第11讲-函数与方程(讲义版)

第11讲-函数与方程(讲义版)
第11讲-函数与方程(讲义版)

第11讲-函数与方程

一、考情分析

1.结合学过的函数图象,了解函数零点与方程解的关系;

2.结合具体连续函数及其图象的特点,了解函数零点存在定理.

二、知识梳理

1.函数的零点

(1)函数零点的概念

如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.

(2)函数零点与方程根的关系

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.

(3)零点存在性定理

如果函数y=f(x)在区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即

f(a)f(b)<0,则这个函数在这个区间上,至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0. 2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系

Δ=b2-4ac Δ>0Δ=0Δ<0

二次函数

y=ax2+bx+c

(a>0)的图象

与x轴的交点(x1,0),(x2,0)(x1,0)无交点

零点个数210

[微点提醒]

1.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.函数的零点不是一个“点”,而是方程f(x)=0的实根.

2.由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.

三、 经典例题

考点一 函数零点所在区间的判定

【例1】 (1)设f (x )=ln x +x -2,则函数f (x )零点所在的区间为( ) A.(0,1)

B.(1,2)

C.(2,3)

D.(3,4)

(2)设函数y =x 3

与y =? ???

?12x -2

的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间

是________.

【解析】 (1)因为y =ln x 与y =x -2在(0,+∞)上都是增函数, 所以f (x )=ln x +x -2在(0,+∞)上是增函数, 又f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,

根据零点存在性定理,可知函数f (x )=ln x +x -2有唯一零点,且零点在区间(1,2)内. (2)设f (x )=x 3-? ???

?

12x -2

,则x 0是函数f (x )的零点,在同一坐标系下画出函数y =x 3与y =? ??

?

?

12x -2

的图

象如图所示.

因为f (1)=1-? ????12-1

=-1<0,

f (2)=8-? ????120

=7>0,

所以f (1)f (2)<0,所以x 0∈(1,2).

规律方法 确定函数f (x )的零点所在区间的常用方法:

(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.

(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 考点二 确定函数零点的个数

【例2】 (1)(一题多解)函数f (x )=???x 2+x -2,x ≤0,

-1+ln x ,x >0的零点个数为( )

A.3

B.2

C.1

D.0

(2)定义在R 上的函数f (x ),满足f (x )=???x 2+2,x ∈[0,1),

2-x 2

,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( ) A.3个

B.2个

C.1个

D.0个

【解析】 (1)法一 由f (x )=0得???x ≤0,x 2+x -2=0或???x >0,

-1+ln x =0,

解得x =-2或x =e. 因此函数f (x )共有2个零点.

法二 函数f (x )的图象如图1所示,由图象知函数f (x )共有2个零点.

图1

(2)由f (x +1)=f (x -1),即f (x +2)=f (x ),知y =f (x )的周期T =2. 在同一坐标系中作出y =f (x )与y =g (x )的图象(如图2).

图2

由于两函数图象有2个交点.

所以函数F (x )=f (x )-g (x )在(0,+∞)内有2个零点. 规律方法 函数零点个数的判断方法:

(1)直接求零点,令f (x )=0,有几个解就有几个零点;

(2)零点存在性定理,要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质确定函数零点个数;

(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数. 考点三 函数零点的应用

【例3】 (1)已知函数f (x )=???e x +a ,x ≤0,

3x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值

范围是( ) A.(-∞,-1) B.(-∞,1) C.(-1,0)

D.[-1,0)

(2)已知函数f (x )=???e x ,x ≤0,

ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )

A.[-1,0)

B.[0,+∞)

C.[-1,+∞)

D.[1,+∞)

【解析】 (1)当x >0时,f (x )=3x -1有一个零点x =1

3.

因此当x ≤0时,f (x )=e x +a =0只有一个实根,∴a =-e x (x ≤0),则-1≤a <0.

(2)函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点.作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.

规律方法 1.已知函数的零点求参数,主要方法有:(1)直接求方程的根,构建方程(不等式)求参数;(2)数形结合;(3)分离参数,转化为求函数的最值.

2.已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围. [方法技巧]

1.转化思想在函数零点问题中的应用

方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.

2.判断函数零点个数的常用方法 (1)通过解方程来判断.

(2)根据零点存在性定理,结合函数性质来判断.

(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断. 3.若函数y =f (x )在闭区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,则函数y =f (x )一定有零点.特别是,当y =f (x )在[a ,b ]上单调时,它仅有一个零点.

4.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.

四、 课时作业

1.(2020·湖南省高三(文))函数()6

21

x

f x x =-

+的零点0x 所在的区间为( ) A .()1,0- B .()0,1 C .()1,2

D .()2,3

2.(2020·天津高一期末)函数()4

2x f x x

=-的零点所在的区间是( ) A .10,2?? ???

B .1,12?? ???

C .31,2?? ???

D .3,22??

???

3.(2020·陕西省高三二模(理))函数()()2

ln 1f x x x

=+-的一个零点所在的区间是( ) A .()0,1

B .()1,2

C .()2,3

D .()3,4

4.(2020·北京市八一中学高二期中)若函数()f x 的零点是2,则函数()2f x 的零点是( ) A .0

B .1

C .2

D .4

5.(2020·内蒙古自治区集宁一中高二月考(文))若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,

则k =( ) A .3

B .4

C .1

D .2

6.(2020·宜宾市叙州区第二中学校高三三模(文))函数32,0(),0x e x x f x x x x ?+->=?-≤?

,的零点个数有( )

A .3个

B .2个

C .1个

D .0个

7.(2020·河北省鹿泉区第一中学高二月考)已知函数()2

1f x x x =+-,则函数()y f x =的零点的个数是( )

A .1

B .2

C .3

D .4

8.(2020·山西省高三其他(理))已知函数2

()21f x x x =--,若函数()

()114x

x g x f

a

k a k =-+-+(其

中1a >)有三个不同的零点,则实数k 的取值范围为( )

A .12,55?? ???

B .12,55?? ???

C .12,45??

??? D .12,45??

???

9.(2020·武威第六中学高二期中(理))已知函数()()3

2

2

2631216f x x a x ax a =-+++(0a <)只有一个零点0x ,则a 的取值范围为( ) A .1,2?

?-∞-

???

B .1,02??

-

???

C .3,2?

?-∞-

???

D .3,02

??- ???

10.(多选题)(2020·河北省沧州市一中高二月考)已知函数()21

x

x x f x e +-=,则下列结论正确的是()

A .函数()f x 存在两个不同的零点

B .函数()f x 既存在极大值又存在极小值

C .当0e k -<<时,方程()f x k =有且只有两个实根

D .若[),x t ∈+∞时,()2max 5

f x e

=

,则t 的最小值为2 11.(多选题)(2020·山东省高三月考(理))已知ln 2,0()12,02x x x f x x ->??

=?-≤??

,存在实数m 满足

()12(())12f m f f m ++=,则( )

A .()0f m ≤

B .()f m 可能大于0

C .(,1]m ∈-∞-

D .(

2

(,1]0,e m ?∈-∞-??

12.(多选题)(2020·化州市第一中学高二月考)(多选)已知函数()2

2

11x f x x

-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数

B .()1f f x x ??

=-

???

C .()f x 在[]2,3上的最大值为

35

D .()()g x f x x =+在区间()1,0-上至少有一个零点

13.(多选题)(2020·山东省滕州市第一中学新校高三月考)设定义在R 上的函数()f x 满足

()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()22011112

2x x f x x f x x ?

?∈-≥--

-???

?

,且

0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )

A .

1

2

B C .

2

e D

14.(2020·广西壮族自治区高三月考(文))已知()|1|1f x x =-+,()(),3

123,3f x x F x x x ≤?=?->?

.

(1)解不等式()23f x x ≤+;

(2)若方程()F x a =有三个解,求实数a 的取值范围.

15.(2020·陆良县联办高级中学高一开学考试)已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且

(0)1f =.

(1)求()f x 的解析式;

(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 16.(2020·浙江省高二期中)已知函数()()21f x x x a x R =--+∈. (1)当1a =时,求函数()y f x =的零点. (2)当30,

2a ?

?

∈ ???

,求函数()y f x =在[]1,2x ∈上的最大值; (3)对于给定的正数a ,有一个最大的正数()T a ,使()0,x T a ∈????时,都有()1f x ≤,试求出这个正数()T a 的表达式.

教学案例《方程的根与函数的零点》

《方程的根与函数的零点》教学案例 肃南一中程斌斌 一、教学内容分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。 就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 二学生学习情况分析 地理位置:学生大多来自基层,学生接触面较窄,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。 三、设计思想 教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式 四、教学目标

第六讲 函数与方程

函数与方程 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[] ,a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[] ,a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。 特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[] ,a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[] ,a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、三、四步。 (20-40分钟) 类型一求函数的零点 例1:求函数y =x -1的零点:

(通用版)202x版高考数学大一轮复习 第11讲 函数与方程学案 理 新人教A版

第11讲函数与方程 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使的实数x叫作函数y=f (x)(x∈D)的零点. (2)等价关系 方程f(x)=0有实数根?函数y=f(x)的图像与有交点?函数y=f(x)有. (3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有,那么函数y=f(x)在区间内有零点,即存在c∈(a,b),使得,这个也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c(a>0)的图像与零点的关系 Δ>0Δ=0Δ<0 二次函数 y= ax2+bx+ c(a>0) 的图像 与x轴的交 无交点 点 零点个数 常用结论 1.在区间D上单调的函数在该区间内至多有一个零点. 2.周期函数如果存在零点,则必有无穷个零点.

题组一常识题 1.[教材改编]函数f(x)=ln x+2x-6的零点的个数是. 2.[教材改编]如果函数f(x)=e x-1+4x-4的零点在区间(n,n+1)(n为整数)内,则n= . 3.[教材改编]函数f(x)=x3-2x2+x的零点是. 4.[教材改编]若函数f(x)=x2-4x+a存在两个不同的零点,则实数a的取值范围是. 题组二常错题 ◆索引:错用零点存在性定理;误解函数零点的定义;忽略限制条件;二次函数在R上无零点的充要条件(判别式小于零). 5.函数f(x)=x+1 的零点个数是. x 6.函数f(x)=x2-3x的零点是. 7.若二次函数f(x)=x2-2x+m在区间(0,4)上存在零点,则实数m的取值范围是. 8.若二次函数f(x)=x2+kx+k在R上无零点,则实数k的取值范围是. 探究点一函数零点所在区间的判断 例1 (1)函数f(x)=e x-x-2在下列哪个区间上必有零点 () A.(-1,0) B.(0,1) C.(1,2) D.(2,3) x-5在区间(n,n+1)(n∈Z)上存在零点,则n= . (2)已知函数f(x)=lg x+5 4 [总结反思] 判断函数零点所在区间的方法:(1)解方程法,当对应方程易解时,可直接解方程;(2)零点存在性定理;(3)数形结合法,画出相应函数图像,观察与x轴交点来判断,或转化为两个函数的图像在所给区间上是否有交点来判断. 变式题[2018·南昌模拟]函数f(x)=ln(x+1)-2 的零点所在的区间为() x2

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

高考理科数学专题二 函数概念与基本初等函数 第五讲函数与方程答案

专题二 函数概念与基本初等函数Ⅰ 第五讲 函数与方程 答案部分 1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根, 即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示, x y –1–2123 –1 –2 1 23O 由图可知,1-≤a ,解得1≥a ,故选C . 2.C 【解析】令()0f x =,则方程1 12()2x x a e e x x --++=-+有唯一解, 设2 ()2h x x x =-+,1 1()x x g x e e --+=+,则()h x 与()g x 有唯一交点, 又1111 1()2x x x x g x e e e e --+--=+=+ ≥,当且仅当1x =时取得最小值2. 而2 ()(1)11h x x =--+≤,此时1x =时取得最大值1, ()()ag x h x =有唯一的交点,则1 2 a = .选C . 3.B 【解析】当01m <≤时, 1 1m ≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+, 所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,1 01m <<,函数2 ()(1)y f x mx ==-,在 1[0, ]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1 [0,]m 无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2 (1)1m m -+≥,解得3m ≥. 选B .

第8讲 函数与方程

第八讲《函数与方程》 【学习目标】理解零点与方程实数解的关系,掌握函数的概念,性质,图像和方法的综合问题,熟悉导数与零点的结合,方程,不等式,数列与函数结合的问题。【基础知识回顾】: 1、 2.用二分法求方程近似解的一般步骤:

【基础知识自测】 1、已知不间断函数)(x f 在区间[]b a ,上单调,且)()(b f a f ?<0,则方程0)(=x f 在区间??b a ,上 ( ) (A ) 至少有一实根 ( B ) 至多有一实根 (C )没有实根 ( D )必有唯一的实根 2、函数x x f x 2ln )(- =的零点所在的大致区间是( ) (A ) (1,2) ( B ) (2,3) ( C ) (e,3) ( D )(e,+∞) 4、若函数)(x f 的图像与函数)(x g 的图像有且只有一个交点,则必有( ) (A )、函数)(x f y =有且只有一个零点 (B )、函数)(x g y =有且只有一个零点 C 、函数)()(x g x f y +=有且只有一个零点 D 、函数)()(x g x f y -=有且只有一个零点 5、已知y=x(x-1)(x+1)的图像如图所示,令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解得叙述正确的是 ① 有三个实根 ② 当x>1时,恰有一实根 ③当0

2014届高考数学一轮复习方案 第11讲 函数与方程课时作业 新人教B版

课时作业(十一) [第11讲 函数与方程] (时间:45分钟 分值:100分) 基础热身 1.[2013·安庆四校联考] 图K11-1是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( ) 图K11-1 A .[-2.1,-1] B .[1.9,2.3] C .[4.1,5] D .[5,6.1] 2.[2012·唐山期末] 设f (x )=e x +x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 3.若x 0是方程lg x +x =2的解,则x 0属于区间( ) A .(0,1) B .(1, 1.25) C .(1.25,1.75) D .(1.75,2) 4.已知函数f (x )=? ????2x -1,x >0, -x 2-2x ,x ≤0,若函数 g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 能力提升 5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( ) A .大于0 B .小于0 C .等于0 D .无法确定 6.[2013·诸城月考] 设函数y =x 2 与y =? ?? ? ?12x -2 的图象的交点为(x 0,y 0),则x 0所在 的区间是( ) A .(0,1) B .(1,2)

C .(2,3) D .(3,4) 7.已知定义在R 上的函数f (x )=(x 2 -3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 8.[2011·陕西卷] 方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根 9.[2012·石家庄质检] 已知函数f (x )=? ?? ??12x -sin x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3 D .4 10.若方程2ax 2 -x -1=0在(0,1)内恰有一解,则a 的取值范围是________. 11.若函数f (x )=x 2 +ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x -1,则函数g (x )=f (x )-log 3|x |的零点个数为________. 13.[2013·扬州中学月考] 已知函数f (x )=|x 2 -1| x -1-kx +2恰有两个零点,则k 的取 值范围是________. 14.(10分)已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点. 15.(13分)已知二次函数f (x )=ax 2 +bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

2.9 函数与方程—讲义

2.9 函数与方程 一.【目标要求】 ①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数. ③会理解函数零点存在性定理,会判断函数零点的存在性. 二.【基础知识】 1.函数零点的概念: 对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 2.函数零点与方程根的关系: 方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有点?函数)(x f y =有零点 3.函数零点的存在性定理: 如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有 0)()(<或恒成立,则没有零点。 三.【技巧平台】 1.对函数零点的理解及补充 (1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。 (2)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

第二讲函数与方程(答案)

第二讲 函数与方程 A: 题型一 判断给定函数有无零点以及零点个数的确定 1.判断下列函数在给定区间上是否存在零点: (1)f (x )=x 2-3x -18,x ∈[1,8]; (2)f (x )=x 3-x -1,x ∈[-1,2]; (3)f (x )=log 2(x +2)-x ,x ∈[1,3]. 解(1)方法一 因为f(1)=-20<0,f(8)=22>0, 所以f(1)·f(8)<0,故f(x)=x 2-3x-18,x ∈[1,8]存在零点. 方法二 令x 2-3x-18=0,解得x=-3或6, 所以函数f(x)=x 2-3x-18,x ∈[1,8]存在零点. (2)∵f (-1)=-1<0,f(2)=5>0, ∴f (x )=x 3-x-1,x ∈[-1,2]存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0. f(3)=log 2(3+2)-3<log 28-3=0.∴f (1)·f (3)<0 故f(x)=log 2(x+2)-x 在x ∈[1,3]上存在零点. 2.求下列函数的零点: (1)y =x 3-7x +6;(2)y =x +x 2-3. 解(1)∵x 3-7x+6=(x 3-x)-(6x-6) =x(x 2-1)-6(x-1)=x(x+1)(x-1)-6(x-1) =(x-1)(x 2+x-6)=(x-1)(x-2)(x+3) 解x 3-7x+6=0,即(x-1)(x-2)(x+3)=0 可得x 1=-3,x 2=1,x 3=2. ∴函数y=x 3-7x+6的零点为-3,1,2. (2)∵x+.) 2)(1(23322 x x x x x x x --=+-=- 解x+,032=-x 即x x x )2)(1(--=0,可得x=1或x=2. ∴函数y=x+x 2-3的零点为1,2. (3)32)(2+--=x x x f ;(4)1)(4-=x x f (5)322--=x x y (6)x x y 1 - =(7)72)(+=x x f (8)2223+--=x x x y (9)6423++-=x x x y 2.(1)求函数x x x x f 23)(23+-=的零点的个数; 答案1 (2)求函数x x x f 64)(3-=的零点的个数; (3)求函数x x x f 4 )(- =的零点的个数; (4)求方程02424=--x x 在区间[-1,3]内至少有几个实数解; (5)求函数123+--=x x x y 在[0,2]上的零点的个数;

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

数学必修1—9.函数与方程

第9讲 函数与方程(2) 考点1函数的零点 考法1函数零点的概念 1.把函数()y f x =的图像与横轴的交点的横坐标称为这个函数的零点.也可说成是使函数值为零的自变量的值. 函数的零点是一个实数,而不是点,例如函数1y x =+的零点为1-,不是(1,0)-. 因此,函数()y f x =的零点就是方程()0f x =实数根.2()23f x x x =--的零点就是方程2230x x --=的两个实根. 2.并不是每一个函数都有零点,如函数2()1f x x =+没有零点. 3.若函数有零点,零点一定在定义域内. 考法2存在性定理 如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()f a ()0f b ?<,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使 ()0f c =,这个c 也就是方程()0f x =的根. 函数在区间[,]a b 上有零点必须满足两个条件:①连续;②()()0f a f b ?<. 1.函数1()f x x =,易知(1)(1)0f f -?<,但1()f x x =在(1,1)-内没有零点. 2.函数()y f x =在区间(2,2)-内没有零点. 1.(2011·全国课标卷·文科)在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为 C A.1(,0)4- B.1(0,)4 C.11(,)42 D.13(,)24 考法3唯一性定理

如果函数()y f x =在区间[,]a b 上连续且单调,如果有()()0f a f b ?<,那么函数()y f x =在区间(,)a b 内有且仅有一个零点. 1.(2014·北京卷·文科)已知函数26()log f x x x = -,在下列区间中,包含()f x 零点的区间是 A.(0,1) B.(1,2) C.(2,4) D.(4,)+∞ 考点2判断函数的零点方法 考法1解对应的方程 1.求函数)1lg()(-=x x f 的零点. 2.求函数32()89f x x x x =--的零点. 考法2图像法 1.(2013·江西卷·理科)若a b c <<,则函数()()()()()f x x a x b x b x c =--+--+ ()()x c x a --两个零点分别位于区间 A A.(,)a b 和(,)b c 内 B.(,)a -∞和(,)a b 内 C.(,)b c 和(,)c +∞内 D.(,)a -∞和(,)c +∞内 2.(2010·天津卷·理科)函数()23x f x x =+的零点所在的一个区间是 B A.(2,1)-- B.(1,0)- C.(0,1) D.(1,2) 3.(2010·浙江卷·文科)已知0x 是函数1()21f x x =+-的一个零点,若10(1,)x x ∈ ,20(,)x x ∈+∞,则 B A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.1()0f x >,2()0f x < D.1()0f x >,2()0f x > 4.设0x 是函数21()()log 3 x f x x =-的零点,若00a x <<,则()f a 的值满足 A.()0f a = B.()0f a < C.()0f a > D.符号不确定 考点3函数零点的应用 考法1判断函数零点的个数及所在的区间

第12讲 函数与方程

函数与方程 1、 掌握函数的零点和二分法的定义. 2、 会用二分法求函数零点的近似值。 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。

特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[],a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、 三、四步。 类型一求函数的零点 例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1 练习1:求函数y =x 3 -x 2 -4x +4的零点. 答案:-2,1,2. 练习2:函数f (x )=2x +7的零点为( ) A .7 B .7 2 C .-72 D .-7 答案:C 类型二 零点个数的判断 例2:判断函数f (x )=x 2-7x +12的零点个数 解析:由f (x )=0,即x 2-7x +12=0得 Δ=49-4×12=1>0, ∴方程x 2 -7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个 练习1:二次函数y =ax 2 +bx +c 中,a ·c <0,则函数的零点个数是( )

高数多元函数微分学教案 第五讲 隐函数的求导公式

第五讲 隐函数的求导公式 授课题目: §8.4 隐函数的求导公式 教学目的与要求: 会求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。 教学重点与难点: 重点:求由一个方程确定的隐函数的偏导数。 难点:求隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。 讲授内容: 一、一个方程的情形 隐函数存在定理1 设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有 y x F F dx dy -=. (2) 公式(2)的推导:将y =f (x )代入F (x , y )=0, 得恒等式 F 【x , f (x )】≡0, 等式两边对x 求导得 0=???+??dx dy y F x F , 由于F y 连续, 且F y (x 0, y 0)≠0, 所以存在(x 0, y 0)的一个邻域, 在这个邻域同F y ≠0, 于是得 y x F F dx dy -= 例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值. 解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由

方程的根与函数的零点说课稿

《方程的根与函数的零点》说课稿 1 教材分析 1.1 地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2 教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2 学情分析 2.1 学生具备必要的知识与心理基础. 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务. 2.3直观体验与准确理解定理的矛盾. 从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.

3.1.1方程的根与函数的零点教案(优秀教案)

《方程的根与函数的零点》的助学案 高一(8)班 授课教师 学习目标:1.掌握函数零点的概念;了解函数零点与方程根的关系; 2零点的概念及零点存在性的判定 学习难点:探究判断函数的零点个数和所在区间的方法. 预习案:先来画出几个具体的一元二次方程对应的二次函数的图象,并观察二次函数与x 轴交点个数?○ 1方程0322=--x x 与函数322 --=x x y ;○2方程0122=+-x x 与函数122+-=x x y ;○3方程0322=+-x x 与函数322+-=x x y 填下表? 函数 322--=x x y 122+-=x x y 322+-=x x y 函数图象 函数与x 轴交点 f(x)=0的根 探究案: 探究1:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 注意:①函数零点不是一个点,而是具体的自变量的取值;②存在性一致:方程f(x)=0有实数根?函数y =f(x)的图象与x 轴有交点?函数y =f(x)有零点. 零点是针对函数而言的,根是针对方程而言的。 练习:求函数x x y 43 -=的零点

是不是所有的二次函数)0(2 ≠++=a c bx ax y 都有零点? ac b 42-=? 02=++c bx ax 的实根 )0(2≠++=a c bx ax y 图像与x 轴交点 0 (2≠++=a c bx ax y 有几个零点 ?>0 ?=0 ?<0 探究2:观察二次函数32)(2--=x x x f 的图象: ○1在区间()1,2-上有零点吗?______;=-)2(f _______, =)1(f _______,)2(-f ?)1(f _____0 (<或>). ○2 在区间()4,2上有零点______;)2(f ?)4(f ____0 (<或>). 观察下面函数)(x f y =的图象 ○1 在区间()b a ,上______(有/无)零点;)(a f ?)(b f _____0(<或>). ○2 在区间()c b ,上______(有/无)零点;)(b f ?)(c f _____0(<或>). ○3 在区间()d c ,上______(有/无)零点;)(c f ?)(d f _____0(<或>). ○4()a f ?()c f _____0(<或>).在区间()c a ,上______(有/无)零点? ○5()()d f a f ? 0(<或>)。 思考:若函数)(x f y =满足()()0?n f m f ,在区间],[n m 上一定有零点吗? 由以上两步探索,你可以得出什么样的结论? 训练案

函数与方程

函数与方程 专题一:确定零点个数 例1:(x)2sin x x 1f π=-+的零点个数为 例2:设函数?????≥-<--=2),2(2 12,11)(x x f x x x f ,则方程01)(=-x xf 根的个数为 。 例 3.函数21,0()log ,0 x x f x x x +≤?=? >?,则函数[()]1y f f x =+的所有零点所构成的集合为________. 例4.若函数()|21|f x x =-,则函数()()()ln g x f f x x =+在(0,1)上不同的零点个数为 . 例5. 关于x 的方程()(0)x a x a a a --=≠的实数解的个数为 。 专题二:已知零点个数求参数 例2、函数2|1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 变式1:若函数()22 241f x x a x a =++-的零点有且只有一个,则实数a =___________. 变式2:方程t xe x =||有3个根,确定t 的范围

变式3:关于x 的方程|x|=ax+1只有正根没有负根,求a 的取值范围 练习:(1)直线1y x =+与曲线2||194 y x x -=的公共点的个数是_______. (2)若关于x 的不等式||22 a x x --<至少有一个负数解,则实数a 的取值范围是 (3)若函数1log 2)(|3|+-=-x x f a x 无零点,则a 的取值范围为_______. (4)已知f (x )=|x 2-4|+x 2+kx ,若f (x )在(0,4)上有两个不同的零点,则k 的取值范围是 . (5):若关于x 的方程 2||1 x kx x =-有四个不同的实数根,则实数k 的取值范围是 .

方程的根与函数的零点课后习题高中数学高考

方程的根与函数的零点 1.函数2()41f x x x =--+的零点为( ) A 、12-+ B 、12-- C 、12 -± D 、不存在 2.函数32()32f x x x x =-+的零点个数为( ) A 、0 B 、1 C 、2 D 、3 3. 函数()ln 26f x x x =+-的零点一定位于区间( ). A. (1, 2) B. (2 , 3) C. (3, 4) D. (4, 5) 4. 求证方程231 x x x -= +在(0,1)内必有一个实数根. 5. (1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 . (2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 6. 已知关于x 的方程x 2 +2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围. 7. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围. (1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点. 8. 已知函数f (x )=ax 3+bx 2+cx +d 有三个零点,分别是0、1、2,如图所示, 求证:b <0. 1.C 2.D

3.易知函数()f x 在定义域(0,)+∞内是增函数. ∵(1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<, (3)ln366ln30f =+-=>. ∴ (2)(3)0f f <,即函数()f x 的零点在区间(2,3). 所以选B. 4. 证明:设函数2()31 x x f x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数. 而0(0)3210f =-=-<,115(1)3022 f =- =>,即(0)(1)0f f <,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231x x x -=+在(0,1)内必有一个实数根. 点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程231x x x -=+的实根个数. 5. 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点. ∴ (0)(1)1(21)0f f a =-?-<, 解得12 a > . (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤, ∴ (64)(4)0m --?-≤,解得23 m ≤-. 所以, 实数m 的取值范围是2(,]3-∞-. 点评:根的分布问题,实质就是函数零点所在区间的讨论,需要逆用零点存在性定理,转化得到有关参数的不等式 6. 解:令 2()223f x x mx m =+++有图像特征可知方程f (x )=0的两根都在(0,2)内需满足的条件是 解得3514m - <<-。 7. 因为函数f (x )=|x 2 -2x -3|-a 的零点个数不易讨论,所以可转化为方程|x 2-2x -3|-a =0根的个数来讨论,即转化为方程|x 2-2x -3|=a 的根的个数问题,再转化为函数f (x )=|x 2-2x -3|与函数f (x )=a 交点个数问题. 解:设f (x )=|x 2-2x -3|和f (x )=a 分别作出这两个函数的图象(图3-1-1-5),它 们交点的个数,即函数f (x )=|x 2-2x -3|-a 的零点个数. (1)若函数有两个零点,则a =0或a >4. (2)若函数有三个零点,则a =4.

相关文档
最新文档