第三章统计热力学基础模板
【精品课件教案PPT】 统计热力学基础PPT文档70页

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
【精品课件教案PPT】 统计热力学基 础
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
统计热力学基础

9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
在统计力学中,将在空间作三维平动的粒子称为
“三维平动子”。平动子具有的“平动能”(t)是量
b 子t化的8hm2
nx2 a2
n
2 y
b2
nz2 c2
平动量子数 nx、ny、nz的值只能取正整数(1,
2,3, ),一组(nx、ny、nz)就规定了三
在统计热力学中,把构成宏观物质体系的各种不同
子 的微观粒子,统称为:“ ”
Introduction
统计体系的分类
根据体系中的每个粒子是否可以分辨,可将统计体统 分为“定域子体系”和“离域子体系”,或者分别 “定位体系”和“非定位体系” 定域子体系 体系中每个粒子是可以分辨的,可以设
想,把体系中每个粒子分别编号而不会 混淆 例如晶体体系
h 6.6261034 J s
9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
ny2 b2
nz2 c2
微观粒子的每一个量子状态都有一个特定的能量值, 但是,不同的量子状态的能量值可能是相等的,也就 是说,一个能级可以对应的不同的量子状态,某一个 能级所对应的量子状态数,称为这个能级的简并度
9.1 粒子各种运形式的能级及能级的简并度
微观粒子的不同运动形式
平动、转动和振动是分子的整体运动的三种形式,而原 子内部电子的运动(e)和原子核运动(n)两种运动形式则 是分子内部更深层粒子的运动形式
随着人们对物质结构层次认识的深入,知识了原子内部 还有其他的运动形式,例如“夸克”和“层子”的运动 形式等,但是对于系统在宏观过程中发生的一般物理化 学变化,涉及不到这些运动形式,因此,这里,我们主 要考虑上述5种运动形式
热力学与统计物理学第三章 相平衡与相变

(3) 范氏气体出现一个不稳定区,是任何一个物态方程均有 的共同性质。事实上,T TK ,气液二相的可逆转变必 然经历一个双相共存的区域。
(4) p-T-V的函数关系的物态方程,它只能描写系统的一种性 质,而不能同时反映体系具有两种不同的状态:相变。
(5) 等面积法则:饱和蒸气压的数值由该法则确定。
解:设2相为气体,1相为液体,则有 v2 v1,与气相的比容 相变可以忽略液相的比 容,气体近似为理想气 体,它的物态
方程是
v2
RT p
。将这些事实代入到克
拉珀龙方程之中,有
dp dT
L
T
RT p
Lp RT 2
dp p
LdT RT 2
假设潜热与温度无关, 对以上方程进行不定积 分
ln
p
L RT
C
p
24
第三章 相平衡与相变
动机和目的 一、开放系统与相律 二、克拉珀龙方程 三、气液两相的平衡与转变 四、相变的分类
小结和习题课
25
第三章习题课
[3.1]温度为T的长圆柱形物质处于重力场中,圆柱分成 两部分,上部是液体,下部是固体。温度降低 T时,
发现固-液分界面上升了 l,如果忽略固体的热膨胀并设
15
再加大压强,液体难以压缩,p很大,而v的变化很小。
2.0
p/p c
1.5
T=1.2Tc
T=1.0Tc
1.0
T=0.9Tc
0.5
T=0.85Tc
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
v/vc
(2)等温线中的水平段随温度的升高而缩短,说明液、气两相 的比容随温度的升高而接近;
物理粤教选修3-33.第3章热力学基础本章整合(课件)

规律与技巧:热力学第一定律与热力学第二定律分别从不同角 度描述了内能的转化规律及转化方向,并不矛盾.
例6:下列说法正确的是( ) A.第一类永动机不可制成,因为它违反了能量守恒定律 B.第二类永动机不可制成,因为它违反了能量守恒定律 C.热力学第一定律和热力学第二定律是相互独立的 D.热力学第二定律的两种表述是等效的
温度一定升高,由此可知,A错,B、C都对;又右边气体吸收电
热对丝放内出的做热量功后,,由没于对有外热做了交功,故换气体,故内能内的增能加量一小
于电热丝放出的热量,故D错.
答案:BC 定增加,温度升高,
命题意图:本题考查热力学第一定律和气体的压强、温度和体 积的关系,意在考查考生综合运用热学知识解决实际问题的 能力.
答案:B
命题意图:本题考查热力学温标、热力学第一定律、热力学第二 定律,意在考查考生对热学基础知识的理解.
例3:(2009·全国理综Ⅱ)如图,水平放置的密封气缸内的气体 被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑 动,右侧气体内有一电热丝.气缸壁和隔板均绝热.初始时隔 板静止,左右两边气体温度相等.现给电热丝提供一微弱电 流,通电一段时间后切断电源.当缸内气体再次达到平衡时, 与初始状态相比( )
与守恒来进行.
例1:如图所示,p-V图中一定质量的理想气体由状态A经过程Ⅰ 变至状态B时,从外界吸收热量420 J,同时膨胀对外做功300 J. 当气体从状态B经过程Ⅱ回到状态A时外界压缩气体做功 200 J,求此过程气体吸收或放出的热量是多少J?
解析:一定质量的理想气体由状态A经过程Ⅰ变至状态B时,从 外界吸收热量Q1,大于气体膨胀对外做的功W1,气体内能增 加,由热力学第一定律,气体内能增加量为
三、热力学第一定律和热力学第二定律的区别
统计热力学基础

例2. 定域子系统中只有3个一维谐振子,它们分别在 A,B,C三个定点上振动,总能量为 9 hv,分析系统 2 可能有的能级分布及状态分布。 能级 能级分布 Ⅰ Ⅱ Ⅲ n0 n1 n2 n3
状态分布 0
3 0 0 WⅠ= 6 WⅡ = 3 WⅢ = 1 Ω = WⅠ+WⅡ+WⅢ=10
0=
1=
例如,某能级分布的微态数为WD,总微态数为Ω, 则该能级分布的数学概率 P 为:
WD 1 PD = Ω × WD = Ω
系统状态确定时,Ω为定值,微态数最大的分布 WD 最大,热力学概率也最大,称为最概然分布。
4、最概然分布与平衡分布 最概然分布虽然代表了系统微态数最多的一种 能级分布方式,但是它的数学概率是随着粒子数的 增多而减小的。 以粒子的空间分布为例来进行分析 例如,某一气体系统,粒子数为N,当系统达平 衡时,粒子在整个空间上的分布应是均匀的。 如果把整个空间分为大 小相等的两部分,则两部 分中所包含的粒子数应相 等,均为 N 。
2、等概率定理
对于U, V 和 N 确定的某一宏观系统,任何一 个可能出现的微观状态,都有相同的数学概率。 这个假设称为等概率定理。 例如,某宏观系统的总微态数为Ω ,则每一 种微观状态出现的数学概率 P 都相等,即:
1 P=Ω
3、最概然分布(最可几分布) 对于U, V 和 N 确定的宏观系统,微观上可能会 有多种能级分布方式,不同的能级分布所包含的状 态分布数不同,根据等概率定理,各微态出现的概 率相等,则各能级分布出现的概率不同。
§9.1
粒子各运动形式的能级及能级的简并度
根据前面的讨论及上述计算结果可以看出,各 种运动的能级间隔遵循如下关系:
Δn>Δe>Δv>Δr>Δt
《热力学第三章》PPT课件_OK

R s0
T1
pr (T2 ) pr (T1)
R
定义
pr
exp sT0 R
f (T )
相对压力
已知p1,T1,T2 ,查附表2,得pr(T1)和pr(T2),求p2
vr用得较少,自学
2021/8/21
36
§3-5理想混合气体
37
研究对象
无化学反应的理想气体混合物 例:锅炉烟气 CO2, CO, H2O, N2
T
v
cpdT R dp
T
p
2、按真实比热计算
3、按平均比热法计算
2021/8/21
26
1、按定比热计算理想气体热容
分子运动论
Um
i 2
RmT
运动自由度
Cv,m
dU m dT
i 2
Rm
Cp,m
dH m dT
d (Um RmT ) dT
i
2
热力学统计物理前三章 答案 第三版
对于等压过程
V1 =
习题 1.15 热泵的作用是通过一个循环过程将热量从温度较低的环境传送扫温 度较高的物体上去。如果以理想气体的逆卡诺循环作为热泵的循环过程,热泵的 效率可以定义为传送到高温物体的热量与外界所作的功的比值。试求热泵的效 率。如果将功直接转化为热量而令高温物体吸收,则“效率”为何? 解:A→B 等温过程
f (η, L, T ) = 0, L = L(η , T ) dL = (
∂L ∂L ) T dη + ( ) η dT ∂η ∂T
因
(
∂η ∂L L 1 )T = ; ( )T = ∂ L ∂L AY ( ) T ∂η ∂η ∂L L )η ; dL = dµ + Lα dT ∂T AY
Lα = (
Cp ∂S ⎞ ⎛ ∂S ⎞ 由关系 C p = T ⎛ ⎜ ⎟ ;⇒ ⎜ ⎟ = T ⎝ ∂T ⎠ p ⎝ ∂V ⎠ p
∂T ⎞ ⋅⎛ ⎜ ⎟ 。 ⎝ ∂V ⎠ p
习题 2.7 试证明在相同的压强降落下 ,气体在准静态绝热膨胀中的温度降落大于 ⎛ ∂T ⎞ ⎛ ∂T ⎞ 在节流过程中的温度降落。 (提示:证明 ⎜ ⎜ ∂p ⎟ ⎟ -⎜ ⎜ ⎟ ⎟ >0) ⎝ ⎠ S ⎝ ∂p ⎠ H
−1
xκ T = 4.858 * 10 −4 ; ∆V = 4.85 * 10 −4 − 100 * 7.8 * 10 −7
所以, x = 622 pn , ∆V = 4.07 *10 − 4 习题 1.4 描述金属丝的几何参量是长度 L ,力学参量是张力 η ,物态方程是
f (η, L, T ) = 0 实验通常在 1 p n 下进行,其体 积变化可 忽略。线 胀系数 定义为 α=
1 ∂L L ∂η ( )η 等杨氏摸量定义为 Y = ( ) T 其中 A 是金属丝的截面积,一般说 L ∂T A ∂L
高中物理 第三章 热力学基础 第一节 内能功热量 粤教版选修3-3
3.热传递: (1)热传递:高温物体总是自发地把它的内能传递给 低温物体,这种没有做功而使物体内能改变的现象称为 热传递. (2)热量:热传递时所转移的内能,是热传递过程中 物体内能变化的量度. 4.就改变物体的内能来说,热传递和做功是等效的, 都可以作为内能变化的量度,理所当然内能、功、热量 的单位是相同的.
提示:给自行车轮胎打气,人对胎内气体做功,气体 内能增加,所以温度升高.
2.用锤子打铁时,一会铁便会发热这是靠什么改变 物体的内能?
提示:锤子打铁时,锤子对铁块做功,使铁块内能增
加,所以会发热.
1.内能与内能变化的关系. (1)物体的内能是指物体内所有分子的动能和势能之 和.因此,物体的内能是一个状态量. (2)当物体温度变化时,分子平均动能变化;物体体 积变化时,分子势能发生变化.因此,物体的内能变化 只由初、末状态决定,与中间过程及方式无关.
判断正误
(1)做功和热传递的实质是相同的.(×) (2)做功和热传递在改变物体内能上是等效的.(√) (3)做功和热传递是对同一过程中的两种说法.(×)
小试身手
在下述现象中没有做功而使物体内能改变的是 ()
A.电流通过电炉丝使温度升高 B.流星进入大气层运动温度升高 C.铁锤打铁块使铁块温度升高 D.在炉火上的水被烧开
解析:电流通过电炉丝使温度升高,电流做了功,则 A 错;流星进入大气层运动温度升高,流星克服大气摩擦 做功而使温度升高,则 B 错;铁锤打铁块使铁块温度升 高,铁锤对铁块挤压撞击,故 C 错;在炉火上的水被烧 开,没有做功而使水的内能发生改变,故 D 正确.
答案:D
拓展一 做功与内能变化的关系
1.在给自行车轮胎打气时,会发现胎内空气温度升 高,这是为什么?
热学 (3 第三章 气体分子热运动速率和能量的统计分布率)
f ()d dN
N
dN
2
=
f
( )d
N 1
表示速率分布在→+d内的
分子数占总分子数的概率
表示速率分布在1→2内的分
子数占总分子数的概率
N
0
dN N
0
f
d
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
1、作速率分布曲线。 2、由N和vo求常数C。 3、求粒子的平均速率。 4、求粒子的方均根速率。
f (v)
C ( vo> v > 0) 0 ( v > vo )
f (v)
解:
f (v)dv
0
vo 0
Cdv
Cvo
1
C
C 1 vo
o
vo v
o f ()d o Cd C o2
3. 方均根速率
2
2
f
d
0
3
2
4
m
2 kT
2
e
m 2 2kT
4
d
3kT
3RT
0
mM
2 3kT 3RT
m
M
4. 三种速率的比较
最概然速率
p
2kT m
2RT M
平均速率
8kT 8RT m M
方均根速率
一、速率分布函数
气体分子处于无规则的热运动之中,由于碰撞,每个分子的速度都
热力学统计物理第三章总结
第三章 单元复相系总结组别:第二组 组长:胡娟秀 组员:仓荣琴、宋莹珊、字艳美 汇报人:仓荣琴3.1热动平衡的判据1、热动平衡判据 (1)熵判据等v 等u 条件下,孤立系统处在稳定平衡状态的充要条件:0<∆s 平衡条件: 稳定平衡条件:02<S δ (2)自由能判据等v 等T 条件下,孤立系统处在稳定平衡状态的充要条件:0>∆F平衡条件:0=F δ 稳定平衡条件:02>F δ (3)吉布斯函数等T 等P 条件下,孤立系统处在稳定平衡状态的充要条件:0>∆G平衡条件:0=G δ 稳定条件:02>G δ0=S δ3.2开系的热力学基本方程1、开系的五个热力学方程dU TdS PdV dn dH TdS VdP dn dF SdT PdV dn dG SdT VdP dn dJ SdT PdV nd μμμμμ=-+=++=--+=-++=--- 2、化学势,m T PG G n μ∂⎛⎫==⎪∂⎝⎭ 3、巨热力势 定义式:J F n μ=-全微分是:dJ SdT PdV nd μ=---3.3单元系的复相平衡条件1、单元二相系的平衡条件平衡条件为:,,T T P P αβαβαβμμ=== 2、单元复相系的平衡条件 热学平衡条件:T T T αβγ==力学平衡条件:P P P αβγ==化学平衡条件(相平衡条件):αβγμμμ==3、利用熵增加原理对孤立系统各相之间趋于平衡的过程进行分析 (1)若热平衡条件未达条件到,T T αβ>,0U αδ<,Q 从αβ→ (2)若热平衡条件达到,力学平衡条件未达到,当P P αβ>,0V αδ>,α相体积膨胀,β相体积被压缩。
(3)若热平衡条件达到,化学平衡条件未达到,0U U n TT αβααβδ⎛⎫--> ⎪⎝⎭,U U αβ>,0n αδ<物质由αβ→(α相0n α<,β相0n βδ>)3.4复相系的平衡性质1、单元复相系的平衡汽化曲线:μL =μG熔化曲线:μS =μL 升华曲线:μS =μG ⇒三相平衡:μL =μS =μG2、相图的热力学解释(1)在一定温度和压强下,系统的平衡状态---化学势最小 (2)若在某一温度和压强范围内,α相的化学势低于其他相的化学势,那么系统以α相单独存在(3)单元系两相平衡共存时,两相平衡曲线方程 T α=T β=TP α=P β=P μα=μβ=μ3、克拉珀龙方程dp dT =L T (V mβ−V m α)物理意义:给出两相平衡曲线的斜率dpdT<0冰的熔点随压强的变化dp>0水的沸点随压强的变化3.5 临界点和气液两相的转变1.范德瓦耳斯气体物态方程:(2)()m m ap V b RT V +-= 2.c T ,c p ,mc V 的确定 等温线上极大值点N 点, ()0T m pV ∂=∂,22()0T m P V ∂<∂极小值点J 点,()0T m pV ∂=∂,22()0T mP V ∂>∂当温度升高,N 和J 逐渐靠近;温度继续升高,c T T =时,N 和J 重合,形成拐点,则()0T m p V ∂=∂,22()0T m P V ∂=∂ 利用范氏方程,可得827c a T Rb =,227c ap b =,3mc V b = c T ,c p ,mc V 的关系:83c c mc RT p V =3.7 相变的分类1、一级相变及其特点:(1)相变点两相的化学势连续),(),(P T U P T U βα=(2)相变点两相的化学势的一阶偏导发生突变TT ∂∂≠∂∂)()(βαμμ, pp ∂∂≠∂∂)()(βαμμ 特点:(1)两相存在各自的非奇异化学势函数,在相变点两相的化学势相等;(2)在相变点两相平衡共存;(3)在相变点两相化学势的一级偏导不相等,存在相变潜热和体积突变;(4)在相变点两侧,化学势低的是稳定相,较高的为亚稳相。