高二数学球的概念和性质

合集下载

上海市高二数学知识点总结

上海市高二数学知识点总结

上海市高二数学知识点总结一、函数与方程1. 一元二次函数1. 定义:y = ax² + bx + c (a≠0)2. 顶点坐标:(-b/2a, f(-b/2a))3. 对称轴:x = -b/2a4. 开口方向:a的符号决定5. 判别式:Δ = b²-4ac- Δ>0:两个不同实根- Δ=0:一个实根- Δ<0:无实根6. 轨迹:抛物线2. 幂函数1. 定义:y = x^a (a为实数)2. a>0时,增函数;a<0时,减函数3. 指数为偶数时,有最小值;指数为奇数时,无最小值4. x轴正半轴上的图像在a>0时有渐近线y=0,a<0时有渐近线y=+∞5. 与坐标轴交点:(0,0)和(1,1)3. 指数函数1. 定义:y = a^x (a>0且a≠1)2. a>1时,增函数;0<a<1时,减函数3. 指数为奇数时,有一个与x轴相切的最小值点;指数为偶数时,有最小值点4. 与x轴交点:(0,1)4. 对数函数1. 定义:y = logₐx (a>0且a≠1,x>0)2. 特殊值:log₁ x = 0;logₐa = 13. a>1时,增函数;0<a<1时,减函数4. 与y轴交点:(0,logₐ1) = (0,0)5. 与x轴交点:(1,0)5. 三角函数1. 正弦函数:y = sinx2. 余弦函数:y = cosx3. 正切函数:y = tanx4. 周期性:y = sinx, y = cosx 的周期均为2π;y = tanx 的周期为π5. 对称性:y = sinx 是奇函数,y = cosx 是偶函数二、解析几何1. 直线与平面1. 点到直线的距离公式2. 直线的斜率与倾斜角3. 直线与直线的位置关系:平行、垂直、相交4. 平面与平面的位置关系:平行、垂直、相交2. 圆与球1. 圆的标准方程:(x-a)² + (y-b)² = r²2. 圆的一般方程3. 圆与直线的位置关系:相离、相切、相交4. 球的标准方程:(x-a)² + (y-b)² + (z-c)² = r²3. 空间几何1. 空间直线的方程2. 空间平面的方程3. 空间直线与平面的位置关系三、概率与统计1. 概率1. 事件与样本空间2. 古典概型3. 条件概率与独立性4. 事件的概率运算:并、交、差5. 贝叶斯定理2. 统计1. 数据的收集与整理2. 描述统计量:均值、中位数、众数、标准差、方差3. 随机变量与概率分布4. 正态分布四、数列与数列1. 等差数列1. 通项公式:aₙ = a₁ + (n-1)d2. 前n项和公式:Sₙ = (a₁ + aₙ) × n ÷ 22. 等比数列1. 通项公式:aₙ = a₁ × r^(n-1)2. 前n项和公式:Sₙ = a₁ × (1 - r^n) ÷ (1 - r)3. 递推数列1. 通项公式:aₙ = aₙ₋₁ + d (等差数列)2. 通项公式:aₙ = aₙ₋₁ × r (等比数列)五、导数与微分1. 导数的定义与性质1. 导数表示函数的变化率2. 导数的计算:求极限、四则运算、复合函数求导、反函数求导2. 函数的极值与最值1. 极值点的判定:导数变号法、二阶导数法2. 最值的判定:端点、极值点、无界区间上的最值3. 微分1. 微分的定义与计算2. 微分近似计算与应用六、三角函数与导数1. 三角函数的导数1. y = sinx 的导数:y' = cosx2. y = cosx 的导数:y' = -sinx3. y = tanx 的导数:y' = sec²x2. 反三角函数的导数1. y = arcsinx 的导数:y' = 1/√(1-x²)2. y = arccosx 的导数:y' = -1/√(1-x²)3. y = arctanx 的导数:y' = 1/(1+x²)七、几何应用1. 几何证明1. 相似三角形的证明2. 同余三角形的证明3. 图形的对称性证明2. 几何计算1. 长方体、正方体、圆柱体、圆锥体、球体的计算2. 三角形的计算:面积、周长、三角函数以上是上海市高二数学重要知识点的总结,掌握了这些知识,相信你会在数学学习中取得更好的成绩!。

高中数学高一至高三知识点汇总3篇

高中数学高一至高三知识点汇总3篇

高中数学高一至高三知识点汇总高中数学高一知识点汇总一、函数1. 函数的概念和符号表示2. 函数的定义域、值域和图像3. 奇偶性函数的判定4. 复合函数的求法5. 反函数的概念和求法二、数列1. 数列的概念和符号表示2. 等差数列和等比数列的通项公式3. 数列的前n项和公式4. 数列的求和公式5. 等比数列的无穷和公式三、三角函数1. 弧度制和角度制的转换2. 正弦、余弦和正切函数的概念和符号表示3. 三角函数的基本性质和变形4. 三角函数的图像和周期性5. 三角函数的诱导公式和倍角公式四、平面几何1. 点、线、面的概念和符号表示2. 线段、角和三角形的概念和基本性质3. 等腰三角形、直角三角形和等边三角形的性质4. 正方形、矩形、平行四边形和菱形的性质5. 圆的概念和基本性质五、解析几何1. 平面直角坐标系和空间直角坐标系的概念和坐标表示2. 点、线、面的坐标表示和方程求法3. 直线的截距式和一般式方程4. 平面图形对称的判定和坐标表示5. 圆的一般式方程和标准式方程六、导数1. 导数的概念和符号表示2. 函数的导数和导函数3. 导数的基本公式和求导法则4. 高阶导数和隐函数求导法5. 函数图像的分析和最值问题高中数学高二知识点汇总一、不等式1. 不等式的概念和符号表示2. 一元一次不等式的解法3. 一元二次不等式及其解法4. 绝对值不等式的解法5. 不等式组的解法二、函数1. 常用初等函数的性质和图像2. 反比例函数的概念、性质和图像3. 对数函数和指数函数的概念、性质和图像4. 三角函数的和角、差角、半角和共轭角公式5. 三角函数的逆函数和反三角函数三、二次函数1. 二次函数的标准式和一般式方程2. 二次函数的图像和性质3. 二次函数的因式分解和求根公式4. 二次函数的最值和单调性5. 二次函数与其他函数的联立解法四、三角函数1. 三角函数的和角、差角、半角和共轭角公式2. 三角函数的诱导公式和倍角公式3. 三角函数的反函数和反三角函数4. 三角函数与二次函数的联立解法5. 三角函数的简单变形和应用五、平面几何1. 直线与两条平行线和两条垂直线的性质2. 三角形的外心、内心、垂心和重心3. 圆的切线和切圆问题4. 长度、面积和体积的计算5. 相似三角形和勾股定理的应用六、不定积分1. 不定积分的概念和定义2. 基本积分和常见积分公式3. 积分的特殊方法和分部积分法4. 有理函数的积分和三角函数的积分5. 积分常数和变限积分高中数学高三知识点汇总一、函数1. 常用初等函数的性质和图像2. 反比例函数的概念、性质和图像3. 对数函数和指数函数的概念、性质和图像4. 指数函数与对数函数的关系5. 常微分方程和初值问题的解法二、数列和级数1. 数列的极限和收敛性2. 数列极限存在的判定方法3. 数列极限的四则运算和夹逼定理4. 级数的概念和基本性质5. 收敛级数的判定方法三、立体几何1. 立体图形的基本概念和性质2. 球台、棱台和圆锥的性质和计算公式3. 球、圆柱和圆锥的体积和表面积4. 立方体、正四面体和正八面体的性质和计算公式5. 空间向量的基本概念和运算四、导数1. 导数的概念和符号表示2. 函数的导数和导函数3. 导数的基本公式和求导法则4. 高阶导数和隐函数求导法5. 函数图像的分析和最值问题五、定积分1. 定积分的概念和定义2. 定积分的性质和计算方法3. 牛顿-莱布尼茨公式和变量代换法4. 定积分在几何学中的应用5. 定积分在物理学中的应用六、概率统计1. 随机事件和概率的概念和符号表示2. 条件概率和乘法公式3. 全概率公式和贝叶斯公式4. 随机变量和概率分布函数5. 样本方差和总体方差的计算方法。

高二数学选择性必修二知识点

高二数学选择性必修二知识点

高二数学选择性必修二知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学选择性必修二知识点本店铺为各位同学整理了《高二数学选择性必修二知识点》,希望对你的学习有所帮助!1.高二数学选择性必修二知识点篇一1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件一正二定三相等有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用△≥0求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如xXX0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为工程造价最低,利润或面积(体积)(最小)等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.2.高二数学选择性必修二知识点篇二1.向量可以形象化地表示为带箭头的线段。

高二数学类比推理2

高二数学类比推理2
四面体的六个二面角的平分面 交于一点,且这个点是四面体 内且球的球心 四面体的体积为 V=1/3(S1+S2+S3+S4)r (S1,S2,S3,S4为四个面的面积,
r为内切球的半径)
六、课外作业
课本P44 习题2.1 A组:5、6。 B组:1。
1,一个多面体有10个顶点,7个面,那么它的棱 数为( ) 2,已知f1 ( x ) cos x, f 2 ( x ) f1 ' ( x ), f 3 ( x ) f 2 ' ( x ), f 4 ( x ) f 3 ' ( x ),, f n ( x ) f n1 ' ( x ),则f 2005 ( x ) -sin(x) 3,三角形的面积为s=1/2(a+b+c)r(r为三角形内 切圆的半径,a,b,c为三边长)利用类比推理可 以得出四面体的体积为( ) 1
1 B ,V Sh A,V abc 3 3 1 C ,V (ab bc ac)h( h为四面体的高) 3
1 D,V ( S1 S 2 S 3 S 4 )r ( S1 , S 2 , S 3 , S 4分别为 3 四面体的四个面的面积 为四面体内切球的半径 )
45)个交点 4,10条直线最多可以有(
5,应用归纳推理猜测 111 1 222 2 2n个1 n个2 的结果
; / 配资 长,怎么才这么壹会儿の功夫,就跟他这各四哥极尽亲厚之能事?就算王爷如何精明,他无论如何都猜测不到二十三小格性情大变の原 因。但二十三小格已经向他示好,他也不可能再绷着脸不予理会,因此也就顺着二十三弟の话题有壹搭没壹搭地聊咯几句。院子不大, 没壹会儿就到咯院门口,两各人住の地方不在同壹各方向,因此出咯德妃の院门,兄弟俩就各奔东西。即使各奔东西,二十三小格还是 离塔娜远远地,他壹直都固执地认为,小四嫂壹定会看到他们离去の样子。第壹卷 第238章 突袭水清根本就不知道二十三小格对她の 这番心意,而且她自己现在也是泥菩萨过河自身难保,哪里还有啥啊闲心思看他二十三小格在干啥啊?这壹晚上水清都在德妃面前手脚 不停地伺候,她壹各大仆役,不但在年府从来没有干过这种伺候人の差事。就算是嫁进咯王府,由于备受冷落以及分府单过の原因,她 既没有伺候过王爷,更没有伺候过婆婆!再加上她天生体弱多病,养尊处优の日子过惯咯,这么突然冷不丁地开始伺候人の差事,在这 么短の时间内,她那娇弱の身躯还真是难以适应。此时此刻,水清浑身上下腰酸腿痛不已,可是,壹会儿还要伺候爷用晚膳呢。虽然她 不知道,玉盈已经服侍他用过晚膳咯,但是壹想到即将到来の新壹轮服侍事项还在等侍着她,真觉得身体早已经达到咯极限,实在是要 支撑不下去咯。可是王爷原本就是身高腿长,走得又急,他の壹步需要她两步才能跟上。身体已经累到极限,现在还要紧追王爷の脚步, 水清几乎就是上气不接下气地拼命追赶。吟雪知道仆役挨不住,可又不敢落下太远,只好使出最大の力气,连拉带拽地将仆役拖着往前 走。回到他们安顿の那各院子,不过才区区那么壹点儿路,在水清の眼中,简直就像是要走壹里路那么漫长。好不容易进咯自己安顿の 院子,水清强忍着浑身の不适,随着王爷进咯屋子。王爷の心中壹直想着二十三弟の反常表现,只是想咯壹路都没有想明白,因此进咯 屋子也没有注意,径直就去咯里间。水清本来是打算来伺候晚膳の,却见他直接进咯里间,不明所以,也不知道是跟进去,还是在外面 候着,就探寻地望向咯秦公公。秦顺儿也不知道侧福晋为啥啊跟咯进来,爷已经用过晚膳咯,侧福晋还能有啥啊差事可做?而且爷壹脸 深思の样子,他哪里知道下面该怎么办,只好低下头装作没有看见侧福晋求援の目光。从秦公公那里得不到援助,水清犹豫咯半天,只 好横下决心,壹步三蹭地朝里间走去。王爷此时正端坐在书桌前看公文,听到脚步声,以为是秦顺儿,因此头也没有抬,随口说咯壹 句:“连上各茶都这么磨磨蹭蹭の,真是各没用の奴才。”水清壹听,爷这是要喝茶,也就忘记咯她是来

高二数学9.5柱、锥、球及其简单组合体(一)最新精品表格式教案设计

高二数学9.5柱、锥、球及其简单组合体(一)最新精品表格式教案设计

【课题】 9.5 柱、锥、球及其简单组合体 ( 一)【教课目的】知识目标:(1)认识棱柱、棱锥的构造特点;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培育学生的察看能力,数值计算能力及计算工具使用技术.【教课要点】正棱柱、正棱锥的构造特点及有关的计算.【教课难点】正棱柱、正棱锥的有关计算.【教课方案】教材第一介绍了多面体、旋转体的观点.而后经过察看模型,说明棱柱、棱锥、圆柱、圆锥、球的结构特点及其面积、体积的计算公式.正棱柱的侧面积、全面积、体积的计算公式常常使用,不要把侧面积、全面积计算公式记混了.b5E2RGbCAP侧面都是全等的矩形的直四棱柱不必定是正四棱柱.底面是正方形的四棱柱不必定是正四棱柱.四棱锥 P-ABCD中,假如棱锥的侧棱长相等,那么它必定是正四棱锥.假如棱锥的底面是正方形,那么它不必定是正四棱锥. p1EanqFDPw例 1 是求正三棱柱的侧面积和体积的题目,例 2 是求正三棱锥的侧面积和体积的题目,要记着边长为 a的正三角形的面积为 S 3 a 2.DXDiTa9E3d4 【教课备品】教课课件.【课时安排】2 课时. (90 分钟)【教课过程】教学过程教师行为学生行为教课企图时间*揭露课题介绍认识0教学过程教师行为学生行为教课企图时间柱、锥、球及其简单组合体【知识回首】在九年制义务教育阶段,我们学习过直棱柱、圆柱、圆锥、球等几何体.怀疑思虑启迪学生思虑(1)(2)(3)(4)图9-55象直棱柱(图9-5 5( 1))那样,由若干个平面多边形围成解说的关闭的几何体叫做多面体,围成多面体的各个多边形叫做多说明面体的面,两个面的公共边叫做多面体的棱,棱与棱的交点叫做多面体的极点,不在同一个面上的两个极点的连线叫做多面体的对角线 .像圆柱(图 9-5 5(2))、圆锥(图 9-5 5( 3))、球(图 9-5 5 ( 4))那样的关闭几何体叫做旋转体.*创建情境兴趣导入【察看】指引思虑指引剖析学生剖析图9-56察看图 9-5 6 所示的多面体,能够发现它们具以下特点:( 1)有两个面相互平行,其他各面都是四边形;( 2)每相邻两个四边形的公共边相互平行.10 * 动脑思虑研究新知【新知识】有两个面相互平行,其他每相邻两个面的交线都相互平行的多面体叫做棱柱, 相互平行的两个面,叫做棱柱的底面,其他各面叫做棱柱的侧面.相邻两个侧面的公共边叫做棱柱的侧棱.两个底面间的距离,叫做棱柱的高.图 9- 56所示的四个多面体都是棱柱.解说思虑表示棱柱时,往常分别按序写出两个底面各个极点的字过程行为行为企图间母,中间用一条短横线分开,比如,图9- 56(2)所示的棱柱,可说明以记作棱柱ABCD A1B1C1 D1,或简记作棱柱AC1.常常以棱柱底面多边形的边数来命名棱柱,如图 9-5 6所示的棱柱挨次为三棱柱、四棱柱、五棱柱.侧棱与底面斜交的棱柱叫做斜棱柱 , 如图 9- 56( 2);侧棱与底面垂直的棱柱叫做直棱柱,如图 9- 56( 1);底面是正多边形的直棱柱叫做正棱柱,如图 9- 56( 3)和( 4),分别为正四棱柱和正五棱柱.正棱柱有以下性质:(1)侧棱垂直于底面,各侧棱长都相等,而且等于正棱柱的高;(2)两个底面中心的连线是正棱柱的高.[想想 ]假如直四棱柱的侧面都是全等的矩形,它能否是正四棱柱?假如四棱柱的底面是正方形,它能否是正四棱柱?【新知识】正棱柱全部侧面的面积之和,叫做正棱柱的侧面积.正棱柱的侧面积与两个底面面积之和,叫做正棱柱的全面积.引领剖析理解率领学生剖析认真剖析要点记忆语句图9- 57察看正棱柱的表面睁开图(图 9- 57),能够获得正棱柱的侧面积、全面积计算公式分别为S正棱柱侧ch ()S正棱柱全ch2S底()此中, c 表示正棱柱底面的周长, h 表示正棱柱的高, S底表示正棱柱底面的面积.能够获得正棱柱的体积计算公式为(公式推导略)V正棱柱S底 h()此中 ,S底表示正棱锥的底面的面积,h 是正棱锥的高.过程行为 行为 企图 间* 稳固知识 典型例题【知识稳固】例 1 已知一个正三棱柱的底面边长为 4 cm ,高为 5 cm ,求这个正三棱柱的侧面积和体积.解正三棱锥的侧面积为S = ch = 3×4× 5 = 60( cm 2 ).侧因为边长为 4 cm 的正三角形面积为3424 3 ( cm 2),4因此正三棱柱的体积为底h 4 3 5 = 20 3 ( cm 3 ).V S 【小提示】边长为 a 的正三角形的面积为 S3 a 2.4【软件连结】利用几何画板能够方便地作出棱柱的直观图形.方法是:第一选中因此绘制棱柱的名称(图 9-5 8),而后选择适合的位置,点击并拖动,即可获得棱柱的直观图形(图9- 59),最后再标明字母.说明重申引领解说说明解说说明察看思虑主动求解思虑理解25通 过例 题进 一步 领会带 领学生思虑图9-58教学过程教师行为学生行为教课企图时间图9-5935*创建情境兴趣导入察看图 9-60 所示的多面体,能够发现它们具以下特点:有一个面是多边形,其他各面都是三角形,而且这些三角形有一个公共极点.怀疑启迪思虑学生思虑指引剖析(3)图 9-6040 *动脑思虑研究新知【新知识】具备上述特点的多面体叫做棱锥.多边形叫做棱锥的底面(简称底),有公共极点的三角形面叫做棱锥的侧面,各侧面的公共极点叫做棱锥的极点,极点究竟面的距离叫做棱锥的高.底面是三角形、四边形、的棱锥分别叫做三棱锥、四棱锥、.往常用表示底面各极点的字母来表示棱锥.比如,图 9- 60( 2)中的棱锥记作:棱锥S ABCD .教 学 教师 学生 教课 时 过程行为 行为 企图 间底面是正多边形,其他各面是全等的等腰三角形矩形的棱锥叫做 正棱锥 .图 9- 60 中( 1)、(2)分别表示正三棱锥、正 解说率领四棱锥.说明思虑学生 正棱锥有以下性质:剖析( 1)各侧棱的长相等;( 2)各侧面都是全等的等腰三角形.各等腰三角形底边 上的高都叫做 正棱锥的斜高 ;( 3)极点究竟面中心的连线垂直与底面,是正棱锥的高; ( 4)正棱锥的高、斜高与斜高在底面的射影构成一个直角三角形;引领( 5)正棱锥的高、侧棱与侧棱在底面的射影也构成一个剖析理解直角三角形.【想想】四棱锥 P-ABCD 中,假如棱锥的侧棱长相等,那么它能否是 正四棱锥?假如棱锥的底面是正方形,那么它能否是正四棱 锥? 【新知识】解说思虑说明率领学生剖析图9-61察看正棱锥的表面睁开图(图 9- 61),能够获得正棱锥的侧面积、全面积(表面积)计算公式分别为S正棱锥侧1ch ()引领 记忆2S 正棱锥全1S 底 .()剖析ch2此中 ,c 表示正棱锥底面的周长, h 是正棱锥的斜高 ,S底 表示正棱锥的底面的面积,h 是正棱锥的高 .52* 创建情境 兴趣导入 率领【实验】怀疑思虑学生准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱教学教师学生教课时过程行为行为企图间锥容器中装满沙子,而后倒入正三棱柱形状的容器中,发现:剖析连续倒三次正好将正三棱柱容器装满.57 * 动脑思虑研究新知【新知识】实验表示,关于同底等高的棱锥与棱柱,棱锥的体积是棱柱体理解率领积的三分之一.即解说说明学生1S底 h .V正棱锥()剖析3 记忆此中 , S底表示正棱锥的底面的面积,h 是正棱锥的高.62 *稳固知识典型例题【知识稳固】例 2 如图9- 62,正三棱锥P-ABC中,点O是底面中心,PO=12 cm,斜高 PD=13 cm.求它的侧面积、体积(面积精准到0.1 cm2,体积精准到 1 cm3).说明察看重申图9- 62解在正三棱锥 P-ABC(图 9- 62)中,高 PO= 12 cm,斜高PD= 13 cm.在直角三角形POD 中,OD=PD 2PO2=132122=5(cm).在底面正三角形ABC中,CD= 3OD= 15( cm).因此底面边长为AC=10 3 cm.因此侧面积与体积分别约为S侧1ch 1 3 10313 ≈( cm2).2 2正棱锥1 底 1 13) 2 sin60 12 ≈520(cm 3).V3 S h3(102通过引领思虑例题进一步领会解说主动说明求解教学 教师 学生 教课 时过程行为 行为 企图 间* 运用知识 加强练习1. 设正三棱柱的高为 6,底面边长为 4,求它的侧面积、 发问 思虑 全面积及体积 .巡视解答2. 正四棱锥的高是 a ,底面的边长是 2a ,求它的全面积与体积 .指导* 理论升华 整体建构想考并回答下边的问题:怀疑正棱柱的侧面积、全面积、体积公式,正棱锥的侧面积、 全面积、体积公式?结论:回答S 正棱柱侧 ch ;S正棱柱全ch 2S 底 ;归 纳 V正棱柱S 底 h ;重申S 正棱锥侧1ch ;S 正棱锥全1ch S 底 ;12 2V 正棱锥S 底 h .3* 概括小结 加强思想指引回想本次课学了哪些内容?要点和难点各是什么?* 自我反省 目标检测本次课采纳了如何的学习方法?你是如何进行学习的? 发问反省你的学习成效如何?设正三棱柱的高为 6,底面边长为 4,求它的侧面积、全巡视 着手面积及体积.指导求解* 持续研究 活动研究( 1) 念书部分:教材说明记录( 2) 书面作业: 教材习题A 组(必做);B 组(选做)( 3) 实践检查:用发现的眼睛找寻生活中的正棱柱实例72及 时认识学生知识掌握状况80及 时了 解学 生知 识掌 握状况83查验学生学习成效89分 层次 要求90【教师教课后记】项目反省点学生能否真实理解有关知识;学生知识、技术的掌握状况能否能利用知识、技术解决问题;在知识、技术的掌握上存在哪些问题;学生能否参加有关活动;学生的感情态度在数学活动中,能否定真、踊跃、自信;碰到困难时,能否愿意经过自己的努力加以战胜;学生能否踊跃思虑;思想能否有条理、灵巧;学生思想状况能否能提出新的想法;能否自觉地进行反省;学生能否擅长与人合作;学生合作沟通的状况在沟通中,能否踊跃表达;能否擅长聆听他人的建议;学生能否愿意睁开实践;可否依据问题合理地进行实践;学生实践的状况在实践中可否踊跃思虑;可否存心识的反省实践过程的方面;。

高二数学选修1知识点

高二数学选修1知识点

高二数学选修1知识点数学是一门基础性学科,是培养学生综合思维能力和逻辑推理能力的重要学科之一。

高二数学选修1是高中数学课程中的一部分,是为了满足学生个性化发展需求和应对高考的要求而设置的选修课程。

下面将介绍高二数学选修1的几个重要知识点。

一、立体几何1.空间直线和平面的方程空间直线和平面的方程是立体几何中的重要内容。

直线的方程可以用点向式、对称式和一般式表示,平面的方程可以用点法式和一般式表示。

在解题过程中,我们需要根据已知的条件将问题转化为方程,然后进行求解。

2.空间几何体的性质和计算常见的空间几何体包括球、锥、柱、棱柱等。

我们需要掌握它们的性质和计算方法,如球的体积和表面积的计算公式,锥的体积计算公式等。

通过熟练掌握这些知识点,可以帮助我们解决与空间几何体相关的问题。

二、数列与数学归纳法1.数列的定义和计算数列是按照一定规律排列的数的集合。

我们需要了解常见数列的定义和计算方法,如等差数列、等比数列等。

在计算数列的首项、公差或公比以及前n项和时,需要掌握相应的公式和求解思路。

2.数学归纳法的应用数学归纳法是数学中一种重要的证明方法。

它的基本思想是证明第一个命题成立,然后假设第k个命题成立,利用这个假设证明第k+1个命题成立。

在解决数列问题、不等式问题以及推理证明问题时,数学归纳法都是一个有效的工具。

三、概率与统计1.随机事件及其运算随机事件是指在一定条件下随机发生的事件。

我们需要了解随机事件的基本概念和性质,如事件的取非、和、积运算。

通过对随机事件的运算,可以帮助我们计算复杂的概率问题。

2.概率的计算和应用概率是描述随机事件发生可能性大小的数值。

我们需要掌握基本的概率计算方法,如古典概率、几何概率和条件概率等。

在实际生活中,概率的应用非常广泛,如抽样调查、事件发生的可能性预测等。

总结:高二数学选修1包括立体几何、数列与数学归纳法以及概率与统计等多个知识点。

在学习这些知识点时,我们需要理解概念、记忆公式,并能够熟练运用于解决实际问题。

数学必修2——1.1.1-1.1.2《柱、锥、台、球、简单组合体的结构特征》导学导练

高中数学必修2第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修2 1.1.1-1.1.2《柱、锥、台、球、简单组合体的结构特征》【知识要点】1、空间几何体的有关概念:空间几何体、多面体、旋转体2、棱柱的结构特征(重点):1) 棱柱的有关概念 2)棱柱的分类 3)棱柱的记法 3、棱锥的结构特征(重点) 4、棱台的结构特征5、圆柱的结构特征(重点)6、圆锥的结构特征(难点)7、圆台的结构特征8、球的结构特征9、组合体的结构特征10、简单空间几何体的基本概念:(1)(2)特殊的四棱柱:【范例析考点】考点一.柱、锥、台、球的概念的理解 例1:一个棱柱是正四棱柱的条件是( ). A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱 【针对练习】1、下列说法中正确的是( ).A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径2、下列说法错误的是( ).A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形 3、下列说法中不正确的是( ).A 棱柱的侧面不可以是三角形B 有六个大小一样的正方形所组成的图形是正方体的展开图C 正方体的各条棱都相等D 棱柱的各条侧棱都相等 4、下列对棱柱说法正确的是( )A .只有两个面互相平行 B.所有的棱都相等 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也平行 5、棱台不具备的特点是( )A .两底面相似 B. 侧面都是梯形C. 侧棱都相等D. 侧棱延长后交于一点6、有两个面互相平行, 其余各面都是梯形的多面体是( )A .棱柱B . 棱锥C . 棱台D .可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥 7、构成多面体的面最少是( )A .三个B . 四个C . 五个D . 六个 8、下列说法正确的是( ).A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形9、一个棱柱至少有 个面,面数最少的棱柱有 个顶点,有 条棱.10、棱柱的侧面是 形,长方体的侧面是 形,正方体的侧面是 形.考点二.柱、锥、台、球的简单运算 例2:如右图, 四面体P-ABC 中, PA=PB=PC=2,∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A 点, 问蚂蚁经过的最短路程是_________. 【针对练习】1.边长为5cm 的正方形EFGH 是圆柱的轴截面, 则从E 点沿圆柱的侧面到相对顶点G 的最短距离是_______________. 2.已知三棱锥的底面是边长为a 的等边三角形,则过各侧棱中点的截面的面积为3.长方体的全面积为11,十二条棱的长度之和为24,则这个长方体的一条对角线长为4.一个圆台的母线长为12,两底面面积分别为4π和25π,求 (1)圆台的高: (2)截得此圆台的圆锥的母线长为 5. 一个圆锥的底面半径为2,高为6,在圆锥的内部有一个高为x 内接圆柱.(1)用x 表示圆柱的轴截面面积S ; (2)当x 为何值时,S 最大.考点三.有关截面问题例3:下列命题正确的是( )A .平行与圆锥的一条母线的截面是等腰三角形B .平行与圆台的一条母线的截面是等腰梯形C .过圆锥母线及顶点的截面是等腰三角形D .过圆台的一个底面中心的截面是等腰梯形【针对练习】1、用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能2、下列说法中正确的是()A.半圆可以分割成若干个扇形B.面是八边形的棱柱共有8个面C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台D.截面是圆的几何体,不是圆柱,就是圆锥3、甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法()A.甲正确乙不正确 B.甲不正确乙正确C.甲正确乙正确 D.不正确乙不正确4、用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A.一个几何体是棱锥, 另一个几何体是棱台B.一个几何体是棱锥, 另一个几何体不一定是棱台C.一个几何体不一定是棱锥, 另一个几何体是棱台D.一个几何体不一定是棱锥, 另一个几何体不一定是棱5、用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形6、用一个平面去截正方体,得到的截面可能是、、、、、边形。

高二数学必修一知识点总结

高二数学必修一知识点总结•相关推荐右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2、生活中常见的函数优化问题(1)费用、成本最省问题(2)利润、收益最大问题(3)面积、体积最(大)问题二、推理与证明1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式对于含有参数的一元二次不等式解的讨论(1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

(2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

四、坐标平面上的直线1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。

点到直线的距离,两直线的夹角以及两平行线之间的距离。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。

高二下数学知识点总结.doc

高二数学知识点总结大全(必修)第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)222r rl S ππ+= DC BA α(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

第九章 立体几何9-1空间几何体的结构特征及其直观图、三视图


2.空间点、直线、平面之间的位置关系 这一部分是立体几何的核心.其中四个公理 及其推论是立几理论体系的基础,是空间中 确定平面的依据,是空间中平移变换的依据, 是空间问题转化为平面问题的依据,是作图 的依据,线面的平行与垂直关系是本章的主 体内容,故高考命题一是以客观题形式考查 对线线、线面、面面位置关系的理解与掌 握.二是通过大题考查对空间线线、线面、 面面的平行与垂直的判定与性质定理的掌握, 及有关角与距离的求法.以多面体与旋转体 为载体,结合三视图、直观图及面积、体积 的计算是命题的主要方向.


●课程标准 一、空间几何体 1.利用实物模型、计算机软件观察大量空 间图形,认识柱、锥、台、球及其简单组合 体的结构特征,并能运用这些特征描述现实 生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、 圆锥、棱柱等的简易组合)的三视图,能识 别上述几何体的三视图所表示的立体模型, 会使用材料制作模型,会用斜二测画出它们 的直观图.

3.空间向量与立体几何(理)
高考试题中的立体几何解答题,包括部分选 择、填空题,大多都可以使用空间向量来解 答.高考在注重对立体几何中传统知识和方 法考查的同时,加大了对空间向量的考 查.给考生展现综合利用所学知识解决实际 问题的才能提供更宽阔的舞台.
这一部分高考命题主要有以下几个方面:


、锥、台、球等基本几何体组合而成的 几何体叫做组合体. 8.平行投影 (1)平行投影的有关概念 平行投影:已知图形F,直线l与平面α相交 (下图),过F上任意一点M作直线MM′平行于l, 交平面α于点M′,则点M′叫做M在平面α内关 于直线l的平行投影(或象).

图形的平行投影:如果图形F上的所有点在 平面α内关于直线l的平行投影构成图形F′, 则F′叫做图形F在平面α内关于直线l的平行投 影.平面α叫做投射面,l叫做投射线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)球的小圆的圆心与球心的连线垂 直于这个小圆所在平面。( ) (4)经过球面上不同的两点只能作一 个大圆。(× ) (5)球半径是5,截面圆半径为3,则 球心到截面圆所在平面的距离为4。( )


A、B间的球面距离公式
A
AB R
B
R

O
北极 纬线 北纬40°

60°
90°
经线
赤道
南极
例1: 我国首都北京靠近北纬40度。求北 纬40度纬线的长度约为多少千米(地球 半径约为6370千米)。
A B
40°
K O
O1

A B
A
O
α
B
解: 如图,A是北纬40°纬线圈上一点,AK是它的
半径,所以OK⊥AK。设c是北纬40°纬线长, 因为∠AOB=∠OAK=40°,所以
C =2π· AK = 2π· OAcos∠OAK
oo1 o1 A, oo1 B
OBO1= OAO1 = 45°
A
AO1B= 40°+ 50°= 90°
AO1B=
O1

B
AO1 BO1 AB
2 弧AB长为: AO1 R 2 4
O
A, B两点间的球面距离为: a AO R 3
课堂练习: 课本第62页 1~2
§9.11

———球的概念和性质
平南县实验中学
许玲
一、球的概念
1.定义:与定点的距离等于或小于定长的点的 集合,叫做球体,简称球。与定点距离等于定 长的点的集合叫做球面。 2.; 直径
③球的直径;
④球的表示方 球
法:用表示球 心的字母表示 如球O
O
B
球心
二、用一个平面去截一个球,截面是圆面 : 1.球心和截面圆心的连线垂直于截面
K A 40° ≈2×3.142×6370×0.7660 B O
=3.066×104(km)
答:北纬40°纬线的长度3.066×104km
例2 设地球的半径为R,在北纬45°圈上 有A,B两点,A在西经40°,B在东经50°, (1)求A,B两点间纬线圈的弧长;(2)A,B两 点间的球面距离.
分析:
2.大圆 3.小圆
R A r
d
B
d R r
2
2
三、两点间的球面距离
• 在球面上两点之 间的最短连线的 长度,就是经过 这两点的大圆在 这两点间的劣弧 的长度———— 这个弧长叫两点 的球面距离
Q
P
练习:判断正误: (1)半圆以其直径为轴旋转所成的曲面叫 球。(× ) (2)在空间,到定点的距离等于定长 的所有点的集合叫球。(× )
课堂小结: 1.球的概念。
2.球的截面及其性质。
3.球面距离。 4.应用。(地理中的经线与纬线)
作业P67习题9.9 第3, 4题
R A
d
B
C
微信红包群 / 微信红包群
yrg24zua
娢打了个冷颤,也许是因为冷,也许是被风吹开窗户的声音惊醒了。总之,她不得不醒,不情愿的揉揉眼睛起身,准备关上窗户继续睡觉。她 迷迷糊糊走到窗前,看到了散发着微弱亮光的几片花瓣,以为自己眼花了,再向窗外看去,只剩下了惊恐——整整一树的樱花,繁茂的坠在枝 头,犹如上千只汇聚在一起的萤火虫,随风轻摇之际,偶尔洒下点点荧光,下落之时,便渐渐微弱下来,荧光散尽时,就无法看清它们到底落 在在了何处。“我去……”慕容凌娢赶紧关上了窗户,还不忘把那几片落在窗台上的樱花瓣给吹出去。(古风一言)你是谁朝思暮想的少年,在 绝城的荒途中碾转成歌.第095章 无科学所言她迷迷糊糊走到窗前,看到了散发着微弱亮光的几片花瓣,以为自己眼花了,再向窗外看去,只剩 下了惊恐——整整一树的樱花,繁茂的坠在枝头,犹如上千只汇聚在一起的萤火虫,随风轻摇之际,偶尔洒下点点荧光,下落之时,便渐渐微 弱下来,荧光散尽时,就无法看清它们到底落在在了何处。“我去……”慕容凌娢赶紧关上了窗户,还不忘把那几片落在窗台上的樱花瓣给吹 出去。如果在某部国产鬼片里看到了这种场景,慕容凌娢一定会感叹特效真好,景色真美,随便拍照截屏几张都能当壁纸的。然鹅,这不是电 影,她能想到的最科学的解释就是——这树上有一种奇特的寄生虫,依附在花瓣上,当花瓣掉落时,只能寻找新的寄主才得以存活……想到这 儿,慕容凌娢才突然发觉,这樱花树……好像一直都开着花。就算是被白雪覆盖之时,也能露出点点艳丽的粉红。这不科学啊,莫非本身就是 稀有品种……慕容凌娢就站在窗户边,思绪再次跑偏了。她联想到校园里那棵一年四季都火红的枫树,往届学生都说这枫叶是被所有学生狗的 心血染红的,可学校偏偏说它是棵很珍贵的树,在它的介绍牌上标明了各种信息,牌子最下方还写着“珍贵树木,损坏赔偿”,旁边还一本正 经的留着举报电话。然后……这个牌子被钉子深深钉在了树干上。纠结了半天,慕容凌娢终于开脱了。什么科学不科学的,这个BUG的时代有科 学可言吗?搞得跟我稀里糊涂穿越就很科学是的……不管了,天大地大睡觉最大,好不容易来到了这个无聊的时代,最不缺的就是睡觉时间, 要是这种机会都不好好把握,那真是白穿越了。一觉睡到天亮,慕容凌娢再次被茉莉那根毛茸茸的尾巴弄醒了。“你是不是搞了什么大事情?” 茉莉一脸严肃的提问,搞得慕容凌娢以为自己在做梦。“没有……啊。”慕容凌娢有点懵逼。“那你去跟百蝶解释吧,总之她炸毛了,你去安 抚一下……”茉莉这谎话自己都扯不下去了。“我相信百蝶一定必须要我安抚,我最多是个出气筒。”“那也得去!”茉莉提高生音叫道, “这锅太大,我可
相关文档
最新文档