人教版九年级上数学21.2.1配方法同步练习含答案详解

合集下载

2021-2022学年人教版九年级数学上册21.2.1.2 配方法 课时训练卷 (含答案)

2021-2022学年人教版九年级数学上册21.2.1.2 配方法  课时训练卷   (含答案)

人教版九年级数学上册21.2.1.2 配方法课时训练卷一、选择题(共10小题,3*10=30)1.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A .x 2-2x =5B .x 2+2x =5C .x 2-8x =5D .x 2+4x =52.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=13.将一元二次方程x 2-8x -5=0化成(x +a)2=b(a ,b 为常数)的形式,则a ,b 的值分别是( )A .-4,21B .-4,11C .4,21D .-8,694.对于任意实数x ,多项式x 2-3x +3的值是一个( )A .整数B .负数C .正数D .无法确定5.把2x 2+4x -1化成a(x +h)2+k(其中a ,h ,k 为常数)的形式是( )A .2(x +1)2-3B .2(x +1)2-2C .2(x +2)2-5D .2(x +2)26. 用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A.⎝⎛⎭⎫x -342=1716B.⎝⎛⎭⎫x -342=12C.⎝⎛⎭⎫x -322=134D.⎝⎛⎭⎫x -322=1147.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B.2x 2-7x -4=0化为(x -74 )2=8116C .x 2+8x +9=0化为(x +4)2=25D .3x 2-4x -2=0化为(x -23 )2=1098.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( )A.(x-p)2=5 B.(x-p)2=9C.(x-p+2)2=9 D.(x-p+2)2=59.一元二次方程(x+1)(x-3)=2x-5根的情况是( )A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于310.若菱形ABCD的一条对角线长为8,边CD的长是方程x2-10x+24=0的一个根,则该菱形ABCD 的周长为( )A.16 B.24C.16或24 D.48二.填空题(共8小题,3*8=24)11.填空:(1)x2+(____)+25=(x+5)2;(2)x2-6x+(____)2=(____)2;12. 配方法解方程x2-2x-5=0的根是_____________.13.若x2+2(m-3)x+16是关于x的完全平方式,则m=__________.14.若方程4x2+(m+2)x+1=3的左边可以写成一个完全平方式,则m的值为_______________.15.已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为_________.16.规定:a b=(a+b)b,如:23=(2+3)×3=15.若2x=3,则x=___________.17.当x=_______时,式子5-(x-2)2有最大值,最大值为_______;当y=_______时,式子y2+2y -5有最小值,最小值为_______.18.若代数式M=10a2+b2-7a+8,N=a2+b2+5a+1,请比较M,N的大小是___________.三.解答题(共6小题,46分)19.(6分) 填出用配方法解方程x2+10x+16=0的过程.解:移项,得__________________.两边同时加52,得____________+52=____+52.左边写成完全平方的形式,得________________.直接开平方,得_______________.解得_______________________.20.(7分) 解下列方程:(1) x 2+6x =-7;(2)y 2-3=22y.21.(7分) 用配方法解方程:(1)2x 2-3=4x ;(2)23 x 2=2-13x.22.(8分) 欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a 2. 试说明该方程的一个正根是AD 的长.23.(8分) 某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个矩形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成,如图所示.设AB=x m,请问:当x取何值时,花园的面积最大?最大面积是多少?24.(10分) 先阅读,后解题.若m2+2m+n2-6n+10=0,求m和n的值.解:由已知得m2+2m+1+n2-6n+9=0,即(m+1)2+(n-3)2=0.∵(m+1)2≥0,(n-3)2≥0,∴(m+1)2=0,(n-3)2=0.∴m+1=0,n-3=0.∴m=-1,n=3.利用以上解法,解答下面的问题:已知x2+5y2-4xy+2y+1=0,求x和y的值.参考答案1-5DAACA 6-10ACBDB11. 10x ;3,x -3 12. x 1=1+ 6 , x 2=1- 6 13. -1或7 14. 2或-6 15. 10 16. 1或-317. 2,5;-1,-6 18. M>N19. x 2+10x =-16;x 2+10x ,-16;(x +5)2=9;x +5=±3;x 1=-2,x 2=-820. (1)解:方程两边同时加上32,得(x +3)2=-7+9,即(x +3)2=2. 两边直接开平方,得x +3=±2,解得x 1=-3+2,x 2=-3- 2.(2)解:将方程整理得y 2-22y =3.两边同时加上(-2)2,得(y -2)2=3+2,即(y -2)2=5.两边直接开平方,得y -2=±5,解得y 1=2+5,y 2=2- 5.21. (1)解:x 1=1+102 ,x 2=1-102(2)解:x 1=32,x 2=-2 22. 解:在Rt △ABC 中,∠ACB =90°,BC =a 2,AC =b ,BD =a 2,∴AB =AD +BD =AD +a 2. 由勾股定理,得AB 2=AC 2+BC 2,即⎝⎛⎭⎫AD +a 22=b 2+⎝⎛⎭⎫a 22.∴AD 2+2AD·a 2+a 24=b 2+a 24. ∴AD 2+a·AD =b 2. ∴方程x 2+ax =b 2的一个正根是AD 的长.23. 解:由题意,得花园的面积是x(20-2x)=-2x 2+20x(m 2).∵-2x 2+20x =-2(x -5)2+50,且-2(x -5)2≤0,∴-2(x -5)2+50≤50. ∴-2x 2+20x 的最大值是50,此时x =5,20-2x =10<15,符合题意.∴当x =5时,花园的面积最大,最大面积是50 m 2.24. 解:∵x 2+5y 2-4xy +2y +1=0,∴x 2-4xy +4y 2+y 2+2y +1=0. ∴(x -2y)2+(y +1)2=0. ∴x -2y =0,y +1=0. 解得x =-2,y =-1.。

第二十一章21.2.1配方法

第二十一章21.2.1配方法

=x2+x+ 1 = 3 ,则x2+x- 1 =0,则p=1,q=- 1 ,则pq=- 1 .
44
2
2
2
栏目索引
21.2.1 配方法
栏目索引
1.(2018河北衡水安平期末)在解方程2x2+4x+1=0时,对方程进行配方,图 21-2-1-1①是a小思做的,图21-2-1-1②是小博做的,对于两人的做法,说法正 确的是 ( )
21.2.1 配方法
栏目索引
初中数学(人教版)
九年级 上册
第二十一章 二元一次方程
21.2.1 配方法
栏目索引
21.2.1 配方法
解析 (1)原方程可化为x2=27,
栏目索引
∴x=±3 3 ,
∴x1=3 3 ,x2=-3 3 . (2)原方程可化为(3x+1)2=8,∴3x+1=±2 2 ,
∴x= 1 2 2 , 3
4 3
2
=1
+
4 3
2

,即
x

4 3
2

= 25 .由此可得x+ 4 =± 5 ,解得x1=-3,x2= 1 .
9
33
3
(3)移项,得2x2-x=-2.二次项系数化为1,得x2- 12 x=-1.配方,得x2- 12 x+

1 4
2
=
-1+
21.2.1 配方法
栏目索引
一、选择题 1.(2019天津宁河期中,5,★☆☆)若一元二次方程x2=m有解,则m的取值 为 ( ) A.正数 B.非负数 C.一切实数 D.零
答案 B 当m≥0时,一元二次方程x2=m有解.故选B.

人教版九年级上数学《21.2.1配方法》同步拓展(含答案)

人教版九年级上数学《21.2.1配方法》同步拓展(含答案)

21.2.1配方法基础闯关全练拓展训练1.(2018甘肃定西通渭月考)用配方法解下列方程,配方正确的是()A.3x2-6x=9可化为(x-1)2=4B.x2-4x=0可化为(x+2)2=4C.x2+8x+9=0可化为(x+4)2=25D.2y2-4y-5=0可化为2(y-1)2=62.若方程x2+px+q=0可化为=的形式,则pq=.能力提升全练拓展训练1.(2016北京顺义期末)对于代数式-x2+4x-5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数D.负数2.(2017安徽蚌埠期末)若把x2+2x-2=0化为(x+m)2+k=0的形式(m,k为常数),则m+k的值为()A.-2B.-4C.2D.43.对于任意的两个实数a、b,定义运算※如下:a※b=若x※2=8,则x的值是.4.若a为一元二次方程(x-2)2=4的较大的一个根,b为一元二次方程(y-4)2=18的较小的一个根,则a-b的值为.三年模拟全练拓展训练1.(2017山东潍坊诸城期中,3,★★☆)若一元二次方程x2+bx+5=0配方后为(x-3)2=k,则b,k 的值分别为()A.0,4B.0,5C.-6,5D.-6,42.(2017山东济南长清五中月考,3,★★☆)用配方法解下列方程,其中应在左右两边同时加上4的是()A.x2-2x=5B.x2-8x=4C.x2-4x-3=0D.x2+2x=53.(2016北京朝阳二模,14,★★☆)将一元二次方程x2-6x+5=0化成(x-a)2=b的形式,则ab=.五年中考全练拓展训练1.(2016广东深圳中考,10,★★☆)给出一种运算:对于函数y=x n,规定y'=nx n-1.例如:若函数y=x4,则有y'=4x3.已知函数y=x3,则方程y'=12的解是()A.x1=4,x2=-4B.x1=2,x2=-2C.x1=x2=0D.x1=2,x2=-22.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=.核心素养全练拓展训练1.(2017上海黄埔期中)若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为()A.-9或11B.-7或8C.-8或9D.-6或72.(2016河北迁安期中)在实数范围内定义一种运算“*”,其规则为a﹡b=a2-b2,根据这个规则,方程(x+1)*3=0的解为.21.2.1配方法基础闯关全练拓展训练1.答案A3x2-6x=9可化为(x-1)2=4,故选项A正确;x2-4x=0可化为(x-2)2=4,故选项B错误;x2+8x+9=0可化为(x+4)2=7,故选项C错误;2y2-4y-5=0可化为(y-1)2=,故选项D错误.故选A.2.答案-解析=x2+x+=,则x2+x-=0,则p=1,q=-,则pq=-.能力提升全练拓展训练1.答案D-x2+4x-5=-(x2-4x)-5=-(x-2)2-1,∵-(x-2)2≤0,∴-(x-2)2-1<0,故选D.2.答案A移项得x2+2x=2,配方得x2+2x+1=3,即(x+1)2=3,所以m=1,k=-3,所以m+k=1-3=-2.故选A.3.答案-4解析根据题中的新定义得当x≤2时,x※2=x2+2=8,解得x=(不合题意舍去)或x=-;当x>2时,x※2=2x=8,解得x=4,所以x的值为-或4.4.答案5-2解析方程(x-2)2=4,开方得x-2=2或x-2=-2,解得x1=2+2,x2=2-2.方程(y-4)2=18,开方得y-4=3或y-4=-3,解得y1=4+3,y2=4-3.结合题意知a=2+2,b=4-3,则a-b=2+2-4+3=5-2.三年模拟全练拓展训练1.答案D把x2+bx+5=0配方得=-5,所以=-3,k=-5,所以b=-6,k=4,故选D.2.答案C选项A中,x2-2x+1=5+1,不符合题意;选项B中,x2-8x+16=4+16,不符合题意;选项C中,x2-4x=3,x2-4x+4=3+4,符合题意;选项D中,x2+2x+1=5+1,不符合题意.故选C.3.答案12解析移项得x2-6x=-5,配方得x2-6x+9=-5+9,即(x-3)2=4,所以a=3,b=4,所以ab=12.五年中考全练拓展训练1.答案B由题意可得3x2=12,即x2=4,解得x1=2,x2=-2,故选B.2.答案4解析∵x2=(ab>0),∴x=±,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴±=±2,∴=4.核心素养全练拓展训练1.答案A根据题意知-(k-1)=±2×5×1,∴1-k=±10,即1-k=10或1-k=-10,得k=-9或k=11,故选A.2.答案x1=2,x2=-4解析∵(x+1)*3=0,∴(x+1)2-32=0,∴(x+1)2=9,∴x+1=±3,∴x1=2,x2=-4.。

人教版数学九年级上册 21.2.1 配方法 同步练习题含答案

人教版数学九年级上册    21.2.1 配方法 同步练习题含答案

21.2 解一元二次方程 21.2.1 配方法一、单项选择题1. 下列方程中,无实数根的是( )A .x 2=4B .x 2=2C .4x 2+25=0D .4x 2-25=02. 方程x 2-3x +2=0的解是 ( )A .1和2B .-1和-2C .1和-2D .-1和23.用配方法解方程x 2+2x=8的解为 ( )A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=2 4.用配方法解方程01322=−−x x 应该先变形为 ( )A .98)31(2=−xB .98)31(2−=−x C .910)31(2=−x D .0)32(2=−x 5.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).A .-2B .-4C .-6D .2或66.方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .15C .12或15D .不能确定7. 方程(x+1)2-3=0的根是( )A .x 1=1+3,x 2=1-3B .x 1=1+3,x 2=-1+3C .x 1=-1+3,x 2=-1-3D .x 1=-1-3,x 2=1+38. 下列各命题中正确的是( )①方程x 2=-4的根为x 1=2,x 2=-2②∵(x-3)2=2,∴x-3=2±,即x=3±2③∵x 2-16=0,∴x=±4④在方程ax 2+c=0中,当a≠0,c >0时,一定无实根A .①②B .②③C .③④D .②④9. 把方程x 2+23x-4=0左边配成一个完全平方式后,所得方程是( )A .(x+43)2=1673− B .(x+23)2=415− C .(x+23)2=415 D .(x+43)2=1673 10. 将二次三项式3x 2+8x-3配方,结果为( )A .3(x+38)2+355 B .3(x+34)2-3 C .3(x+34)2-325 D .(3x+4)2-19 11. 已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么x 2-6x+q=2可以配方成下列的( )A .(x-p )2=5B .(x-p )2=9C .(x-p+2)2=9D .(x-p+2)2=512. 用配方法解方程2250x x −−=时,原方程应变形为( )A .()216x +=B .()216x −=C .()229x +=D .()229x −=二、填空题13. +−x x 82_________=(x -__________)2. 14. x x 232−+_________=(x -_________)2. 15. 把右面的式子配成完全平方式:x 2-6x+ =(x- )216. 用配方法将右面的式子转化为(x+m )2+n 的形式:x 2+px+q=(x+ )2+17. 若方程x 2-m=0有整数根,则m 的值可以是 (只填一个)18. 若2(x 2+3)的值与3(1- x 2)的值互为相反数,则x 值为19. 若(x 2+ y 2-5)2=4,则x 2+ y 2=20. 关于x 的方程2x 2+3ax-2a=0有一个根是x=2,则关于y 的方程y 2+a=7的解是21. 方程x 2-6x +8=0的解是22.方程的解是______________.23.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.24.关于x 的方程x 2+mx -8=0的一个根是2,则m=______,另一根是______.三、解答题25. 用配方法解方程x 2+4x =-326. 用配方法解方程241210x x −−=.27. 应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取 任何实数值,二次三项式的值都是正数.042=−x x28. 用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?29. 用配方法说明下列结论:(1)代数式x2+8x+17的值恒大于0;(2)代数式2x-x2-3的值恒小于030. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48(1)求3※5的值(2)求x※x+2※x-2※4=0中x的值(3)若无论x是什么数,总有a※x=x,求a的值答案:一、1---12 CADCD BCDDC BB二、13. 16 4 14. ⋅43,169 15. 23 26 16. 2p 442p q − 17. 1,4,9,…,答案不唯一18. ±319. 3或720. y 1=3 y 2=-321. x 1=2 x 2=4;22. x 1=0 x 2=423. -224. 2 -4三、25. 解: 两边同加上一次项系数一半的平方,配方得x 2+4x+4=-3+4, 即(x+2)2=1,从而21x +=±,得到x 1=-1,x 2=-3.26. 解: 二次项系数化为1,得21304x x −−=,,移项,得2134x x −=, 配方,得2134x x −+=2233(-)+(-)22,得到52x ⎛⎫−= ⎪⎝⎭232,则322x −=±,∴1233,2222x x =−=−− 27. 解: 2x 2-4x +6=2(x 2-2x)+6=2(x 2-2x+1)+6-2=2(x -1)2+4,无论x 取任何实数值,2(x -1)2≥0,则2(x -1)2+4>0.所以无论x 取任何实数值,二次三项式的值都是正数.28. 解;x 2-4x +5= x 2-4x +4+1=(x -2)2+1,无论x 取何值,(x -2)2≥0,所以(x -2)2+1>0.即代数式x 2-4x +5的值总大于0,且当x =2时,代数式x 2-4x +5的值最小,最小值是1.29. 解:(1)x 2+8x+17= x 2+8x+16-16+17=(x+4)2+1∵(x+4)2≥0 ∴(x+4)2+1>0即代数式x 2+8x+17的值恒大于0(2)2x-x 2-3= -x 2+2x -3= -(x 2-2x +3)= -(x 2-2x+1-1 +3)= -[(x-1)2+2]= -(x-1)2-2∵-(x-1)2≤0 ∴-(x-1)2-2<0即代数式2x-x 2-3的值恒小于030. 解:(1)3※5=4×3×5=60(2)x ※x+2※x-2※4=04x 2+8x-32=0x 2+2x-8=0x 2+2x=8x 2+2x+1=8+1(x+1)2=9x+1=±3x+1=3,x+1= -3x1=2,x2=-4(3)a※x=x4ax=x1;当x=0时,a为任意数当x≠0时,a=4。

九年级上册数学 《21.2.1解一元二次方程-直接开平方法》同步练习(有答案)

九年级上册数学 《21.2.1解一元二次方程-直接开平方法》同步练习(有答案)

2018年秋人教版数学九年级上册同步练习21.2.1解一元二次方程-直接开平方法一.选择题(共12小题)1.方程ax2=c有实数根的条件是()A.a≠0 B.ac≠O C.ac≥O D.≥O2.对于形如(x+m)2=n的方程,它的解的正确表达式为()A.都可以用直接开平方法求解,且x=±B.当n≥0时,x=m±C.当n≥O时,x=±﹣mD.当n≥0时,x=±3.方程(x﹣3)2=m2的解是()A.x1=m,x2=﹣m B.x1=3+m,x2=3﹣mC.x1=3+m,x2=﹣3﹣m D.x1=3+m,x2=﹣3+m4.下列方程中,适合用直接开方法解的个数有()①x2=1;②(x﹣2)2=5;③(x+3)2=3;④x2=x+3;⑤3x2﹣3=x2+1;⑥y2﹣2y ﹣3=0A.1 B.2 C.3 D.45.方程(x+2)2=9的适当的解法是()A.直接开平方法B.配方法C.公式法D.因式分解法6.方程(x﹣1)2=0的解是()A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.x1=1,x2=﹣27.若3(x+1)2﹣48=0,则x的值等于()A.±4 B.3或﹣5 C.﹣3或5 D.3或58.用直接开方法解方程(x﹣1)2=4,得到方程的根为()A.x=3 B.x1=3,x2=﹣1 C.x1=1,x2=﹣3 D.x1=x2=39.方程(x﹣3)2=0的根是()A.x=3 B.x=0 C.x1=x2=3 D.x1=3,x2=﹣310.下列方程中,不能用直接开平方法的是()A.x2﹣3=0 B.(x﹣1)2﹣4=0 C.x2+2x=0 D.(x﹣1)2=(2x+1)211.一元二次方程(x﹣2018)2+2017=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.无实数根12.若方程(x﹣1)2=m有解,则m的取值范围是()A.m≤0 B.m≥0 C.m<0 D.m>0二.填空题(共6小题)13.将方程﹣2(y﹣1)2+5=0化成(mx+n)2=p(p≥0)的形式为.14.代数式(x+2)2的值为4,则x的值为.15.关于x的一元二次方程(x﹣2)2=k+2有解,则k的取值范围是.16.方程x2=16的根是x1=,x2=;若(x﹣2)2=0,则x1=,x2=.17.方程3(4x﹣1)2=48的解是.18.(探究过程题)用直接开平方法解一元二次方程4(2x﹣1)2﹣25(x+1)2=0.解:移项得4(2x﹣1)2=25(x+1)2,①直接开平方得2(2x﹣1)=5(x+1),②∴x=﹣7.③上述解题过程,有无错误如有,错在第步,原因是,请写出正确的解答过程.三.解答题(共3小题)19.用直接开平方法解下列方程:(1)(x﹣2)2=3;(2)2(x﹣3)2=72;(3)9(y+4)2﹣49=0;(4)4(2y﹣5)2=9(3y﹣1)2.20.已知一元二次方程(x﹣3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,求△ABC的周长.21.我们把形如x2=a(其中a是常数且a≥0)这样的方程叫做x的完全平方方程.如x2=9,(3x﹣2)2=25,()2=4…都是完全平方方程.那么如何求解完全平方方程呢?探究思路:我们可以利用“乘方运算”把二次方程转化为一次方程进行求解.如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.解决问题:(1)解方程:(3x﹣2)2=25.解题思路:我们只要把3x﹣2 看成一个整体就可以利用乘方运算进一步求解方程了.解:根据乘方运算,得3x﹣2=5 或3x﹣2=.分别解这两个一元一次方程,得x1=,x2=﹣1.(2)解方程.参考答案一.选择题(共12小题)1.D.2.C.3.B.4.D.5.A.6.B.7.B.8.B.9.C.10.C.11.D.12.B.二.填空题(共6小题)13.(y﹣1)2=.14.0,﹣4.15.k≥﹣2.16.(1)x1=4,x2=﹣4;(2)x1=x2=2.17.x=或﹣.18.x1=﹣7,x2=﹣.三.解答题(共3小题)19.(1)x﹣2=±,∴x1=2+,x2=2﹣;(2)(x﹣3)2=36,x﹣3=±6,∴x1=9,x2=﹣3;(3)9(y+4)2=49,∴(y+4)2=,∴y+4=±,∴y1=﹣,y2=﹣;(4)∵2(2y﹣5)=±3(3y﹣1),∴y1=﹣,y2=1.20.解:∵(x﹣3)2=1,∴x﹣3=±1,解得,x1=4,x2=2,∵一元二次方程(x﹣3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,∴①当底边长和腰长分别为4和2时,4=2+2,此时不能构成三角形;②当底边长和腰长分别是2和4时,∴△ABC的周长为:2+4+4=10.21.解:(1)3x﹣2=﹣5,(2)根据乘方运算,得或解这两个一元一次方程,得x1=,x2=.故答案为:﹣5。

初中数学人教版九年级上册课堂练习试卷(21.2.1 配方法)(含答案)

初中数学人教版九年级上册课堂练习试卷(21.2.1 配方法)(含答案)

四川绵阳富乐国际学校初中数学人教版九年级上册课堂练习试卷班级姓名21.2 解一元二次方程21.2.1 配方法一、选择题1.(2019新疆北大附中月考)方程x2+4x+1=0的解是( )A.x1=2+,x2=2-B.x1=2+,x2=-2+C.x1=-2+,x2=-2-D.x1=-2-,x2=2+1.(2019湖北武汉黄陂月考,8,★★☆)已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么p+q的值为( )A.5B.-1C.2D.12.(山东济南长清五中月考,3,★★☆)用配方法解下列方程,其中应在左右两边同时加上4的是( )A.x2-2x=5B.x2-8x=4C.x2-4x-3=0D.x2+2x=54.(上海黄浦期中)若方程25x2-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为( )A.-9或11B.-7或8C.-8或9D.-6或75.(2019湖北武汉江岸月考)方程4x2-1=0的根是( )A.x=B.x1=,x2=-C.x=2D.x1=2,x2=-26.方程2(x+2)2=18的根是( )A.x1=-1,x2=-3B.x1=-1,x2=1C.x1=1,x2=-5D.x1=-2+,x2=-2-7.(2019福建泉州期末)用配方法解方程x2-6x+1=0,下列配方正确的是( )A.(x+3)2=8B.(x-3)2=8C.(x+3)2=9D.(x-3)2=98.一元二次方程x2-px+1=0配方后为(x-q)2=15,那么一元二次方程x2-px-1=0配方后为( )A.(x-4)2=17B.(x+4)2=15C.(x+4)2=17D.(x-4)2=17或(x+4)2=17二、填空题9.已知方程x2+4x+n=0配方后为(x+m)2=3,则(n-m)2 020= .10.(独家原创试题)将一元二次方程x2-8x-8=0化成(x-a)2=b的形式,其中a,b是常数,则方程ax2-b=0的解为.11.对于任意的两个实数a、b,定义运算※:a※b=若x ※2=8,则x的值是.12.(独家原创试题)将一元二次方程x2+8x+13=0通过配方法转化成(x+a)2=b的形式(a,b为常数),则两边长为a,b的直角三角形的第三条边的长为.13.(2018浙江温州期末)已知关于x的方程ax2-bx-c=0(a≠0)的系数满足4a-2b-c=0,且c-a-b=0,则该方程的根是.14.(四川成都成华模拟)定义新运算:a*b=a(b-1),若a、b是关于x的一元二次方程x2-x+m=0的两实数根,则b*b-a*a的值为.15.(2019江苏南京秦淮期中,14,★★☆)关于x的一元二次方程ax2+bx+c=0(a、b、c是常数,a≠0)配方后为(x+1)2=d(d为常数),则= .三、解答题16.解方程:(1)(2x-3)2=25;(2)x2-4x-3=0.17.用配方法解下列方程:(1)x2+12x-15=0;(2)3x2-5x=2;(3)x2-x-4=0.参考答案和解析1.答案 C 移项得x2+4x=-1,配方得x2+4x+4=-1+4,即(x+2)2=3,解得x1=-2+,x2=-2-.故选C.2.答案 A x2-6x+q=0,移项得x2-6x=-q,配方得x2-6x+9=9-q,即(x-3)2=9-q,根据题意知p=3,9-q=7,即q=2,∴p+q=3+2=5.故选A. 3.答案 C 选项A中,x2-2x+1=5+1,不符合题意;选项B中,x2-8x+16=4+16,不符合题意;选项C中,x2-4x=3,x2-4x+4=3+4,符合题意;选项D中,x2+2x+1=5+1,不符合题意.故选C.4.答案 B 由题意可得3x2=12,即x2=4,解得x1=2,x2=-2,故选B.5.答案 B 方程整理得x2=,直接开平方得x=±,∴x1=,x2=-.故选B.6.答案 C 方程两边都除以2,得(x+2)2=9,则x+2=3或x+2=-3,解得x=1或x=-5.故选C.7.答案 B 移项得x2-6x=-1,配方得x2-6x+9=8,即(x-3)2=8.故选B.8.答案 D ∵方程x2-px+1=0配方后为(x-q)2=15,即x2-2qx+q2-15=0,∴-p=-2q,q2-15=1,解得q=4,p=8或q=-4,p=-8.当p=8时,方程为x2-8x-1=0,配方为(x-4)2=17;当p=-8时,方程为x2+8x-1=0,配方为(x+4)2=17.故选D.9.答案 1解析由(x+m)2=3,得x2+2mx+m2-3=0,∴2m=4,m2-3=n,∴m=2,n=1,∴(n-m)2 020=1.10.答案x1=,x2=-解析x2-8x-8=0,移项得x2-8x=8,配方得x2-8x+16=8+16,即(x-4)2=24,∴a=4,b=24.由题意得方程ax2-b=0可化为4x2-24=0,移项得4x2=24,即x2=6,直接开平方得x=±,即x1=,x2=-.11.答案-或4解析根据题中的新定义得,当x≤2时,x※2=x2+2=8,解得x=(不合题意,舍去)或x=-;当x>2时,x※2=2x=8,解得x=4,所以x的值为-或4.12.答案 4解析∵x2=(ab>0),∴x=±,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2,-2,∴±=±2,∴=4.13.答案 A 根据题意知-(k-1)=±2×5×1,∴1-k=±10,即1-k=10或1-k=-10,得k=-9或k=11,故选A.14.答案5或解析x2+8x+13=0,移项得x2+8x=-13,配方得x2+8x+16=-13+16,即(x+4)2=3,∴a=4,b=3.若a和b为两直角边的长,则斜边长为=5;若a为斜边的长,则第三条边的长为-=.15.答案 1解析ax2+bx+c=0,移项得ax2+bx=-c,系数化为1得x2+x=-,配方得x2+x+=-+,即=-,∴=1.16.解析(1)直接开平方,得2x-3=±5,解得x1=4,x2=-1.(2)移项,得x2-4x=3,配方,得x2-4x+4=7,即(x-2)2=7,∴x-2=±,解得x1=2+,x2=2-.17.解析(1)移项,得x2+12x=15,配方,得x2+12x+62=15+62,即(x+6)2=51,∴x+6=±,解得x1=-6+,x2=-6-.(2)系数化为1,得x2-x=,配方,得x2-x+-=+-,即-=,∴x-=±,解得x1=2,x2=-.(3)移项,得x2-x=4,系数化为1,得x2-4x=16,配方,得x2-4x+(-2)2=16+(-2)2, 即(x-2)2=20,∴x-2=±2,解得x1=2+2,x2=2-2.。

人教版九年级数学上册用配方法解一元二次方程

人教版九年级数学上册用配方法解一元二次方程
一元二次方程
21.2.1用配方法解一元二
次方程
(3) x2+5x+ =(x+ )2; 解:移项,得 2x2-3x=-1.
学习目标
C(x-8)2=16 C(x+8)2=57
3、理解配方法的关键、基本思想和步骤;
A(x-4)2=9 B(x+4)2=9
对于二次项系数不为1的一元二次方程,
像上面那样,把方程左边变成一个含有未知数的
(3)x2+4x-9=2x-11
(4)x(x+4)=8x+12
(5)求解
(6)定根
解下列方程
x2 10x 9 0 3x2 6x 4 0 x2 4x 9 2x 11
归纳:
像上面那样,把方程左边变成一 个含有未知数的 完全平方 式,右边 是一个 非负 数,再用直接开平方法 来解一元二次方程的方法叫做配 方法. 配方是为了 降次 ,把一个一 元二次方程转化成两个一元一次方程来 解.
例1 解下列方程:
(1) x2-8x+1=0;
解:移项,得:x2-8x=__-_1_.
这种解一元二次方程的方法叫做开平方法. (1)移项,使方程左边为_________项、_______项,右边为_____项:(一移)
用配方法求解时首先要怎样做 ? =(a-b) 2
_______________
用配方法解方程 X2 + 8X + 7 = 0方程可化为( )
首先要把二次项系数化为1 A(x-4)2=9
配方,得
x2-8x+__4__2 _ =-1+__4_2__,
(____X_-_4___)2=__1_5____.
∴ x-4=____1_5___.
即x-4=__1__5__ 或 x-4=_____1_5__.

2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)

2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)

21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2.1配方法
测试时间:15分钟
一、选择题
1.一元二次方程(x-2019)2+2018=0的根的情况是()
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.无实数根
2.方程2(x-3)2=8的根是()
A.x1=2,x2=-2
B.x1=5,x2=1
C.x1=-5,x2=-1
D.x1=-5,x2=1
3.(2018辽宁大连沙河口期末)用配方法解方程x2-x-1=0时,应将其变形为()
A.-=
B.=
C.-=0
D.-=
4.一元二次方程x2-px+1=0配方后为(x-q)2=15,那么一元二次方程x2-px-1=0配方后为()
A.(x-4)2=17
B.(x+4)2=15
C.(x+4)2=17
D.(x-4)2=17或(x+4)2=17
二、填空题
5.小明设计了一个如图所示的实数运算程序,若输出的数为5,则输入的数x为.
输入x x2-1输出
6.已知方程x2+4x+n=0配方后为(x+m)2=3,则(n-m)2019=.
三、解答题
7.解方程:
(1)(2x-3)2=25;
(2)x2-4x-3=0.(配方法)
8.用配方法解下列方程:
(1)x2+12x-15=0;
(2)3x2-5x=2;
(3)x2-x-4=0.
21.2.1配方法
一、选择题
1.答案D由原方程得(x-2019)2=-2018.∵(x-2019)2≥0,-2018<0,∴该方程无解.故选D.
2.答案B由原方程,得(x-3)2=4,则x-3=±2,解得x1=5,x2=1.故选B.
3.答案D∵x2-x-1=0,∴x2-x=1,∴x2-x+=1+,∴-=.
4.答案D∵方程x2-px+1=0配方后为(x-q)2=15,即x2-2qx+q2-15=0,∴-p=-2q,
q2-15=1,解得q=4,p=8或q=-4,p=-8.当p=8时,方程为x2-8x-1=0,配方为(x-4)2=17;当p=-8时,方程为x2+8x-1=0,配方为(x+4)2=17.故选D.
二、填空题
5.答案±
解析根据题意知x2-1=5,∴x2=5+1,∴x2=6,x=±,则输入的数x为±.
6.答案-1
解析由(x+m)2=3,得x2+2mx+m2-3=0,∴2m=4,m2-3=n,∴m=2,n=1,∴(n-m)2019=-1.
三、解答题
7.解析(1)2x-3=±5,
x1=4,x2=-1.
(2)x2-4x=3,
x2-4x+4=7,
(x-2)2=7,
x-2=±,
∴x1=2+,x2=2-.
8.解析(1)移项,得x2+12x=15,
配方,得x2+12x+62=15+62,
即(x+6)2=51,
∴x+6=±,
解得x1=-6+,x2=-6-.
(2)系数化为1,得x2-x=,
配方,得x2-x+-=+-,
即-=,
∴x-=±,
解得x1=2,x2=-.
(3)移项,得x2-x=4,
系数化为1,得x2-4x=16,
配方,得x2-4x+(-2)2=16+(-2)2,即(x-2)2=20,
∴x-2=±2,
解得x1=2+2,x2=2-2.。

相关文档
最新文档