高三数学复数的概念、复数的向量表示(理)人教版

高三数学复数的概念、复数的向量表示(理)人教版
高三数学复数的概念、复数的向量表示(理)人教版

高三数学复数的概念、复数的向量表示(理)人教版

【本讲教育信息】

一. 教学内容:

复数的概念、复数的向量表示、复数的加法与减法、乘法与除法

二. 本周教学重、难点:

1. 形如bi a +(R b a ∈、)的数叫做复数,其中i 是虚数单位,12

-=i 。把复数bi a +的形式叫做复数的代数形式。记作bi a z +=(R a ∈)。当且仅当0=b 时,z 为实数;当且仅当0==b a 时,0=z ;当0≠b 时,z 叫做虚数;当0=a ,且0≠b 时,z 叫纯虚数;a 与b 分别叫做复数bi a z +=的实部和虚部。

2. 如果两个复数的实部和虚部分别相等?这两个复数相等。即如果R d c b a ∈、、、,那么d b c a di c bi a ==?+=+,,0,00==?=+b a bi a

3. bi a z +=,bi a z -=,则有: z z z z =

=

4. 复数的加、减、乘、除运算按以下法则进行。设bi a z +=1,di c z +=2(R d c b a ∈,,,) 加减法:i d b c a di c bi a )()()()(±+±=+±+ 乘法:i ad bc bd ac di c bi a )()())((++-=++ 除法:

22))((d c di c bi a di c bi a +-+=++i d

c ad

bc d c bd ac 2

222+-+++= 5. 复数加法、乘法满足交换律、结合律及乘法对加减法的分配律,实数的正整数指数幂

也能推广到复数集中,即

n m n m z z z +=?,mn n m z z =)(

n n n z z z z 2121)(?=?(*

,N n m ∈)

6.(1)i i i i i k k k k -=-===+++34241

44,1,1

,1 其中*

N k ∈

(2)常用ω、i 的性质解题。

i i 2)1(2±=±;

i i i =-+11;=+-i i 11i -,2

1

-=ω23+i ,则ωωω==23,1

012=++ωω(*N n ∈),032

1=++++++n n n n i i i i (*N n ∈)

【典型例题】

[例1] 实数m 分别取什么数值时,复数)152()65(2

2--+++=m m m m z i 是(1)实数?(2)虚数?(3)纯虚数?(4)对应点在x 轴上方?(5)对应点在直线05=++y x 上。

解:

(1)由01522

=--m m ,得知5=m 或3-=m 时,z 为实数 (2)由01522≠--m m ,得知5≠m 且3-≠m 时,z 为虚数

(3)由?????=++≠--0650

15222

m m m m 得知2-=m 时,z 为纯虚数

(4)由01522

>--m m ,得知3-m 时,z 的对应点在x 轴上方

(5)由05)152()65(2

2=+--+++m m m m ,得知4

413--=m 或

4

41

3+-=

m z 的对应点在直线05=++y x 上。

[例2] 已知关于y x ,的方程组

?

?

?-=+--+--=+-)2(89)4()2()

1()3()12(i i b y x ay x i y y i x 有实数解,求实数b a ,的值。 解:由(1)得???--==-)3(112y y x 解得???

??

==4

25y x

代入方程(2),得i i b a 89)6()45(-=+-+

∵ R b a ∈、 ∴ ???=+=+86945b a 解得?

??==21

b a

[例3] 已知复数i a a a a a z )103(3

6

22--++-+=

(R a ∈)满足0>zi 或0

解:∵ 0>zi 或0

由纯虚数概念知??

?

??≠--=+-+0103036

22a a a a a 解得2=a

∴ 满足条件的a 的值为2

[例4] 设C z ∈,满足下列条件的点Z 的集合是什么图形?

(1)4=z (2)42<

(1)复数z 的模等于4,就是说,向量OZ 的模等于4,所以满足条件z =4的点Z 的集合是以原点O 为圆心,以4为半径的圆。

(2)不等式42<<2

4

z z 不等式4

的所有的点组成的集合,不等式2>z 的解集是圆2=z 外部所有的点组成的集合,这两个

集合的交集,就是上述不等式组的解集,也就是满足条件z <24<的点Z 的集合。点Z 的集合是以原点O 为圆心,以2与4为半径的圆所夹的圆环,但不包括圆环的边界。

[例5] 若C z ∈,且122=-+i z ,求i z 22--的最小值。

解法一:∵ 122=-+i z 即1)22(=+--i z 的几何图形是以C (2,2-)为圆心,以1为半径的圆。)22(22i z i z +-=--是圆C 上的一点P 到点A (2,2)的距离,如下图所示,连接AC 交圆右侧于P

则PC AC AP -=的距离最小

∴ 最小值是3

解法二:代数法,设yi x z +=(R y x ∈、) ∴ 1)2(2=-++i y x 即1)2()2(2

2

=-++y x 又 ∵ x x x y x i z 81)2(1)2()2()2(222222-=+-+-=-+-=

--

而12≤+x ,即13-≤≤-x

∴ 在1-=x 时,i z 22--取最小值3

[例6] 已知关于x 的方程09)6(2

=+++-ai x i x (R a ∈)有实数根b

(1)求实数b a ,的值;

(2)若复数z 满足02=---z bi a z ,求z 为何值时,z 有最小值,并写出z 的值。

解:

(1)∵ b 是方程09)6(2

=+++-ai x i x (R a ∈)的实根 ∴ 0)()96(2

=-++-i b a b b

故???==+-b

a b b 0962 解得3==b a (2)设),(R y x yi x z ∈+=,由z i z 233=--,得)(4)3()3(2

222y x y x +=++-

即8)1()1(2

2

=-++y x ∴ Z 点的轨迹是以)1,1(1-O 为圆心,22为半径的圆 如下图所示,当Z 点在1OO 的连线上时,z 有最大值或最小值 ∵ 21=

OO ,半径22=r

∴ 当i z -=1时,最小值2min =

z

[例7] 设复数z ,若i z 682+=,求z

z z 100

163

-

-的值。 解:设),(R b a bi a z ∈+=

由i bi a 68)(2+=+,得i abi b a 682)(2

2+=+-

∴ ???==-6

2822ab b a ∴ ???==13b a 或???-=-=13b a

∴ )3(i z +±=

∵ i z 682

+= ∴ 222)6()8(i z =-

即0100162

4

=+-z z

∴ z

z z z z z 200

1001610016243

-+-=-- )3(20)

3(200200i i z -±=+±-=-=

[例8] 复数z 满足i z i z i 344)103()21(-=-++,求z 。

解:设),(R y x yi x z ∈+=,则i yi x i yi x i 344))(103())(21(-=--+++ 整理得i i y x y x 344)28()124(-=+-- 解??

?=+=-34284124y x y x 得???==1

4y x

∴ i z +=4

[例9] 设ai z +=ω,i

i

i i z 4342)1)(41(++++-=

,当30≤≤a 时,求ω的取值范围。

解:i i

i i i i i z 4342354342)1)(41(+++-=

++++-= i i

i i i i -=-=-+=++=125

252525)43)(7(437

∴ i a ai i )1(11-+=+-=ω 又 ∵ 30≤≤a

∴ 2

2)1(1-+=a ω

由二次函数的性质知51≤≤

ω

[例10] 设复数21,z z 满足121==z z ,且i z z 2

32121+=

+,求1z 与2z 。 解:由题意有121=+z z ,得1))((2121=++z z z z

又121==z z ,故可得12121-=+z z z z 所以21z z 的实部等于21z z 的实部等于2

1- 又121=z z ,故21z z 的虚部为23±

,i z z 2

3

2121±

-=

)2

321(12112i z z z z z ±-

== 于是i i z z z z 23

21)2321(1121+=±

-+=+ 所以i z z 2321,121+

-==或1,2

3

2121=+-=z i z 所以?????+

-==i z z 23

21121或?????=+

-=123

2121z i z

【模拟试题】

一. 选择题

1. 方程014

=-x 的根是( )

A. 1±

B. i ±

C. 1±或i ±

D. 以上都不对

2. 33

53i i i i ++++ 的值是( ) A. i B. i - C. 1 D. 1-

3. 6

)1(i -等于( ) A. i 8- B. i 8

C. 8-

D. 8

4. 计算100

)12(

i i +的结果是( ) A. i B. i - C. 1 D. 1-

5. 在复数集C 内分解因式5422

+-x x 等于( ) A. )31)(31(i x i x --+-

B. )322)(322(i x i x --+-

C. )1)(1(2i x i x --+-

D. )1)(1(2i x i x -+++ 6. 2020

)1()1(i i --+的值为( )

A. 0

B. 1024

C. 1024-

D. i 1024-

7. i i ?-2

)1(等于( )

A. i 22-

B. i 22+

C. 2-

D. 2

8. 满足条件|43|||λ+=-i z 的复数z 在复平面上对应点的轨迹是( ) A. 一条直线

B. 两条直线

C. 圆

D. 椭圆

二. 解答题

1. (1)计算

2006)12(32132i i

i

-+++-;

(2)求10

)31(i -的展开式中所有奇数项的和。 2. 已知C z z ∈21,,10||1=z ,i z 862+=,且21z z ?为纯虚数,求1z 。

3. 复数i

bi a i z -++=1)

()1(3且4||=z ,z 对应的点在第一象限,若复数0,z z ,对应的点

是正三角形的三个顶点,求实数b a ,的值。

【试题答案】

一. 选择题

1. C 解析:014

=-x ,0)1)(1(2

2

=-+x x ∴ i x ±=或1±=x

2. A

3. B 解析:i i i i i 88)2(])1[()1(3

3326=-=-=-=- 4. D 5. B

6. A 解析:0)2()2()1()1(10

102020=--=--+i i i i

7. D 解析:2)1(22)121()21()1(2

2

=-?-=?-=?--=?+-=?-i i i i i i i i i 8. C 解析:可设),(R y x yi x z ∈+=转化为实数解决或直接利用复数的几何意义。 法一:设),(R y x yi x z ∈+=,则原方程变为5||=-+i yi x ,即25)1(2

2

=-+y x ∴ Z 点的轨迹是以(0,1)为圆心,以5为半径的圆 法二:原方程即为5||=-i z

由复数几何意义知,它表示(0,1)为圆心,5为半径的圆,故选C 。

二. 解答题

1.

思路点拔:按复数乘法与除法的法则展开运算,这种基本运算要熟练掌握,同时注意一些运算技巧。

解:(1)原式1003

2])12[(321)

321(i i

i i -+++=

10031003)22(i i i i +=-+= 033

2504=-=+=+=+?i i i i i i (2)∵ 10)31(i - 1010

1033102210110)3()3()3(31i C i C i C i C ?++?-?+?-=

∴ 10)31(i -的展开式中奇数项之和为复数10

)31(i -的实部

1010)]2321(2[)31(i i +--=-===ωω10101022i i 322)23

21(29910+-=+-

∴ 10)31(i -的展开式中各奇数项的和为9

2-

2.

解:设),(1R b a bi a z ∈+=,由10||1=z ,得1022=+b a ① ∵ )86)((21i bi a z z -+=?i a b b a )86()86(-++=为纯虚数

∴ ???≠-=+0

860

86a b b a ②

由①②得???-==68b a 或?

??=-=68

b a

∴ i z 681-=或i z 682+-=

3.

解:)(1)

1()1(2bi a i i i z +-+?+=

bi a bi a i i 22)(2--=+?= 由4||=z ,得42

2=+b a ①

∵ 复数0,z z ,对应的点构成正三角形 ∴ ||||z z z =- 把bi a z 22--=代入化简并结合①得,得1||=b ② 又∵ z 点在第一象限 ∴ 0

3b a ,故所求值为3-=a ,1-=b

高考数学各地试题知识点分类汇编复数

1. 【2016高考新课标1文数】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a=( ) (A )-3 (B )-2 (C )2 (D )3 【答案】A 考点:复数的概念及复数的乘法运算 【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性. 2.【2016高考新课标2文数】设复数z 满足i 3i z +=-,则z =( ) (A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C 【解析】 试题分析:由3z i i +=-得,32z i =-,所以32z i =+,故选C. 考点: 复数的运算,共轭复数. 【名师点睛】复数(,R)a bi a b +∈的共轭复数是(,R)a bi a b -∈,两个复数

是共轭复数,其模相等. 3. [2016高考新课标Ⅲ文数]若43i z =+,则 || z z =( ) (A )1 (B )1- (C )43i 55 + (D ) 43i 55 - 【答案】D 【解析】 试题分析: 43i ||55 z z ==-,故选D . 考点:1、复数的运算;2、共轭复数;3、复数的模. 【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成-1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解. 4.【2016高考四川文科】设i 为虚数单位,则复数2(1)i +=( ) (A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】 试题分析:由题意,22(1)122i i i i +=++=,故选C. 考点:复数的运算. 【名师点睛】本题考查复数的运算.数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可. 5.【2016高考北京文数】复数 122i i +=-( ) A.i B.1i + C.i - D.1i -

2020高考数学最后冲刺 复数

最后冲刺 【高考预测】 1.复数的概念 2.复数的代数形式及运算 3.复数概念的应用 4.复数的代数形式及运算 易错点 1 复数的概念 1.(2020精选模拟)若z 1=a+2i,z 2=3-4i,且2 1z z 为纯虚数,则实数a 的值为___________. 【错误解答】 ∵z 1+a+2i,z 2=3-4i, ∴ .25462583169)46(83)43)(43()43)(2(43221i a a i a a i i i i a i a z z ++-=+++-=+-++=-+= 又∵2 1 z z 为纯虚数。 ∴, 02583=-a ∴a=38.∴填38 。 【错解分析】∵复数z=a+bi(a,b ∈R)为纯虚数的充要条件是a=0且b ≠0.因此上面解答虽 【错误解答】 选C ∵z=i -11 =1+i.∴z 为纯虚数为1-i 【错解分析】z=i -11 =1+i 是错误的,因为(1-i )(1+i)=1-(i)2-z ≠1

【正确解答】 选B ∵z=i -11=.2 12121)1)(1(1i i i i i +=+=+-+ ∴z=i -11的共轭复数是21-21 i 。 3.(2020精选模拟)已知复数z 1=3+4i ,z 2=t+i,,且21z z ?是实数,则实数t= ( ) A .43 B .34 C .-34 D .-43 【错误解答】 选 C ∵z1·2z ∈R ?2121z z z z +=0。即(3+4i )(t-i)+(3-4i)(t+i)=0 ?t=-34 . 【错误解答】 设z=x+yi(x,y ∈R),∵z+2i=x+(y+2)i 由题意得 y=-2. ∵51222= --=-i i x i z (x+2)(2+i)=51(2x+2)+51(x-4)i. 由题意得x=4,∴z=4-2i. ∵(z+ai)2 =[4+(a-2)i]2 =(12+4a-a 2 )+8(a-2)i ∵(z+ai)2在复平面上的点在第一象限, ∴,.0)2(8, 04122???? ?≥-≥-+a a a 解得2≤a ≤6. ∴实数a 的取值范围是[2,6]。 【错解分析】 复数z=a+bi(a 、b ∈R)对应点(a 、b )在第一象限的充要条件是a>0,b>0.

《复数的概念》教学设计【高中数学人教A版必修2(新课标)】

《复数的概念》教学设计 教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导. 复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解. 课时分配 1课时. 1.了解引进复数的必要性;理解虚数单位i以及i与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等).2.通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识. 3.通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念. ~ 难点:虚数单位i的引进及复数的概念. 引入新课 请同学们回答以下问题: (1)在自然数集N中,方程x+4=0有解吗

(2)在整数集Z中,方程3x-2=0有解吗 (3)在有理数集Q中,方程x2-2=0有解吗 ) 活动设计:先让学生独立思考,然后小组交流,最后师生总结. 活动成果:问题(1)在自然数集中,方程x+4=0无解,为此引进负数,自然数→整数; 问题(2)在整数集中,方程3x-2=0无解,为此引进分数,整数→有理数; 问题(3)在有理数集中,方程x2-2=0无解,为此引进无理数,有理数→实数. 数集的每一次扩充,对数学本身来说,解决了在原有数集中某种运算不能实施的矛盾,如分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 提出问题:从自然数集N扩充到实数集R经历了几次扩充每一次扩充的主要原因是什么每一次扩充的共同特征是什么 活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结. 活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要. $ 扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律. 设计意图 回顾从自然数集N扩充到实数集R的过程,帮助学生认识数系扩充的主要原因和共同特征. 探究新知 提出问题:方程x2+1=0在R上有解吗如何对实数集进行扩充,使方程x2+1=0在新的数集中有解 活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成. 学情预测:学生讨论可能没有统一结果,无法描述. 类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

高考数学复数知识点总结及解题思路方法

高考数学复数知识点总结及解题思路方法 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. §15. 复数知识要点 1. ⑴复数的单位为i,它的平方等于-1,即1 =. i2- ⑵复数及其相关概念: ①复数—形如a + b i的数(其中R ,); b a∈ ②实数—当b = 0时的复数a + b i,即a; ③虚数—当0≠b时的复数a + b i; ④纯虚数—当a = 0且0≠b时的复数a + b i,即b i. ⑤复数a + b i的实部与虚部—a叫做复数的实部,b叫做虚部(注意 a,b都是实数) ⑥复数集C—全体复数的集合,一般用字母C表示. ⑶两个复数相等的定义:

00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数] 2若21z z ,则021 z z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件. (当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0 z 为圆心,r 为半径的圆的复数方程: ) (00 r r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②2 1 z z z z -=-表示线段21z z 的垂直平分线的方程. ③21212 1202Z Z z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为 a 的椭 圆的方程(若212z z a =,此方程表示线段21Z Z ,). ④ ), (2121202z z a a z z z z =---表示以21Z Z ,为焦点,实半轴长为a 的 双曲线方程(若212z z a =,此方程表示两条射线). ⑶绝对值不等式: 设21z z ,是不等于零的复数,则 ① 2 12121z z z z z z +≤+≤-.

复数的向量表示(一) 教案示例

复数的向量表示(一)·教案示例 目的要求 1.掌握复数的几何表示法,理解复平面、实轴、虚轴等概念的意义. 2.理解共轭复数的概念,了解共轭复数的几个简单性质. 内容分析 1.如图5-1,复数的几何表示就是指用复平面内的点Z(a,b)来表示复数z=a+bi.其中复数z=a+bi中的z,书写时用小写,复平面内的点Z(a,b)中的Z,书写时用大写. 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.复平面除了是用来表示复数的平面这一特点之外,其他与直角坐标系是一样的.比如它也有四个象限,在此平面内也可研究曲线方程、曲线性质等. 因为任何一个复数z=a+bi,都是由一个有序实数对(a,b)唯一确定,所以复数集与复平面内所有的点所成的集合是一一对应的.比如点(a,0)与实数a对应,点(0,b) 与纯虚数bi对应,点(a,b)与复数a+bi对应. 2.当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.共轭复数有许多有用的性质,随着后续学习,我们会逐步体会到应用这些性质来解题的优越性. 由共轭复数的定义,我们可以得到: (4)互为共轭复数的两个复数在复平面内对应的点关于实轴对称. 3.本课补充了三道例题.例1是为巩固共轭复数和复数相等的定义等知识而设计的.例2涉及复数的几何表示及解析几何等有关知识,其难点是解一元二次不等式组.估计部分学生会有些困难,教学中,教师要根据实际情况对学生进行启发和指导.例3涉及共轭复数的性质及解析几何中曲线与方程等有关知识,解题的关键是将问题化归成学生熟悉的问题——解析几何中动点轨迹问题. 教学过程 1.复习提问 (1)虚数单位i的两个规定的内容是什么? (2)填空: 复数z的代数形式是________;当________时,z为实数;当________时,z为虚数;当________时,z为纯虚数;z的实部为________;虚部为________.

复数的有关概念

复数的有关概念 教学目标 (1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。 (2)正确对复数进行分类,掌握数集之间的从属关系; (3)理解复数的几何意义,初步掌握复数集c和复平面内所有的点所成的集合之间的一一对应关系。 (4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力. 教学建议 (一)教材分析 1、知识结构 本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念. 2、重点、难点分析 (1)正确复数的实部与虚部 对于复数,实部是,虚部是.注意在说复数时,一定有,否则,不能说实部是,虚部是,复数的实部和虚部都是实数。

说明:对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。 (2)正确地对复数进行分类,弄清数集之间的关系 分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下: 注意分清复数分类中的界限: ①设,则为实数 ②为虚数 ③且。 ④为纯虚数且 (3)不能乱用复数相等的条件解题.用复数相等的条件要注意: ①化为复数的标准形式 ②实部、虚部中的字母为实数,即 (4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意: ①任何一个复数都可以由一个有序实数对( )唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的. ②复数用复平面内的点z( )表示.复平面内的点z的坐标是( ),而不是( ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是.由于

1.2复数的有关概念

虚数的起源 虚数要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。 有理数出现的非常早,它是伴随人们的生产实践而产生的。 无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。 不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与边长的比不能用任何“数”来表示。西亚他们已经发现了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。 到了16世纪,意大利数学家卡尔达诺在其著作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡尔达诺发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x3+ax+b=0的三次方程解如下: x={(-b/2)+[(b2)/4+(a3)/27]1/2}1/3+{(-b/2)-[(b2)/4+(a3)/27]1/2}1/3 当卡丹试图用该公式解方程x3-15x-4=0时他的解是: x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)1/2的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了i这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说:“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。” 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,

高三数学复习复数的概念与四则运算2018高考题汇总

复数的概念与四则运算 【母题原题1】 复数 (i 为虚数单位)的共轭复数是 A. 1+i B. 1?i C. ?1+i D. ?1?i 【答案】B 【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果. 详解: ,∴共轭复数为 ,选B. 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数 的实部为、虚部为、模为 、对应点为 、共轭复数为 . 【母题原题2】 已知a ,b ∈R , 2 i 34i a b +=+()(i 是虚数单位)则22a b += ______,ab=________. 【答案】 5 2 【解析】由题意可得2 2 234a b abi i -+=+,则223{ 2a b ab -==,解得224{ 1 a b ==,则225,2a b ab +==. 【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()()(),,,,a bi c di ac bd ad bc i a b c d R ++=-++∈. 其次要熟悉 复数相关基本概念,如复数(),a bi a b R +∈的实部为a 、虚部为b a , b )、 共轭为a bi -等. 【命题意图】考查对复数概念的理解、复数四则运算法则,考查复数的基础知识的掌握和基本的运算能力. 【命题规律】主要考查的方向有两个,一是复数的概念及运算,如复数的实部、虚部、纯虚数、复数的相等、共轭复数等概念以及复数模的运算;二是复数的几何意义及其应用,如复数对应的点的位置(坐标),复数与方程的综合问题等.以考查复数的运算居多. 【答题模板】以2018年高考题为例,解答此类题目,一般考虑如下三步: 第一步:计算化简.即利用复数的四则运算法则,将所给复数化简; 第二步:明确复数的实部、虚部. 第三步:写出共轭复数.根据共轭复数的概念,写出共轭复数. 【方法总结】 1.处理与复数概念有关的问题,首先找准复数的实部与虚部,若复数为非标准的代数形式,应通过代数运

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.

第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得0 3.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA u u u r =a ,OB u u u r =b ,则OP u u u r =21 33 +a b , OQ u u u r =12 33+a b (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1) 由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r (2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r (3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r , 代入(3)式得,2AB DC EF +=u u u r u u u r u u u r 点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形. 例1

高中数学:复数的有关概念

高中数学:1.2复数的有关概念 (铜鼓中学数学组) 本节教材分析 (1) 三维目标: 知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思 想,并能运用排列数公式进行计算。 过程与方法:能运用所学的排列知识,正确地解决的实际问题 情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题. (2)教学重点: 排列、排列数的概念 (3)教学难点: 排列数公式的推导 (4)教学建议: 分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性. 排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 新课导入设计 导入一: 复习导入 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法完成这件事共有 12n N m m m =+++种不同的方法 2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事

高考数学专题7.1复数的概念解析版

专题7.1 复数的概念

运用一 实部虚部 【例1】(2019·黑龙江高三(文))若()()12z i i =+-,则复数z 的实部与虚部之和为( ) A.1 B.-1 C.-2 D.-4 【答案】D 【解析】()()2 12223z i i i i i i =+-=-+-=--,所以复数z 实部为3-,虚部为1-,所以和为4-,故 选D. 【举一反三】 1.(2019·河南高三(理))已知复数34z i =+,则5 z 的虚部是( ) A.45 - B. 45 C.-4 D.4 【答案】A 【解析】由34z i =+,得()()()53455343434345i i z i i i --===++-,所以虚部为4 5 -. 故选:A 2.(2019·湖南高三(理))若复数z 满足1z i i ?=-,其中i 为虚数单位,则z 的虚部为( ). A.0 B.1- C.i - D. 1 2 i 【答案】B 【解析】依题意()()() 111i i i z i i i i -?--= ==--?-,故z 的虚部为1-.故选B. 3.(2019·宁夏银川一中高三月考(文))设复数z 满足(2)1z i i -=+(i 为虚数单位),则z 的共轭复数的虚部为 A. 3 5 B. 35 C.35 i D.35 i - 【答案】B 【解析】因为(2)1z i i -=+, 1(1)(2)133 2(21)(2)555 i i i i z i i i i ++++∴= ===+--+,

所以复数z 的共轭复数为 13 55i -,所以复数z 的共轭复数的虚部为3 5 ,故选:B. 4.(2019·山东省烟台第一中学高三月考)若复数z 满足()1234i z i +=-,则z 的实部为 A.1 B.1- C.2 D.2- 【答案】B 【解析】由()1234i z i +=-得 ()()()()22341234310851012121212145 i i i i i i z i i i i i ----+--=====--++--, 所以复数z 的实部为1-,故选B . 运用二 数的分类 【例2】(2019·辽宁高二期末(理))若复数 ()2 321a a a i -++-(a R ∈)不是纯虚数,则( ) A.2a ≠ B.1a ≠ C.1a = D.1a ≠且2a ≠ 【答案】A 【解析】 若复数( ) 2 321a a a i -++-(a R ∈)是纯虚数, 根据纯虚数的定义有:21 10=2=1=2 32=0a a a a a a a ≠?-≠????? -+??或, 则复数( ) 2 321a a a i -++-(a R ∈)不是纯虚数,2a ≠故选A 【举一反三】 1.(2019·辽宁高二期中(文))已知复数2 3()z m m mi m =-+∈R 为纯虚数,则m =________ 【答案】3 【解析】因为2 3()z m m mi m =-+∈R 是纯虚数, 属于根据纯虚数定义可知230m m -=且0m ≠可解得3m =,故答案为3. 2.(2019·上海市大同中学高三月考)若12i z a =+,214i z =-,且12 z z 为纯虚数,则实数a =________ 【答案】8

数系的扩充和复数的概念

《数系的扩充和复数的概念》教学设计 1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的 分类表; 2.理解复数的有关概念以及符号表示; 3.掌握复数的代数表示形式及其有关概念; 4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念. 【教学难点】复数概念的理解. 【教学过程】 1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简 明扼要的概括和总结) 自然数整数有理数无理数实数 2.提出问题 我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使 得在新的数集中,该问题能得到圆满解决呢? 3.组织讨论,研究问题 我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问 题.即一个什么样的数,它的平方会等于-1. 4.引入新数,并给出它的两条性质 根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定: (1); (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是). 5.提出复数的概念 根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数, 我们把它们叫做复数. 全体复数所形成的集合叫做复数集,一般用字母C表示,显然有: N* N Z Q R C. 【巩固练习】 下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复 数的实部与虚部各是什么? 例1.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数? 分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与 零的条件可以确定实数m的值.

复数与向量的关系

重视复平面上复数与向量的联系作用 平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。随着知识的发展,相互对应相互促进是联系的主要体现。复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情. 一 复数商与内积的联系 复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系. 例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2). 然后复数作商: 代数式作商: 21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商: 21z z =| || |21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得 ||||21z z [cos(θ1-θ2)]=222121||z b b a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112| |z b a b a -………(4) 则从中可得下列变式: (1) 复数对应向量间的夹角余弦公式: cos(θ1-θ2| |||212121oz oz ? ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ 1-θ2 |∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|). (2) 向量内积: 1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2). 若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2 -a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|, 这是空间xoy 平面上向量)0,,(),0,,(2121b b a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式. 复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式. 若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,

高考数学压轴专题最新备战高考《复数》难题汇编附答案

【高中数学】数学《复数》高考复习知识点 一、选择题 1.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 【解析】 由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==??∴? ?-==-?? ,所以x yi +在复平面内所对应的点位于第四象限. 本题选择D 选项. 2.如图所示,在复平面内,OP uuu v 对应的复数是1-i ,将OP uuu v 向左平移一个单位后得到00 O P u u u u v ,则P 0对应的复数为( ) A .1-i B .1-2i C .-1-i D .-i 【答案】D 【解析】 【分析】 要求P 0对应的复数,根据题意,只需知道0OP u u u v ,而0000 OP OO O P =+u u u v u u u u v u u u u v ,从而可求P 0对应的复数 【详解】 因为00O P OP =u u u u v u u u v ,0OO u u u u v 对应的复数是-1, 所以P 0对应的复数, 即0OP u u u v 对应的复数是 ()11i i -+-=-,故选D. 【点睛】 本题考查复数的代数表示法及其几何意义,复平面内复数、向量及点的对应关系,是基础题. 3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A 3 B 5 C .3 D .5 【答案】B 【解析】

22(2)22(1)5z i i i i =-=-=+-=,故选B . 4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2i C .12i -+ D .12i -- 【答案】B 【解析】 试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故 ,则12i z =-,选B. 【考点】注意共轭复数的概念 【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一. 5.设i 是虚数单位,若复数()103a a R i - ∈-是纯虚数,则a 的值为( ) A .-3 B .-1 C .1 D .3 【答案】D 【解析】 【分析】 【详解】 因 , 故由题设 , 故,故选D . 考点:复数的概念与运算. 6.已知i 是虚数单位,则 131i i +=+( ) A .2i - B .2i + C .2i -+ D .2i -- 【答案】B 【解析】 【分析】 利用复数的除法运算计算复数的值即可. 【详解】 由复数的运算法则有: 13(13)(1)422(1)(11)2 i i i i i i i i ++-+===++-+.

复数的基本概念与基本运算

复数的基本概念与基本运算 一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数 z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

相关文档
最新文档