理论力学振动实验
单自由度振动系统固有频率及阻尼的测定-实验报告

4、根据相频特性的测试数据,在同一图上绘出几条相位差频率( 特性曲线,由此分析阻尼的影响并计算系统的固有频率及阻尼比。
5、根据实验现象和绘制的幅频、相频特性曲线,试分析对于不同阻尼的振动系统,几种固有频率和阻尼比测量方法的优劣以及原因。
首先,在水平振动台面上不加任何重物,测量系统在自由衰减振动时的固有频率;之后在水平振动台面上放置一个质量已知的砝码,再次测量系统在自由振动时的固有频率。记录两次测得的固有频率,并根据其估算水平振动台面的等效质量。
4、测定自由衰减振动特性:
撤去水平振动台面上的砝码,调整励磁电流至0.6A。继续使用“自由衰减记录”功能进行测试。操作方法与步骤3基本相同,但需按照数据记录表的提示记录衰减振动的峰值、对应时间和周期数i等数据,以计算系统的阻尼。
假设实验使用的单自由度振动系统中,水平振动台面的等效质量为 ,系统的等效刚度为 ,在无阻尼或阻尼很小时,系统自由振动频率可以写作 。这一频率容易通过实验的方式测得,我们将其记作 ;此时在水平振动台面上加一个已知质量 ,测得新系统的自由振动频率为 。则水平振动台面的等效质量为 可以通过以下关系得到: 。
、 的意义同拾振器。但对激振器说, 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A。频率可变的简谐电流由信号发生器和功率放大器提供。
4、计算机虚拟设备:
在计算机内部,插有A/D、D/A接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、显示、信号分析和处理等功能。
6、教师签名的原始数据表附在实验报告最后,原始数据记录纸在实验课上提供,必须每人交一份,可以采用复印、拍照打印等方式进行复制。原始数据上要写清所有人的姓名学号,不得使用铅笔记录。
《振动力学》课程教学大纲 - 苏州科技学院土木工程学院

《振动力学》课程教学大纲课程编号:20311103总学时数:48(实验6)总学分数:3课程性质:专业必修课适用专业:工程力学一、课程的任务和基本要求:《振动力学》课程是工程力学专业的一门主要课程,主要研究在确定性激励下分析系统的动力响应的基本理论和基本方法。
通过本课程的学习,使学生能够初步掌握建立振动问题力学模型的方法;掌握振动力学的基本概念、基本理论和基本分析计算方法,并能初步应用振动理论研究和解决工程中的各种振动问题。
结合本课程的学习,培养学生的分析能力、计算能力和分析解决工程实际问题的初步能力。
二、基本内容和要求:(一)概论振动的定义,振动具有两重性,研究目标(目的),振动问题的研究方法,振动分析的力学模型,振动的分类,振动研究的分析工具。
(二)谐振振动与谱分析谐振振动的表示方法,谐振振动的谱分析方法,非周期振动的谱分析方法。
(三)单自由度系统的自由振动单自由度线性系统的力学模型和基本概念,单自由度无阻尼系统的自由振动,固有频率的计算,等效质量与等效弹簧刚度,有阻尼系统的自由振动。
(四)单自由度系统的强迫振动简谐激励引起的强迫振动,简谐激励引起的强迫振动瞬态响应过程,偏心质量引起的强迫振动,支撑运动引起的强迫振动,振动的隔离,惯性式测振仪的基本原理,强近振动中的能量关系,阻尼理论,任意周期激励的响应,任意激励的响应。
(五)多自由度系统的振动多自由度系统的运动微分方程,坐标耦合与主坐标,固有频率与主振型,主坐标与正则坐标,固有频率相等和固有频率为零的情况,系统对初始条件的响应,动力减振原理与减振器,有阻尼系统的响应,一般阻尼系统的响应。
(六)多自由度系统振动的近似解法邓克利法,瑞利法,里茨法。
(七)弹性体的振动一维波动方程、弦横向振动的自由振动解、等直杆纵向振动的自由振动解、等直杆纵向振动的强迫振动解、梁的横向振动、梁的横向强迫振动。
三、实践环节和要求:实习一、简谐振动振幅与频率测量;实验目的:掌握激振器(及其功率放大器)、加速度传感器的安装和使用;了解激振器、加速度传感器的工作原理;掌握简谐振动振幅简单的测量方法。
理论力学 第十章振动

d 2x m 2 = −kx dt
l0
两端除以质量m,并设
2
k ω = m
2 n
移项后得:
d x 2 + ωn x = 0 dt 2
δ st
O
x
无阻尼自由振动微分方程的标准形式 是一个二阶齐次线性常系数微分方程。 设: x = e rt
2 代入微分方程,消去ert 得特征方程: r 2 + ω n = 0
k ω = m
2 n
k ωn = m
自由振动的圆频率ω 只与表征系统本身特性的质量m和刚度 有关, 和刚度k有关 自由振动的圆频率 n只与表征系统本身特性的质量 和刚度 有关,而与 运动的初始条件无关; 运动的初始条件无关; 它是振动系统的固有的特性,所以称ω 固有圆频率。 它是振动系统的固有的特性,所以称 n为固有圆频率。 固有频率是振动理论中的重要概念 它反映了振动系统的动力学特性, 是振动理论中的重要概念, 固有频率是振动理论中的重要概念,它反映了振动系统的动力学特性, 计算系统的固有频率是研究系统振动问题的重要课题之一。 计算系统的固有频率是研究系统振动问题的重要课题之一。 由
m=P k=P g
δ st
ωn =
k m
ωn =
g
δ st
上式表明:上述振动系统,知道重力作用下的静变形,就可求得系统的 上式表明:上述振动系统,知道重力作用下的静变形, 固有频率。 固有频率。 我们可以根据车厢下面弹簧的压缩量来估算车厢上下振动的频率。 如:我们可以根据车厢下面弹簧的压缩量来估算车厢上下振动的频率。 满载车厢的弹簧静变形比空载车厢大,则其振动频率比空载车厢低。 满载车厢的弹簧静变形比空载车厢大,则其振动频率比空载车厢低。
1 ω n = 2π = 2πf T 1 f = T
同济大学《理论力学》课程教学大纲

《理论力学》课程教学大纲课程编号:125003 学分:3 总学时:51 实验学时:8 大纲编制主笔人:董国华大纲审核人:韦林一、课程性质与目的课程性质:技术基础课(C1)《理论力学实验》是与《理论力学》课程相对应的实验课程。
《理论力学实验》是工程力学等专业的学科内基础课程(C1)。
本课程通过实验让学生验证《理论力学》课程中阐述的相关知识,巩固和加深对理论知识的理解。
同时,学生在实验中,学习理论力学实验的基本内容,学会实验实际操作。
本课程营造规范的实验氛围,培养学生实事求是、一丝不苟的科学实验理念和工作作风。
二、课程面向专业交通工程、交通运输工程、物流工程、建筑环境与设备工程、热能与动力工程。
三、实验基本要求通过本实验,要求达到以下目的:1.掌握理论力学(静力学、运动学、动力学部分)中的受力分析、运动分析和机械振动原理及其实验的基本技能。
2.熟悉并掌握一些基本仪器的用途、特点和使用方法。
培养学生的动手和创新能力。
3.通过对试验结果的分析和理论探讨,巩固所学的理论力学、材料力学等学科的基本知识和相关的专业知识。
4.通过整个实验过程,尤其是设计性实验,使学生初步了解科学研究的一般过程,培养学生发现问题、分析问题和解决问题的综合能力,启发学生的创新思维。
四、实验或上机基本内容1.理论力学创新应用实验演示(静力学13个、运动学10个、动力学9个)。
2.理论力学创新应用开放实验(有30多个理论力学创新应用实验模型或装置可供学生操作和体验);3.单自由度系统振动实验内容:(1)求单自由度系统的振动频率;(2)区分自激振动现象与自由振动和强迫振动的区别;(3)用具有质量-弹簧系统的台秤和振动干扰源试验强迫振动现象。
4.转动惯量实验内容:(1)转动惯量的理论公式与三线摆实测周期计算转动惯量公式,并确定线长对测量误差的影响;(2)用等效方法求非均质(铝/铜/钢/记忆合金)发动机摇臂的转动惯量。
5.动力减振实验内容:(1)熟悉测试仪器设备的操作并用一个竖立的悬臂梁振动模型装置模拟一栋高层建筑的地震状态(调整激振频率,模拟结构物的风振);(2)根据模型的外形结构、尺寸、质量分布及振动频率参数,设计一组或一个合理的单自由度减振系统;(3)加工制作一组或一个单自由度减振系统,并将之安装于模型上;(4)进行加装了单自由度减振系统后的振动模型装置模拟实验至达到消振或减振效果;(5)对比分析实验结果,写出实验报告。
西安交通大学理论力学小组大作业报告

西安交通大学理论力学小组大作业报告组员:李鲁熙,钟锦涛,王瑞杰,靳宇栋,陈云翔,曾云豪,王涛实验时间:2014-2015学期下实验主要内容:搭建桁架,多点摩擦,柔性摩擦,三线摆测物体转动惯量理论力学实验报告——桁架(一)实验准备小组成员:李鲁熙王瑞杰陈云翔曾云豪靳宇栋王涛钟锦涛总计实验时间:26小时实验器材:一次性筷子、大头针、手电钻、卷尺、锯子(二)设计思路为了利用三角形的稳定性,我们将桁架的顶端设计成成了三角形。
这样一来底面只能是三角形或六边形。
如果底面是三角形,桁架只有三个侧面,而如果底面是六边形,那么桁架会有六个侧面。
为了增加桁架的载重量,我们选择了六边形地面。
相对于增加载重量,我们在减轻桁架自身重量上下了更多的功夫。
我们将桁架的六个侧面分为两个种类。
一种侧面主要用于承载重量,因此这种侧面上的杆件是斜着的,这样就可以将施于桁架上的力分散到下面。
另一种侧面主要用于防止桁架变形,因为桁架的侧面都是倾斜着的,所以在加上重物的时候可能会变形压向某一侧面。
因此这种侧面上的杆件都是水平的,起着相当于固定每个竖直杆件的作用。
(三)搭建过程在搭建桁架时首先要决定杆件之间如何连接,对于这个细节我们采用的方法是将两根杆件重叠一部分,然后再重叠的部分上加一块很短的杆件,再用手电钻打孔将大头针插入并固定。
我们首先搭建三个杆件是倾斜的侧面,为了使最后的桁架有良好的载重性,我们在搭建时尽量保证这三个侧面尺寸相同。
然后将这三个侧面组合起来便可以得到桁架的主体结构。
但是我们经过尝试发现将这三个侧面整齐地组合起来很困难,因为这些侧面很大而且很难立起来钻孔。
最后我们在地面上铺一张纸,纸上面画一个和设计桁架底面相同的正五边形。
将三个侧面的一个底边分别对在五边形的三个对边上,再将它们立起来从上到下用大头针固定。
在搭建好主体结构后,我们再在新形成的三个侧面上分别搭上相等数量的水平杆件便完成了搭建。
(四)问题及解决方案在此次实验中我们遇到的最大的问题就是很难把三个侧面整齐的组装起来。
如何理解理论力学中的自由振动和强迫振动?

如何理解理论力学中的自由振动和强迫振动?在理论力学的世界里,自由振动和强迫振动是两个非常重要的概念。
它们不仅在物理学、工程学等领域有着广泛的应用,也深深影响着我们对自然界中各种振动现象的理解。
首先,让我们来谈谈自由振动。
想象一下,你有一个弹簧,一端固定,另一端连接着一个质量块。
当你把这个质量块拉离平衡位置然后松手,它就会开始振动,这种振动就是自由振动。
在自由振动中,系统仅依靠其自身的初始能量和内部特性来维持振动。
自由振动的特点之一是其振动频率是由系统本身的物理参数决定的,这个频率被称为固有频率。
比如说,弹簧的劲度系数和质量块的质量就会影响固有频率。
而且,在没有外界干扰的理想情况下,自由振动会一直持续下去,但由于不可避免的阻尼作用,振动的幅度会逐渐减小,最终停止。
阻尼是自由振动中一个不可忽视的因素。
阻尼可以来自于空气阻力、摩擦力等。
它就像是一个“能量消耗者”,不断地把振动系统的机械能转化为热能等其他形式的能量,导致振动逐渐减弱。
举个简单的例子,一个秋千如果没有人推动,在摆动的过程中就会因为空气阻力和秋千与支架之间的摩擦力而逐渐减慢,最终停下来,这就是一种自由振动受到阻尼影响的表现。
接下来,我们再看看强迫振动。
强迫振动与自由振动最大的不同在于,它是由外部周期性的驱动力作用于系统而产生的振动。
比如说,一个发动机运转时产生的周期性力作用在机器的某个部件上,导致该部件产生振动,这就是强迫振动。
在这种情况下,振动的频率是由外部驱动力的频率决定的,而不是系统的固有频率。
强迫振动有一个很有趣的现象,叫做共振。
当外部驱动力的频率与系统的固有频率相等时,振动的幅度会达到极大值,这就是共振现象。
共振在很多领域都有着重要的应用,同时也可能带来一些潜在的危险。
比如,在桥梁设计中,如果桥梁的固有频率与过往车辆的振动频率接近,就可能在特定情况下发生共振,导致桥梁的损坏。
但在另一方面,我们也可以利用共振来实现一些有益的目的,比如在无线电通信中,通过调整电路的参数,使其与接收信号的频率产生共振,从而提高信号的接收效果。
机械振动测试与分析.docx机械振动测试与分析.docx
第8章机械振动测试与分析8.1 概述机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。
各种机器、仪器和设备运行时,不可避免地存在着诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起受力的变动、碰撞和冲击,以及由于使用、运输和外界环境下能量传递、存储和释放都会诱发或激励机械振动。
所以说,任何一台运行着的机器、仪器和设备都存在着振动现象。
在大多数情况下,机械振动是有害的。
振动往往会破坏机器的正常工作和原有性能,振动的动载荷使机器加速失效、缩短使用寿命甚至导致损坏造成事故。
机械振动还直接或间接地产生噪声,恶化环境和劳动条件,危害人类的健康。
因此,要采取适当的措施使机器振动在限定范围之内,以避免危害人类和其他结构。
随着现代工业技术的发展,除了对各种机械设备提出了低振级和低噪声的要求外,还应随时对生产过程或设备进行监测、诊断,对工作环境进行控制,这些都离不开振动测量。
为了提高机械结构的抗振性能,有必要进行机械结构的振动分析和振动设计,找出其薄弱环节,改善其抗振性能。
另外,对于许多承受复杂载荷或本身性质复杂的机械结构的动力学模型及其动力学参数,如阻尼系数、固有频率和边界条件等,目前尚无法用理论公式正确计算,振动试验和测量便是唯一的求解方法。
因此,振动测试在工程技术中起着十分重要的作用。
振动测试的目的,归纳起来主要有以下几个方面:(1) 检查机器运转时的振动特性,以检验产品质量;(2) 测定机械系统的动态响应特性,以便确定机器设备承受振动和冲击的能力,并为产品的改进设计提供依据;(3) 分析振动产生的原因,寻找振源,以便有效地采取减振和隔振措施;(4) 对运动中的机器进行故障监控,以避免重大事故。
一般来讲,振动研究就是对“机械系统”、“激励”和“响应”三者已知其中两个,再求另一个的问题。
振动研究可分为以下三类:(1) 振动分析,即已知激励条件和系统的振动特性,欲求系统的响应;(2) 系统识别,即已知系统的激励条件和系统的响应,要确定系统的特性,这是系统动态响应特性测试问题;(3) 环境预测,即已知系统的振动特性和系统的响应,欲确定系统的激励状态,这是寻求振源的问题。
振动力学(倪振华)
第2章 单自由度系统自由振动
2.2 自由振动系统
25
扭转振动 (P9) 圆盘在轴的弹性恢复力矩
作用下在平衡位置附近作扭
转振动。设q为圆盘相对静平
衡位置转过的角度, J为圆盘 对轴的转动惯量, kt为使轴产 生单位转角所需施加的扭矩 (即轴的扭转刚度)。则
Jq&&ktq 0
第2章 单自由度系统自由振动
4
2. 机械振动现象 机械振动是自然界非常普遍的运动现象,
广泛存在于工程技术和日常生活中。 如: 日常生活中,心脏的跳动、钟摆的摆动、
琴弦的振动、车箱的晃动、大海波涛桥等等; 工程技术领域,桥梁与建筑物的振动、飞
行器与船舶的振动、机床与刀具的振动、各种动 力机械的振动、以及地震、风振、噪声等等,都 是属于机械振动的范畴。
➢ 许多实际问题可以足够精确地简化为单自 由度振动系统;
➢ 单自由度振动系统的一些概念、特征和研 究方法,是研究复杂振动系统的基础。
第2章 单自由度系统自由振动
23
2.2 自由振动系统
振动微分方程 (P6-20)
根据振动系统结构形式的不同,建 立振动微分方程的方法也不同,主要采 用牛顿定律、动力学基本定理(动量定 理、动能定理、动量矩定理)以及拉格 朗日方程等。
第1 章 导 论
7
5. 研究振动问题的总目标 • 研究振动产生的原因和它的运 动规律; • 寻求控制和消除振动的方法; • 振动检测,分析事故原因及控 制环境噪声; • 振动技术的应用……
第1 章 导 论
8
1.2 振动系统及参量 1.3 振动系统的分类及研究方法
1. 振动问题中的名词概念 振动系统:在振动问题中所研究的
分方程:
理论力学实验报告2017
《理论力学》 实验报告班级: 姓名: 学号: 成绩:实验一 实验方法测定物体的重心一、实验目的:1、通过实验加深对合力概念的理解;2、用悬挂法测取不规则物体的重心位置;3、用称重法测物体的重心位置并用力学方法计算重量。
二、实验设备和仪器1、理论力学多功能实验装置;2、不规则物体(各种型钢组合体);3、连杆模型;4、台秤。
三、实验原理物体的重心的位置是固定不变的。
再利用柔软细绳的受力特点和两力平衡原理,我们可以用悬挂的方法决定重心的位置;又利用平面一般力系的平衡条件,可以测取杆件的重心位置和物体的重量。
物体的重量:21F F W +=;重心位置:Wl F x C 1=四、实验方法和步骤 A 、悬挂法1、从柜子里取出求重心用的组合型钢试件,用将把它描绘在一张白纸上;2、用细索将其挂吊在上顶板前面的螺钉上(平面铅垂),使之保持静止状态;3、用先前描好的白纸置于该模型后面,使描在白纸上的图形与实物重叠。
再用笔在沿悬线在白纸上画两个点,两点成一线,便可以决定此状态的重力作用线;4、变更悬挂点,重复上述步骤2-3,可画出另一条重力作用线;5、两条垂线相交点即为重心。
B、称重法1、取出实验用连杆。
将连杆一端放在台秤上,一端放在木架上,并使连杆保持水平。
2、读取台秤的读数,并记录;3、将连杆两端调换,并使摆杆保持水平;4、重复步骤2;五、数据记录与处理A、悬挂法(请同学另附图)B、称重法1、实验时应保持重力摆水平;2、台称在使用前应调零。
实验二、四种不同类型载荷的比较实验一、实验目的1、了解四种常见的不同载荷;2、比较四种不同类型载荷对承载体的作用力特性。
二、实验仪器和设备1、理论力学多功能实验装置;2、2kg台秤1台;3、0.5kg重石英沙1袋;4、偏心振动装置1个。
三、实验原理渐加载荷、突加载荷、冲击载荷和振动载荷是常见的四种载荷。
不同类型的载荷对承载体的作用力是不同的。
将不同类型的载荷作用在同一台秤上,可以方便地观察到各自的作用力与时间的关系曲线,并进行相互比较。
《理论力学 动力学》 第九讲 单自由度系统的有阻尼受迫振动
2、单自由度系统的有阻尼受迫振动单自由度系统的受迫振动理论单自由度系统的受迫振动理论(1)振动微分方程kOx②恢复力F e , 方向指向平衡位置O ,大小与偏离平衡位置的距离成正比。
kxF -=e ③黏性阻尼力F d , 方向与速度方向相反,大小与速度大小成正比。
d dd x xF cv ct=-=-物块的运动微分方程为:22d d sin()d d x x m kx c H t t tw =--+方程两边同除以m ,并令:(ω0, 固有角频率) , (δ, 阻尼系数),得到:mk =20w 2c md =2202d d 2sin()d d x x x h t t td w w ++=——有阻尼受迫振动微分方程的标准形式①激振力F , 简谐激振力。
sin()F H t w =H h m =解可以写成:12xx x =+x 1 对应齐次方程的通解; x 2 对应的是特解。
欠阻尼的情况下( δ<ω0),齐次方程的通解可写为:1e )t x A d q -=+特解可写为:)sin(2e w -=t b x ε表示受迫振动的相位角落后于激振力的相位角2、单自由度系统的有阻尼受迫振动单自由度系统的受迫振动理论将x 2 代入微分方程,得到:220sin()2cos()sin()sin()b t b t b t h t w w e d w w e w w e w --+-+-=将等式右边的h sin(ωt )做一个变换,得到:sin()sin[()]h t h t w w e e =-+cos sin()sin cos()h t h t e w e e w e =-+-代入微分方程,整理得到:)cos(]sin 2[)sin(]cos )([220=--+---e w e w d e w e w w t h b t h b 对任意瞬时t ,上式都必须是恒等式,所以有:cos )(220=--e w w h b 0sin 2=-e w d h b 2222204)(wd w w +-=hb 2202tan w w dwe -=于是,微分方程的通解为:e)sin()tx A b t d q w e -=++-式中,A 和θ为积分常数,由运动的初始条件确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当系统做自由衰减振动时包括了各阶频率成分,时域波形反映了各阶频率下自由衰减波形的线性叠加,通过对时域波形做FFT变换就可以得到其频谱图,从而我们可以从频谱图中各峰值处得到系统的各阶固有频率。
四、实验方法
1、安装仪器
把加速度传感器安放在简支梁上,输出信号接到振动测试通道1-1通道。
2、开机
打开仪器电源,进入DHDAS数据采集分析软件,在“设置”/“模拟通道”设置采样频率,输入传感器灵敏度、设置量程范围,在打开的记录仪选择接入信号的测量通道。清零后开始采集数据。
四、调压器应放置于桌面宽敞处,尽可能远离其它仪器,并且在使用时只有经检查无误后才能通电,通电前须仔细检查电机偏心轮是否紧固、调压器与电机连线、接地是否可靠,使用完毕应立即断电。
五、激振器和偏心电机工作时,禁止手或是其它物品碰到激振器顶杆和电机偏心轮,以免受伤或物品飞落。
六、所有仪器设备工作过程中发现异常应立即断电,并请专业人员检查维修,或致电本公司。
2、连接仪器和传感器
把加速度传感器安装在简支梁的中部,输出信号接到数据采集分析仪的振动测试通道。
3、仪器参数设置
打开采集仪器的电源开关,开机进入DHDAS数据采集分析软件的主界面,在“设置”/“模拟通道”设置采样频率、量程范围,加速度传感器、速度传感器和位移传感器的灵敏度。
注:采样频率一般设置为采集信号的10倍~20倍,保证采集的信号没有幅值失真。量程范围一般设置为采集信号的1.5倍,保证较高的信噪比。工程单位根据实际物理量设置,传感器灵敏度根据传感器铭牌正确设置。
表2-1
系 数
波 形
波形因子Ff
峰值因子Fc
正弦波
1.11
1.414
三角波
1.155
1.732
方波
1.000
1.000
四、实验步骤
1、安装偏心电机
1)偏心电动机和调压器的使用方法:我们用改变电源电压的办法来调节电动机的转速,使电动机转速可在0~8000转/分的范围内调节。转速的改变使电机偏心质量的离心惯性力的大小和频率发生改变,利用偏心质量的离心惯性力,即可实现对试件的激振。
二、实验装置框图
图8.1所示实验装置框图
图4-1 实验装置框图
三、实验原理
单自由度系统的力学模型如图4-2所示。给系统(质量M)一初始扰动,系统作自由衰减振动,其运动微分方程式为:
式中: ——系统固有圆频率 =K/M
n——阻尼系数2n=C/M
——阻尼比 = n/
小阻尼( <1)时,方程(9-1)的解为:
注:采样频率一般设置为采集信号的10倍~20倍,保证采集的信号没有幅值失真。量程范围一般设置为采集信号的1.5倍,保证较高的信噪比。工程单位根据实际物理量设置,传感器灵敏度根据传感器铭牌正确设置。
3、测量
选择“频谱布局”/“FFT”选择相应通道AI1-1,用力锤击简支梁中部,就可看到时域波形以及相应的频谱曲线,频谱曲线的第一个峰就是系统的一阶固有频率。后面的几个峰是系统的高阶频率。移动传感器或用力锤敲简支梁的其他部位,再进行测试,记录下梁的各阶固有频率。
输入方式:压电式ICP传感器选ICP。
在“测量”/“图形区设计”选择“记录仪”,选择通道AI1-1即显示该通道的时域信号。
4、采集并显示数据
在窗口中用“峰值搜索光标”读取当前振动加速度的最大值。
5、计算数据与实验数据比较
按公式(1-1)计算位移、速度或加速度值。
6、调节输出电压以改变电机转速,即改变强迫振动的频率,重复以上步骤。
五、实验结果与分析
1.绘出单自由度自由衰减振动波形图。
2.根据实验数据按公式计算出固有频率和阻尼比,计算结果填入下表。
表4.1
i
时间t
周期Tl
2A1
阻尼比
固有频率
实验五、主动隔振实验
一、实验目的
1.1 学习隔振的基本知识。
1.2 学习隔振的基本原理。
1.3 了解主动隔振效果的测量。
二、实验装置框图
图18-1实验装置框图
实验一、强迫振动幅值测定
一、实验目的
1.了解振动信号位移、速度、加速度之间的关系。
2.学会用压电式加速度传感器测量强迫振动的加速度幅值。
二、实验装置框图
实验装置与仪器框图见图1-1。
图1-1
三、实验原理
在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信号的幅值。振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。本实验即使用压电式加速度传感器来测量。
三、实验原理
振动的干扰对人、建筑物以及仪表设备都会带来直接的危害,因此振动的隔离涉及到很多方面。隔振的作用有两个方面:一、减少振源振动传至周围环境;二、减少环境振动对物体或设备的影响。二者原理相似,性能也相似。原理就是在设备和底座之间安装适当的隔振器,组成隔振系统,以减少或隔离振动的传递。有两类隔振,一是隔离机械设备通过支座传至地基的振动,以减少动力的传递,称为主动隔振;另一种是防止地基的振动通过支座传至需保护的精密仪器或仪器仪表,以减少振动的传递,称为被动隔振。
大连理工大学理论力学振动实验手册
海洋科学与技术学院
DHVTC振动测试与控制教学实验系统介绍
DHVTC振动测试与控制教学实验系统是根据高等院校学生实验要求研发的,该系统力学模型合理,数据采集及分析功能高度集成,测试精度高,操作方便,特别适合高等院校力学系、机械系、精密仪器系、土木系及其他相关专业学生进行多种振动测试实验、减振实验和模态实验等多种实验。
2)安装:偏心激振电机的电源线接到调压器的输出端,调压器电源线接到调压器的输入端(要求电源使用三芯接地插座),一定要小心防止接错,把调速电机通过安装底板安装在简支梁中部,电机转速(强迫振动频率)可用调压器电压调节旋钮来调节,调节输出电压到110V左右,调好后在实验的过程中不要再改变电机转速。
2、将测试系统连接好
峰值定义为:
X峰=Xm
即从波形的基线位置到波峰的距离,也可称为振幅。峰峰值是正峰到负峰间的距离。
平均绝对值的定义为:
有效值定义为:
平均绝对值的使用价值较小,而有效值因与振动的能量有直接关系,所以使用价值较大,特别是对随机振动的研究,使用价值更大。
各量之间的关系为:
这些关系式更通用的形式为:
Ff称为波形因子,
安全注意事项
本实验系统尽管在设计、加工和安装时已充分考虑了安全方面的问题,但强烈建议用户使用时注意如下事项:
一、通电前仔细检查各活动机械部分,如激振器、偏心电机等的连接紧固情况,确保所有螺栓、卡扣等紧固无误,避免激振或旋转。
二、查看传感器、信号源、激振器等连线正确无误,确保各仪器正常工作。
三、检查各仪器电源线是否插紧插好,各仪器是否可靠接地,以防触电。
系统组成:
实验台架:底座、支座、简支梁、悬臂梁等等
传感器:DH187IEPE加速度传感器(0.5Hz~10KHz);
激振系统:力锤(0~5000N)、偏心电机(可通过调节电机转速控制激励的频率和幅值)
测试系统:动态数据采集分析系统(DH5857-2电荷适调器一通道,DH5923-1数采两通道)、DHDAS实时控制与基本分析软件、DHMA实验模态分析软件。
电机转速可用调压器电压调节旋钮来调节,调节输出电压到110V左右,使梁产生振动。开始采集数据,采集数据前要清零。在窗口中,数据列表显示了当前数据的各项统计值。
五、实验结果和分析
该实验主要是为了测定时域统计参数之间的关系,不考虑其实际的物理意义,对信号波形来说作为电信号来处理,单位为(mv)
频率f(Hz)
五、实验结果与分析
1、记录各阶频率。
频率(Hz)
测试方法
第一阶频率
第二阶ห้องสมุดไป่ตู้率
第三阶频率
自谱判别法
实验四、单自由度系统衰减振动固有频率及阻尼比测量
一、实验目的
1、了解单自由度自由衰减振动的有关概念。
2、学会用分析仪记录单自由度系统自由衰减振动的波形。
3、学会根据自由衰减振动波形确定系统的固有频率f。和阻尼比
设振动位移、速度、加速度分别为x、v、a,其幅值分别为X、V、A:
x=Bsin(ωt-ψ)
v = =ωBcos(ωt-ψ)
式中:B一一位移振幅ω——振动角频率 ψ——初相位
X=B
V=ωB=2πf B 式(1-1)
A=ω2B=(2πf)2B
振动信号的幅值可根据式(4-1)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。也可利用动态分析仪中的微分、积分功能来测量。
减幅系数 (4-6)
对数减幅系数 (4-7)
对数减幅系数也可以用相隔i个周期的两个振幅之比来计算:
(4-8)
从而可得:
;C= ;
(4-9)
四、实验方法
1、将测试系统连接好
将加速度传感器布置在集中质量(电机)附近,加速度传感器信号接到数采仪的第一通道(振动测试通道)。
2、仪器设置
打开仪器电源,进入控制分析软件,新建一个项目(文件名自定),在“设置”/“模拟通道”设置采样频率、量程范围、工程单位和灵敏度等参数,激活“记录仪”窗口,选择相应通道AI1-1,开始采集数据,数据同步采集显示在图形窗口内。
把加速度传感器安装在简支梁的中部,输出信号接到数据采集分析仪的振动测试通道。
3、仪器参数设置
打开数据采集分析仪的电源开关,进入DHDAS数据采集分析软件。在“设置”/“模拟通道”设置采样频率为2kHz,“测量”/“统计光标”里有7类时域统计信息,3类频域统计信息,合理选择关心的统计项目。
注:采样频率一般设置为采集信号的10倍~20倍,保证采集的信号没有幅值失真。量程范围一般设置为采集信号的1.5倍,保证较高的信噪比。工程单位根据实际物理量设置,传感器灵敏度根据传感器铭牌正确设置。