个年级此次竞赛成绩达到优秀的学生共有165人(3)七年级获得参加挑战赛的机会的学生人数更多;理由见解析【分析】(1)根据题意可得七年级成绩位于6070x ≤<的有4人;七年级成绩位于第10位和第11位的是81和83,即可求解;(2)先求出八年级成绩优秀的所占的百分比,再分别用300乘以各自的百分比,即可求解;(3)分别求出七、八两个年级获得参加挑战赛的机会的学生人数,然后进行比较即可.【详解】(1)解:根据题意得:七年级成绩位于6070x ≤<的有4人,补全图形如下:七年级成绩位于第10位和第11位的是81和83,∴七年级成绩的中位数8183822m +==;(2)解:根据题意得:八年级成绩良好的所占的百分比为72100%20%360︒⨯=︒∴八年级成绩优秀的所占的百分比为120%45%5%30%---=,∴八年级成绩达到优秀的学生有30030%90⨯=(人),七年级成绩达到优秀的学生有53007520⨯=人,9075165+=(人),答:七、八两个年级此次竞赛成绩达到优秀的学生共有165人.(3)解:八年级获得参加挑战赛的机会的学生人数约为:()30020%30%150⨯+=(人),七年级获得参加挑战赛的机会的学生人数约为:1130016520⨯=(人),∵150165<,∴七年级获得参加挑战赛的机会的学生人数更多.【点睛】本题主要考查了条形统计图和扇形统计图,求中位数,用样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.21.如图,在Rt ABC 中,32AC BC ==,点D 在AB 边上,连接CD ,将CD 绕点C 逆时针旋转90︒得到CE ,连接BE ,DE .(1)求证:CAD CBE ≌;(2)若2AD =时,求CE 的长;(3)点D 在AB 上运动时,试探究22AD BD +的值是否存在最小值,如果存在,求出这个最小值;如果不存在,请说明理由.【答案】(1)见解析(2)10(3)存在,18【分析】(1)由S AS 即可证明CAD CBE ≌;(2)证明CAD CBE ≌(SAS ),勾股定理得到DE ,在Rt CDE 中,勾股定理即可求解;(3)证明2222AD BD CD +=,即可求解.【详解】(1)解:由题意,可知90ACB DCE ∠=∠=︒,CA CB =,CD CE =.ACB DCB DCE DCB ∴∠-∠=∠-∠.即ACD BCE ∠=∠.()SAS CAD CBE ∴ ≌.(2) 在Rt ABC 中,32AC BC ==,45,26CAB CBA AB AC ∴∠=∠=︒==.624BD AB AD ∴=-=-=.CAD CBE ≌,2BE AD ∴==,45CBE CAD ∠=∠=︒.90ABE ABC CBE ∴∠=∠+∠=︒.2225DE BD BE ∴=+=.∴在Rt CDE △中,102DE CE CD ===.(3)由(2)可知,2222222AD BD BE BD DE CD ===++.∴当CD 最小时,有22AD BD +的值最小,此时CD AB ⊥.ABC 为等腰直角三角形,116322CD AB ∴==⨯=.∴222222318AD BD CD =≥⨯=+.即22AD BD +的最小值为18.【点睛】本题主要考查了图形的几何变换,涉及到等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键.22.某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件与B 种型号服装10件共需要1810元;若购进A 种型号服装12件与B 种型号服装8件共需要1880元.(1)A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B 型服装多少件?【答案】(1)A 种型号服装每件90元,B 种型号服装每件100元.(2)至少购进B 型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A 种型号服装9件,B 种型号服装10件,需要1810元”和“A 种型号服装12件,B 种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A 种型号服装每件x 元,B 种型号服装每件y 元.依题意可得:91018101281880x y x y +=⎧⎨+=⎩,解得:90100x y =⎧⎨=⎩,答:A 种型号服装每件90元,B 种型号服装每件100元.(2)设B 型服装购进m 件,则A 型服装购进()24m +件.根据题意得:()182430732m m ++≥,解不等式得10m ≥,答:至少购进B 型服装10件.23.如图,四边形ABCD 为矩形,点E 在边AD 上,AE CD =,连接CE ,过点E 作EF CE ⊥交AB 于点F ,分别过点C 、F 作CG EF ∥、FG CE ∥且CG 、GF 相交于点G .(1)求证:EF CE =;(2)连接GE ,若4CD =,点F 是AB 的中点,求GE 的长.【答案】(1)见解析;(2)210.【分析】(1)根据CE EF ⊥即余角的性质得到,可得∠=∠AFE CED ,根据矩形的性质可得90A D ∠=∠=︒,可证明(AAS)AEF DCE ≌ ,由此即可求证FE CE =;(2)根据题意可证四边形EFGC 是正方形,在Rt AEF 中由勾股定理求出的长,且EFG 是等腰直角三角形,根据其性质得到.【详解】(1)证明:∵CE EF ⊥,∴90CEF ∠=︒,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∴90AEF AFE AEF CED ∠+∠=∠+∠=︒,∴∠=∠AFE CED ,∵AE CD =,∴(AAS)AEF DCE ≌ ,∴EF CE =.(2)解:如图所示,连接GE ,∵CG EF ∥,FG CE ∥,∴四边形CEFG 是平行四边形,∵90CEF ∠=︒,∴四边形CEFG 是矩形,∵EF CE =,∴四边形CEFG 是正方形,∵4AB CD ==,点F 是AB 的中点,∴122AF AB ==,∵4AE CD ==,在Rt AEF 中,90A ∠=︒,∴2225EF AF AE =+=,∵四边形CEFG 是正方形,∴EFG 是等腰直角三角形,∴2210EG EF ==.【点睛】此题考查了全等三角形的判定和性质,矩形的性质,正方形的性质,勾股定理,解题的关键是证明(AAS)AEF DCE ≌ ,由勾股定理求出FE 的长,由等腰直角三角形的性质即可得到2EG EF =.24.如图,A ,B ,C 是O 上的三点,且AB AC =,8BC =,点D 为优弧BDC 上的动点,且4cos 5ABC ∠=.(1)如图1,若BCD ACB ∠=∠,延长DC 到F ,使得CF CA =,连接AF ,求证:AF 是O 的切线;(2)如图2,若BCD ∠的角平分线与AD 相交于E ,求O 的半径与AE 的长;(3)如图3,将ABC 的BC 边所在的直线1l 绕点A 旋转得到2l ,直线2l 与O 相交于M ,N ,连接AM AN ,.2l 在运动的过程中,AM AN ⋅的值是否发生变化?若不变,求出其值;若变化,说明变化规律.【答案】(1)见解析(2)O 的半径为256,5AE =(3)2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25【分析】(1)连接AO ,先证BCD ABC ∠=∠,推出AB DF ∥,得到四边形ABCF 是平行四边形,AF BC ∥,再得到OA AF ⊥,即可证得结论;(2)连接AO 交BC 于H ,连接OB ,由垂径定理得142BH CH BC ===,根据4cos 5BH ABC AB ∠==,求出5AB =,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理求出256x =,O 的半径为256,根据角平分线定义及同弧所对圆周角相等得到AEC ACB BCE ACE ∠=∠+∠=∠,由此得到5AE AC AB ===;(3)连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,证明AQM ANP △∽△,得到AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,A 到直线2l 的距离始终等于3,不会发生改变,由此得到253253AM AN AP AQ ⋅=⋅=⨯=.【详解】(1)证明:连接AO ,如图1所示:∵AB AC =,∴A ABC CB =∠∠,∵BCD ACB ∠=∠,∴BCD ABC ∠=∠,∴AB DF ∥,∵CF CA =,∴CF AB =,∴四边形ABCF 是平行四边形,∴AF BC ∥,∵AB AC =,∴»»AB AC =,∴OA BC ⊥,∴OA AF ⊥,∵OA 是O 的半径,∴AF 是O 的切线;图1(2)解:连接AO 交BC 于H ,连接OB ,如图2所示:∵OA BC ⊥,∴142BH CH BC ===,∵4cos 5BH ABC AB ∠==,∴554544AB BH ==⨯=,在Rt AHB 中,由勾股定理得:2222543AH AB BH =-=-=,设O 的半径为x ,则OA OB x ==,3OH x =-,在Rt BOH 中,由勾股定理得:()22234x x =-+,解得:256x =,∴O 的半径为256,∵CE 平分BCD ∠,∴BCE DCE ∠=∠,∵ABC ADC ∠=∠,∴AEC ADC DCE ABC DCE ACB BCE ACE ∠=∠+∠=∠+∠=∠+∠=∠,∴5AE AC AB ===;图2(3)解:连接AO ,并延长AO 交O 于Q ,连接NQ ,过点A 作2AP l ⊥于P ,如图3所示:则AQ 是O 的直径,∴90AMQ ∠=︒,∵2AP l ⊥,∴90APN ∠=︒,∴AMQ APN ∠=∠,∵AQM ANP ∠=∠,∴AQM ANP △∽△,∴AM AQ AP AN=,∴AM AN AP AQ ⋅=⋅,由(2)可知,点A 到直线1l 的距离为3,直线1l 绕点A 旋转得到2l ,∴点A 到直线2l 的距离始终等于3,不会发生改变,∴3AP =,∵25252263AQ OA ==⨯=,∴253253AM AN AP AQ ⋅=⋅=⨯=,∴2l 在运动的过程中,AM AN ⋅的值不发生变化,其值为25.图3【点睛】此题考查锐角三角函数,证明直线是圆的切线,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,等知识,熟练掌握各知识点并综合应用是解题的关键.25.定义:在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴的交点坐标为()0,c ,那么我们把经过点()0,c 且平行于x 轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线221y x x =++的极限分割线与这条抛物线的交点坐标为______.【深入探究】(2)经过点()2,0A -和(),0(2)B x x >-的抛物线21142y x mx n =-++与y 轴交于点C ,它的极限分割线与该抛物线另一个交点为D ,请用含m 的代数式表示点D 的坐标.【拓展运用】(3)在(2)的条件下,设抛物线21142y x mx n =-++的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当45CDF ∠=︒时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.【答案】(1)()0,1和()2,1-(2)点D 的坐标为()2,1m m +(3)①顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭;②存在,0m =或222m =+或222m =-【分析】(1)根据定义,确定c 值,再建立方程组求解即可.(2)把点()2,0A -代入解析式,确定1n m =+,根据定义建立方程求解即可.(3)①根据等腰直角三角形的性质,得到等线段,再利用字母表示等线段建立绝对值等式计算即可.②设MN 与对称轴的交点为H ,用含m 的式子表示出点P 的坐标,分别写出极限分割线CD 、直线EF 及直线MN 的解析式,用含m 的式子分别表示出点B 到直线EF 的距离和点P 到直线MN 的距离,根据点P 到直线MN 的距离与点B 到直线EF 的距离相等,得出关于m 的绝对值方程,解方程即可.【详解】(1)∵抛物线221y x x =++的对称轴为直线=1x -,极限分割线为1y =,∴极限分割线与这条抛物线的一个交点坐标为()0,1,则另一个交点坐标为()2,1-.故答案为:()0,1和()2,1-.(2)抛物线经过点()2,0A -,∴()()21102242m n =-⨯-+⨯⨯-+∴1n m =+∴2111142x mx m m -+++=+,解得120,2x x m==∴点D 的坐标为()2,1m m +.(3)①设CD 与对称轴交于点G ,若45CDF ∠=︒,则DG GF =.∵点C 的坐标为()0,1m +,点D 的坐标为()2,1m m +..∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==,∴112m m =+,解得1211,3m m ==-.∵抛物线21142y x mx n =-++的顶点为P ,∴抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴当1m =时,219144m m ++=,故顶点为91,4P ⎛⎫ ⎪⎝⎭;∴当13m =-时,21111251112511144933649336m m ++=⨯-+=⨯-+=,故顶点为125,336P ⎛⎫- ⎪⎝⎭;∴顶点为91,4P ⎛⎫ ⎪⎝⎭或顶点为125,336P ⎛⎫- ⎪⎝⎭.②存在,0m =或222m =+或222m =-.如图,设MN 与对称轴的交点为H .由()2知,1n m =+,抛物线()2211144y x m m m =--+++的顶点为21,14m m m P ⎛⎫++ ⎪⎝⎭,∴抛物线21142y x mx n =-++的极限分割线CD :1y m =+, 直线EF 垂直平分OC ,∴直线EF :12m y +=,∴点B 到直线EF 的距离为12m +; 直线EF 与直线MN 关于极限分割线CD 对称,∴直线MN :()312m y +=,∵21,14m m m P ⎛⎫++ ⎪⎝⎭,∴点P 到直线MN 的距离为()()()2213111114242m m m m m ++-+=-+,点P 到直线MN 的距离与点B 到直线EF 的距离相等,∴()()211111422m m m -+=+,∴()()211111422m m m -+=+或()()211111422m m m -+=-+,解得0m =或222m =+或222m =-,故0m =或222m =+或222m =-.【点睛】.查了抛物线与坐标轴的交点坐标和直线与抛物线的交点坐标等知识点,明确题中的定义、熟练掌握二次函数的图像与性质及绝对值方程是解题的关键.。

(江苏无锡卷)2023年中考数学第一次模拟考试卷(解析版)

2023年中考数学第一次模拟考试卷(江苏无锡卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一个选项是符合题目要求的)1.|-2022|的倒数是()A.2022B.12022C.-2022D.-12022品,其文字上方的图案是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义解答即可.【详解】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题考查中心对称图形的识别,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.在简便运算时,把47249948⎛⎫⨯-⎪⎝⎭变形成最合适的形式是()A.12410048⎛⎫⨯-+⎪⎝⎭B.12410048⎛⎫⨯--⎪⎝⎭C.47249948⎛⎫⨯--⎪⎝⎭D.47249948⎛⎫⨯-+⎪⎝⎭近5个月内每人阅读课外书的数量,数据如下表所示:人数3485课外书数量(本)12131518则阅读课外书数量的中位数和众数分别是()A.13,15B.14,15C.13,18D.15,15【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.5.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.6.一副三角板按如图所示的位置摆放,若BC DE ∥,则∠1的度数是()A .65°B .70°C .75°D .80°【答案】C【分析】由平行线的性质可得∠2=∠B =45°,再由三角形的外角性质可得∠1=∠2+∠D 即可求解.【详解】如图所示:∵BC ∥DE ,∴∠2=∠B =45°,∴∠1=∠2+∠D =45°+30°=75°,故C 正确.【点睛】本题主要考查了平行线的性质,三角形的外角性质,解答的关键是结合图形分析清楚角与角之间的关系.7.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【答案】D【分析】根据平行四边形的判定判断A选项,根据菱形的判定判断B选项,根据矩形的判定判断C选项,根据正方形的判定判断D选项,真命题选择选项说法正确的即可.【详解】解:A选项,一组对边平行且相等的四边形是平行四边形,故A选项错误,不符合题意;B选项,对角线互相垂直的平行四边形是菱形,故B选项错误,不符合题意;C选项,对角线相等的平行四边形是矩形,故C选项错误,不符合题意;D选项,一组邻边相等的矩形是正方形,故D选项正确,符合题意故选D.【点睛】本题考查了真命题、平行四边形的判定、菱形的判定、矩形的判定、正方形的判定的知识点,熟练掌握这些判定是解答本题的关键.9.函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A .B .C .D .【答案】D【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.【详解】解:函数y =ax 与y =ax 2+a (a ≠0)A.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是交y 轴正半轴,故选项A 不正确;B.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是在坐标原点上,故选项B 不正确;C.函数y =ax 图形可得a >0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴,故选项C 不正确;D.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴正确,故选项D 正确;故选D .【点睛】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.10.如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是()A 33B .22C .13D .3【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°,又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形,∴OA =OB ,设OC =x ,则OB =2OC =2x ,则OB =OA =3x ,∴tan 133OC x OAP OA x ∠===.【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分)11.分解因式:am an bm bn +--=_________________【答案】()()m n a b +-【分析】利用分组分解法和提取公因式法进行分解因式即可得.【详解】解:原式()()am an bm bn =+-+()()a m n b m n +-+=()()m n a b +=-,故答案为:()()m n a b +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.12.命题:“两直线平行,同位角相等”的逆命题是:___________________________.【答案】同位角相等,两直线平行【分析】将原命题的条件与结论互换即可得到逆命题.【详解】解:∵原命题的条件为:两直线平行,结论是:同位角相等,∴逆命题为:同位角相等,两直线平行,故答案为:同位角相等,两直线平行.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.13.“y的2倍与6的和比1小”用不等式表示为_____________.y+<【答案】261y+再列不等式即可.【分析】根据题干的描述“y的2倍与6的和”可表示为26,y+<【详解】解:“y的2倍与6的和比1小”用不等式表示为:261,y+<故答案为:26 1.【点睛】本题考查的是列不等式,理解题意,注意运算的顺序,再列不等式是解本题的关键.14.我国古代数学家名著《九章算术》记载“米谷粒分”问题:粮仓开仓收粮,有人送来谷米512石,验得其中夹有谷粒.从中抽取谷米一把,共数得256粒,其中夹有谷粒16粒,估计这批谷米内夹有谷粒约是______石.【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.16.如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE =,BD 与CE 相交于点F ,若DEF 的面积是3,则BCF △的面积是______.【答案】27【分析】根据矩形ABCD 的性质,很容易证明DEF ∽BCF △,相似三角形之比等于对应边比的平方,即可求出BCF △的面积.【详解】解: 四边形ABCD 是矩形,AD BC ∴=,AD BC ∥EDF CBF ∠∠∴=,EFD CFB ∠∠= ,EDF CBF∠∠=DEF ∴ ∽BCF △,2AE DE = ,AD BC =,DE ∴:1BC =:3,DEF S ∴ :2BCF S DE = :2BC ,即3:1BCF S = :9,27BCF S ∴= .故答案为:27.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,综合性比较强,学生要灵活应用.掌握相似三角形的面积比是相似比的平方是解题的关键.17.如图,长方形ABCD 中,34AB BC ==,,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45︒到EG 的位置,连接FG 和CG ,则CG 的最小值为__.18.如图,已知正比例函数2y x =与反比例函数y x=交于A 、B 两点,点C 是第三象限反比例函数上一点,且点C 在点A 的左侧,线段BC 交y 轴的正半轴于点P ,若PAC △的面积是12,则点C 的坐标是______.【答案】()6,1--【分析】过A 作y 轴的平行线交BC 于点Q ,联立正比例函数32y x =与反比例函数6y x=求得()2,3A --,()2,3B ,得到BC 的解析式为363y x m m=-++,利用PAC △的面积即可求得点C 的坐标【详解】联立326y x y x⎧=⎪⎪⎨⎪=⎪⎩,解得:()2,3A --,()2,3B ,设6,C m m ⎛⎫⎪⎝⎭,BC L :y kx b =+,则236k b mk b m +=⎧⎪⎨+=⎪⎩,解得:3k m =-,63b m =+,BC L ∴:363y x m m=-++过A 作y 轴的平行线交BC 于点Q ,则122,3Q m ⎛⎫-+ ⎪⎝⎭,126AQ m∴=+19.(8分)解方程(1)2230x x --=(2)2620x x +-=20.(8分)解不等式组21132x x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】13x -<≤,数轴见解析【分析】先求解不等式组的解集,然后再数轴上表示即可.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.21.(10分)如图,点C、D在线段AB上,且ACDE=CF.【答案】见解析【分析】只要证明△ADE≌△BCF即可解决问题.【详解】证明:∵AC=BD,∴AC+CD=BD+CD,即:AD=BC,∵AE∥BF,∴∠A=∠B,∵AE=BF,∴△ADE≌△BCF,∴DE=CF.【点睛】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.22.(10分)如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数3456α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:98,81,98,85,98,97,91,100,88,84.八年级10名学生的竞赛成绩在C 组中的数据是93,90,94,93.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数9292中位数94b 众数c 93八年级抽取的学生的竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)填空:=a ___________,b =___________,c =___________;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到90分及以上的学生共有多少名?(1)证明:ADB AED ∆∆ ;(2)若3AE =,5AD =,求AB 的长.点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.【答案】(1)见解析(2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C∴∠=∠AED AEC∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠ ,1802EAC C ∠=︒-∠,ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒,90ABC C ∴∠+∠=︒,90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.26.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)5150y x =-+(2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【分析】(1)根据给定的数据,利用待定系数法即可求出y 与x 之间的函数关系式;(2)根据每件的销售利润×每天的销售量=425,解一元二次方程即可;(3)利用销售该消毒用品每天的销售利润=每件的销售利润×每天的销售量,即可得出w 关于x 的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得:91051195k b k b +=⎧⎨+=⎩,解得:5150k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =-+;(2)解:(-5x +150)(x -8)=425,整理得:2383450x x -+=,解得:1213,25x x ==,∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;(3)解:根据题意得:()()()851508w y x x x =-=-+-251901200x x =-+-()2519605x =--+∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是找准题目的等量关系,27.(10分)如图在△ABC 和△CDE 中,AC =BC ,CD =CE ,∠ACB =∠DCE ,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上,且∠ACB =∠DCE =45°时,可以得到图中的一对全等三角形,即______≌______;(2)当点D 不在直线BC 上时,如图2位置,且∠ACB =∠DCE =α.①试说明AD =BE ;②直接写出∠EMD 的大小(用含α的代数式表示).【答案】(1)△BCE ,△ACD(2)①见解析;②∠EMD =α.【分析】(1)由“SAS”可证△BCE ≌△ACD ;(2)①由“SAS”可证△BCE ≌△ACD ,可得AD =BE ,②由全等三角形的性质可得∠CAD =∠CBE ,由三角形的内角和定理可求解.【详解】(1)解:∵∠ACB =∠DCE =45°,∴∠ACD =∠BCE ,在△BCE 和△ACD 中,BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD(SAS ),故答案为:△BCE ,△ACD ;(2)①证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE ;②解:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =∠EMD =180°-(180°-α)=α.【点睛】本题考查了全等三角形的判定和性质,证明△ACD ≌△BCE 是解题的关键.28.(10分)如图,抛物线2y ax bx c =++与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为()4,3.(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.213n n -++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09年中考数学模拟试卷(一) 班级: 姓名: 得分: 一、选择题(每小题2分,共20分) 1、︱-32︱的值是( ) A、-3 B、3 C、9 D、-9 2、下列二次根式是最简二次根式的是( )

A、21 B、8 C、7 D、以上都不是 3、下列计算中,正确的是( ) A、X3+X3=X6 B、a6÷a2=a3 C、3a+5b=8ab D、(—ab)3=-a3b3

4、1mm为十亿分之一米,而个体中红细胞的直径约为0.0000077m,那么人体中红细胞直径的纳米

数用科学记数法表示为( ) A、7.7×103mm B、7.7×102mm C、7.7×104mm D、以上都不对 5、如图2,天平右盘中的每个砝码的质量为10g,则物体M的质量m(g)的取值范围,在数轴上可表示为( ) 6、如图3,将∠BAC沿DE向∠BAC内折叠,使AD与A’D重合,A’E与AE重合,若∠A=300,则∠1+∠2=( ) A、500 B、600 C、450 D、以上都不对 7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( ) A、从图中可以直接看出喜欢各种球类的具体人数; B、从图中可以直接看出全班的总人数; C、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况; D、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。 8、下列各式中,能表示y是x的函数关系式是( ) A、y=xx12 B、y=x3 C、y=xx21 D、y=x 9、如图5,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,则tan∠APO的值为( ) A、43 B、53 C、54 D、34 10、在同一直角坐标系中,函数y=kx+k,与y=xk(k0)的图像大致为( ) 二、填空题(每小题2分,共20分) 11、(-3)2-(л-3.14)0= 。

12、函数y=11xx的自变量X的取值范围为 。 13、据《世界统计年鉴2000》记载1996年中国、美国、印度、澳大利亚四个 国家的人口分别为122389,26519,94561,1831万人,则以上四国人口之比 为 (精确到0.01) 14、一个圆形花圃的面积为300лm2,你估计它的半径为 (误差小于0.1m) 15、小明背对小亮按小列四个步骤操作: (1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 。 16、在正方形的截面中,最多可以截出 边形。 17、要作出一个图形的旋转图形,除了要知道原图形的位置外,还要知道 。 18、小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是 。 19、某同学在使用计算器求20个数的时候,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 。 20、一束光线从Y轴上点A(0,1)出发,经过X轴上的点C反射后经过点B(3,3),则光线从A点到B点经过的路程长为 。 三、解答下列各题(有10小题,共80分) 21、(本小题满分5分)

当a=3,b=2时,计算:abbaabaa22的值; 22、(本小题满分5分) 已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上) (1)、按比例较精确地作出高楼AB及它的最大影长AE; (2)、问若大楼AB建成后是否影响温室CD的采光,试说明理由。

23、(本小题满分6分) 观察下面的点阵图,探究其中的规律。 摆第1个“小屋子”需要5个点, 摆第2个“小屋子”需要 个点,摆第3个“小屋子”需要 个点?(1)、摆第10个这样的“小屋子”需要多少个点? 图7 (2)、写出摆第n个这样的“小屋子”需要的总点数,S与n的关系式。

24、(本小题满分6分) 已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3)。 (1)求抛物线的解析式;(2)抛物线的对称轴方程和顶点M坐标;(3)求四边形ABMC的面积。 25、(本题满分8分) 同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图8是其中的甲、乙段台阶路的示意图, 图8中的数字表示每一级台阶的高度(单位:cm).并且数d,e,e,c,c,d的方差p,数据b,d,g,f,a,h的方差q,(10cm<a<b<c<d<e<f<g<h<20cm,且 p<q),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题: (1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么? (3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

26、(本小题满分8分) 在平面直角坐标系中,圆心O的坐标为(-3,4),以半径r在坐标平面内作圆, (1)当r 时,圆O与坐标轴有1个交点; (2)当r 时,圆O与坐标轴有2个交点; (3)当r 时,圆O与坐标轴有3个交点; (4)当r 时,圆O与坐标轴有4个交点; 27、(本小题满分10分) 某地区为了加大“退耕还林”的力度,出台了一系列的激励措施:在“退耕还林”过程中,每一年的林地面积达到10亩且每年的林地面积在增加的农户,当年都可得生活补贴费2000元,且每超过10亩的部分还给予奖励每亩a元,在林间还有套种其他农作物,平均每亩还有b元的收入。 下表是某农户在头两年通过“退耕还林”每年获得的总收入情况: 年份 拥有林地的亩数 年总收入 2002 20 3100元 2003 26 5560元 (注:年总收入=生活补贴量+政府奖励量+种农作物收入)

e c c e

d

d 甲路段

f h a

g d b

乙路段 图8 (1) 试根据以上提供的资料确定a、b的值。 (2) 从2003年起,如果该农户每年新增林地的亩数比前一年按相同的增长率增长,那么2005年该农户获得的总收入达到多少元?

28、(本小题满分10分) 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1——20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?

29、(本小题满分10分) 已知圆锥的底面半径为r=20cm,高h=1520cm,现在有一只蚂蚁从底边上一点A出发。在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离。 PNMCB

AOyx

30、(本小题满分12分) 如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。 (1)P点的坐标为( , );(用含x的代数式表示) (2)试求 ⊿MPA面积的最大值,并求此时x的值。 (3)请你探索:当x为何值时,⊿MPA是一个等腰三角形? 你发现了几种情况?写出你的研究成果。

2009年中考模拟试卷(一) 答案: 一、1、C;2、C;3、D;4、A;5、C;6、B;7、D;8、B;9、A;10、B; 二、11、8;2、1x且1x;13、0.1:6.51:5.14:8.66;14、3.17或4.17; 15、6;16、六;17、旋转中心和旋转角;18、9:30;19、4;20、5; 三、21、原式=bab;当2,3ba时,原式=324; 22、如图,易算出AE=8米,由AC=7米,可得CE=1米, 由比例可知:CH=1.5米1米, 故影响采光。 23、11,17,59;S=6n-1; 24、(1)y=—x2+2x+3;(2)x=1,M(1,4),(3)9; 25、(1)相同点:甲台阶与乙台阶的各阶高度参差不齐,不同点:甲台阶各阶高度的极差比乙台阶小;(2)甲台阶,因为甲台阶各阶高度的方差比乙台阶小;(3)使台阶的各阶高度的方差越小越好。 26、(1)r=3;(2)3<r<4;(3)r=4或5;(4)r>4且r≠5;

27、(1)a=110,b=90;提示:可由baa2016200055601020003100解得; (2)从表中的信息可知:该农户每年新增林地亩数的增长率为30%, 则2004年林地的亩数为26×(1+30%)=33.8亩,2005年林地的亩数为33.8×(1+30%)=43.94亩,故2005年的总收入为2000+43.94×110+33.8×90=8775.4元。 28、(1)P(摸到红球)= P(摸到同号球)=211;故没有利;(2)每次的平均收益为02142119)105(211,故每次平均损失214元。

29、802cm;提示:由r=20cm,h=2015cm,可得母线l=80cm,而圆锥侧面展开后的扇形的弧长为cm40202,可求得圆锥侧802cm。 面展开后的扇形的圆心角为900,故最短距离为30、(1)(6—x , 34x ); (2)设⊿MPA的面积为S,在⊿MPA中,

MA=6—x,MA边上的高为34x,其中,0≤x≤6.∴S=21(6—x)×34x=32(—x2+6x) = — 32(x—3)2+6

相关文档
最新文档