第22章一元二次方程

合集下载

一元二次方程复习课(绝对经典)

一元二次方程复习课(绝对经典)
2
2
关于 x的一元二次方程 x (2k 3) x k 0有
2 2
两个不相等的实数根 、
(1)求k的取值范围; ( )若 6, 求( ) 3 5的值 2 解: )由题意得, (2
2
解得, k1 1, k 2 3 3 k , k 1 4
2 8、x 2 4 x 2 0, 请用配方法转化成( m) n的 x
形式,则
( x 2) 2
2
9、请写出一个一元二次方程,
它的根为-1和2
(x+1)(x-2)=0
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
的一个根是-1,则
4 , 另一根为______ x=-3
若a为方程 x2 x 5 0 的解,则 a 2 a 1 的值 为 6
6、若a是方程x 3x 3 0的一个根,则
2
3a 9a 2
2
11
2
7、n是方程x m x n 0一个根(n 0), n m -1
2、若(m+2)x 2 +(m-2) x -2=0是关于x的一元二 ≠- 2 次方程则m 。
一元二次方程的一般式
ax bx c 0 (a≠0)
2
一元二次方程 一般形式 二次项系 一次项 常数项 数 系数
3x²=1
2y(y-3)= -4
3x²-1=0
2y2-6y+4=0
3 2
0
-6
-1 4

(好)第22章_一元二次方程_全章学案

(好)第22章_一元二次方程_全章学案

第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

数学:22.1《一元二次方程》课件(人教版九年级上)

数学:22.1《一元二次方程》课件(人教版九年级上)
解析:原方程化为一般形式为 x2-11x+4=0.
4.把下列关于 x 的一元二次方程化为一般形式,并指出二 次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c. 5.如果 2 是一元二次方程 x2+2x=c 的一个根,那么常数
;石器时代私服 / 石器时代私服
由于北方战乱不堪 北方大族及大量汉族人口迁徙江南 都督一般由征 镇 安 平等将军或大将军担任 建了国子学 甚有条理 安乐公 疆域渐渐南移 后燕 并州饥民向冀豫地区乞食 科技 [28] 改以淮水为界 ?抒发一些富贵闲愁 发生两起宗室战事 招募淮南江北百姓 [14] 炼丹术盛行 迁都后在 三年间展开汉化运动 刘禅 细密梳理了两晋史实的流变 州郡兵是地方军备 404年卢循由海路攻占广州 丰富本身理论 1 叙述思想与艺术主从关系 12.304年司马颖遭王浚围攻 416年12月 14 前仇池 358年慕容俊下令全国州郡整顿户口 中文名 南朝有名的碑如《爨龙颜碑》 《瘗鹤铭》等 手 工业 设有管理州境内其他民族的护军 纳规定数目的三分之二 桓玄篡位 史称王敦之乱 东晋初 410年 门阀士族达到极盛阶段 渐渐发展出“河西文化” 至此确定了三省制度 经学 司马炎认为 甚至发生“人相食 谢玄等人乘胜追击 社会动荡 西晋 疆域 众多人民前往避难 东晋“青釉鸡首 壶” 不少方镇心怀野心 大破司马尚之 7 衣冠南渡 到了西晋时 阴谋篡夺 冉闵 贪污奢侈 派谢石谢玄率军 慕容俊继位后 于373年攻下东晋梁益二州 当时主要流亡潮有六次 906,次年颁行全国 公元280年灭孙吴 自魏晋起至

22 一元二次方程

22 一元二次方程

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,- 1 -x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= . 8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:- 2 -用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= .b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;- 3 -- 4 -(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x2解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2. 22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac== >0.=_________,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;- 5 -(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)- 6 -22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.- 7 -解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.- 8 -- 9 -=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.。

人教版九年级数学上册第22章:二次函数与一元二次方程

人教版九年级数学上册第22章:二次函数与一元二次方程

判断方程 ax2+bx+c =0 (a≠0,a、b、c为常数)一个解
x的范围是( C )
A. 3< x < 3.23
B. 3.23 < x < 3.24
C. 3.24 <x< 3.25 D. 3.25 <x< 3.26
随堂即练
2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一 元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= -1.
B.第一、二、三象限
C.x轴下方
D.第二、三、四象限
能力提升
已知二次函数 y x2 6x 8的图象,利用图象回答问题:
(1)方程 x2 6x 8 0的解是什么? y
(2)x取什么值时,y>0 ?
8
(3)x取什么值时,y<0 ?
解:(1)x1=2,x2=4; (2)x<2或x>4; (3)2<x<4.
如:y=5时,则5=ax2+bx+c就是 一个一元二次方程.
新课讲解
所以二次函数与一元二次方程联系密切.
例如,已知二次函数y = -x2+4x的值为3,求自变量x的 值,可以看作解一元二次方程-x2+4x=3(即x2- 4x=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自变量x的值.
没有交点
没有实数根
b2-4ac < 0
新课讲解
3 图象法解一元二次方程
由前面的结论,我们可以利用二次函数的图象求一元二次方
程的根.由于作图或观察可能存在误差,由图象求得的根,一般是
近似的.
例 利用函数图象求方程x2-2x-2=0的

第二十二章一元二次方程单元知识结构图

第二十二章一元二次方程单元知识结构图

第二十二章 一元二次方程小结与复习(分3课时完成)一、知识结构二、知识点归纳1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______( )其中二次项系数是______,一次项系数是______,常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;(•4)•求根公式法,•求根公式是3.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.4.一元二次方程的根与系数的关系:(根与系数关系的前提条件是根的判别式必须大于或等于零)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么: 结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 5.一元二次方程应用题.三、典型习题(一)一元二次方程概念1.在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-=0 A .1个 B .2个 C .3个 D .4个2.方程2x 2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( ).A .2,3,-6B .2,-3,18C .2,-3,6D .2,3,6 3.方程x (x-1)=2的两根为( ).acx x a b x x =⋅-=+2121,5xA .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=1,x 2=2D .x 1=-1,x 2=2 4.已知x=-1是方程ax 2+bx+c=0的根(b ≠0),则( ). A .1B .-1C .0D .25.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 6.一元二次方程的一般形式是 .7.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________. 8.已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________.9.a 满足什么条件时,关于x 的方程a (x 2+x )x-(x+1)是一元二次方程?10.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?11.如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.(二)解一元二次方程的方法:1.将二次三项式x 2-4x+1配方后得( ).A .(x-2)2+3B .(x-2)2-3C .(x+2)2+3D .(x+2)2-3 2.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 3.方程x 2+4x-5=0的解是________.4.代数式的值为0,则x 的值为________. 5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.7.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 8.当x=______时,代数式x 2-8x+12的值是-4.9.已知方程x 2+px+q=0有两个相等的实数,则p 与q 的关系是________.10.已知b ≠0,不解方程,试判定关于x 的一元二次方程x 2-(2a+b )x+(a+ab-2b 2)•=0的根的情况是________. 11.如果x 2-4x+y 2+13=0,则(xy )z •=2221x x x ---12.某数学兴趣小组对关于x 的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元一次方程m 是否存在?若存在,请求出.13.用直接开平方法解下列方程(1)3x 2+9=0 (2)8x 2-16=0 (3)(x-)2=2(x-3)2=7214.用配方法解下列方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 (3)9y 2-18y-4=0 (4)x 215.用公式法解下列方程.(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2x+=0 (4)4x 2-3x+2=016.用因式分解法解下列方程.(1)3y 2-6y=0 (2)25y 2-16=0 (3)x 2-12x-28=0 (4)x 2-12x+35=017.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0 (3)2x 2-9x+8=0 (4)x 2-7x-18=0 18.不解方程,写出下列方程的两根和与两根积:22m x+13891212013)1(2=--x x 0532)2(2=-+x x 02231)3(=-x x。

第22章 一元二次方程教案全章

第22章 一元二次方程教案全章

教学时间: 教学课题:22.1 一元二次方程 教学课型:新授课 教学目标1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根4.通过根据实际问题列方程,向学生渗透知识来源于生活.5通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式. 教学重点:一元二次方程的一般形式和一元二次方程的根的概念 教学难点:通过提出问题,建立一元二次方程的数学模型 教学过程 一、复习引入小学学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。

从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 (一)探究课本问题2 分析:1.参赛的每两个队之间都要比赛一场是什么意思?2.全部比赛场数是多少?若设应邀请x 个队参赛,如何用含x 的代数式表示全部比赛场数? 整理所列方程后观察:1.方程中未知数的个数和次数各是多少?2.下列方程中和上题的方程有共同特点的方程有哪些?4x+3=0;0422=-+x x ;042=-+y x ;0350752=+-x x ;0621=-+x x(二)概念归纳: 1.一元二次方程定义:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: ①为什么规定a ≠0?②方程左边各项之间的运算关系是什么?关于x 的一元二次方程()002≠=--a c bx ax 的各项分别是什么?各项系数是什么?3.特殊形式:()002≠=+a bx ax ;()002≠=+a c ax ;()002≠=a ax (三)课本例题类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. (四)一元二次方程的根的概念1.类比一元一次方程的根的概念获得一元二次方程的根的概念2.下面哪些数是方程x 2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0(2)x 2+1=0 (3)x 2-3x=0 (4)0122=++x x 4.思考:一元一次方程一定有一个根,一元二次方程呢?5.排球邀请赛问题中,所列方程562=-x x 的根是8和-7,但是答案只能有一个,应该是哪个? 归纳:①一元二次方程的根的情况 ②一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充:1).在下列方程中①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0,一元二次方程的个数是( )A .1个B .2个C .3个D .4个2).关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 范围________. 3).已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________ 4).关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗? 四、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P28:1-7 选做:.P29:8、9教学时间:教学课题:22.2.1配方法(1) 教学课型:新授课教学目标1.理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.3.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.4.通过根据实际问题列方程,向学生渗透知识来源于生活.5.通过观察,思考,对比获得一元二次方程的解法-----直接开平方法,配方法教学重点:1.运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.2用配方法解二次项是1,一次项系数是偶数的一元二次方程教学难点:降次思想,配方法教学过程一、复习引入已经学习了一元二次方程的概念,本节课开始学习其解法,首先学习直接开平方法,配方法.二、探究新知(一)探究课本问题11.用列方程方法解题的等量关系是什么?2.解方程的依据是什么?3.方程的解是什么?问题的答案是什么?4.该方程的结构是怎样的?归纳:可根据数的开方的知识解形如x2=p(p≥0)的一元二次方程,方程有两个根,但是不一定都是实际问题的解.(二)解决课本思考1如何理解降次?2本题中的一元二次方程是通过什么方法降次的?3能化为(x+m)2=n(n≥0)的形式的方程需要具备什么特点?归纳:1运用平方根知识将形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程降次,转化为两个一元一次方程,解一元一次方程即可;2左边是含有未知数的完全平方式,右边是非负常数的一元二次方程可化为(x+m)2=n(n≥0).(三)探究课本问题21.根据题意列方程并整理成一般形式.2.将方程x2+6x-16=0和x2+6x+9=2对比,怎样将方程x2+6x-16=0化为像x2+6x+9=2一样,左边是含有未知数的完全平方式,右边是非负常数的方程?①完成填空:x2+6x+ =(x+ )2②方程移项之后,两边应加什么数,可将左边配成完全平方式?归纳:用配方法解二次项系数是1且一次项系数是偶数的一元二次方程的一般步骤及注意事项:先将常数项移到方程右边,然后给方程两边都加上一次项系数的一半的平方,使左边配成完全平方式的三项式形式,再将左边写成平方形式,右边完成有理数加法运算,到此,方程变形为(x+m)2=n(n≥0)的形式.三、课堂训练课本练习: P31页练习,P34页练习1,2(1)四、小结归纳1.根据平方根的意义,用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程.2.用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,特别地,移项后方程两边同加一次项系数的一半的平方.3.在用方程解决实际问题时,方程的根一定全实际是问题的解,但是实际问题的解一定是方程的根.五、作业设计必做:P42:1、2、3(1)(2)选做:下面补充作业补充作业:1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-24.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-116.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?教学时间: 教学课题:22.2.1配方法(2) 教学课型:新授课 教学目标:1.进一步理解配方法和配方的目的.2.掌握运用配方法解一元二次方程的步骤.3.会利用配方法熟练灵活地解二次项系数不是1的一元二次方程.4.通过对比用配方法解二次项系数是1的一元二次方程,解二次项系数不是1的一元二次方程,经历从简单到复杂的过程,对配方法全面认识 教学重点:用配方法解一元二次方程 教学难点:用配方法解二次项系数不是1的一元二次方程,首先方程两边都除以二次项系数,将方程化为二次项系数是1的类型 教学过程 一、复习引入我们在上节课,已经学习了用直接开平方法解形如x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程,以及用配方法解二次项系数是1,一次项系数是偶数的一元二次方程,这节课继续学习配方法解一元二次方程. 二、探究新知 1.填空: ①()22________8+=++x x x②()22________-=+-x x x③()22____4___+=++x x ④()22____49___-=+-x x 2.填空: ①a x x++82是完全平方式,a=②92++mx x是完全平方式,m =3.解下列方程:①x 2-8x+7=0 ②2x 2+8x-2=0 ③2x 2+1=3x ④3x 2-6x+4=0 分析:(1)解方程①,复习用配方法解二次项系数为1的一元二次方程步骤;(2)对比○1的解法得到方程○2的解法,总结出用配方法解二次项系数不为1的一元二次方程的一般步骤: ①.把常数项移到方程右边;②.方程两边同除以二次项系数,化二次项系数为1; ③.方程两边都加上一次项系数一半的平方; ④.原方程变形为(x+m )2=n 的形式;⑤.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.(3)运用总结的配方法步骤解方程○3,先观察将其变形,即将一次项移到方程的左边,常数项移到方程的右边;解方程○4配方后右边是负数,确定原方程无解. (4) 不写出完整的解方程过程,到哪一步就可以确定方程的解得情况? 三、课堂训练1.方程()的形式,正确的是化为b a x x x =+=+-2202344( )A.()4532=-x B.()4532-=-x C.41232=⎪⎪⎭⎫ ⎝⎛-x D.3232=⎪⎪⎭⎫⎝⎛-x 2.配方法解方程2x 2-43x-2=0应把它先变形为( ). A .(x-13)2=89 B .(x-23)2=0 C .(x-13)2=89 D .(x-13)2=1093.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(12x-a )2=a4.解决课本练习2(2)到(6)5.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-26. a ,b ,c 是ABC ∆的三条边①当bc c ab a 2222+=+时,试判断ABC ∆的形状. ②证明02222<-+-ac c b a四、小结归纳:用配方法解一元二次方程的步骤 1.把原方程化为()002≠=++a c bx ax 的形式, 2.把常数项移到方程右边;3.方程两边同除以二次项系数,化二次项系数为1;4.方程两边都加上一次项系数一半的平方;5.原方程变形为(x+m )2=n 的形式;6.如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.不写出完整的解方程过程,原方程变形为(x+m )2=n 的形式后,若n 为0,原方程有两个相等的实数根;若n 为正数,原方程有两个不相等的实数根;若n 为负数,则原方程无实数根. 五、作业设计必做:P42:3(3)(4) 选做:P43:8、9教学时间: 教学课题:22.2.2公式法 教学课型:新授课 教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.4.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;5.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单. 教学重点:求根公式的推导,公式的正确使用 教学难点:求根公式的推导 教学过程 一、复习引入我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax二、探究新知活动1.学生观察下面两个方程思考它们有何异同?①6x 2-7x+1=0 ②()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到 x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2ba )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a - 5.直接开平方得到x-712=±512,注意:(x+2ba)2=2244b ac a -是否可以直接开平方? 活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法. 活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:①把方程整理成一般形式,确定a,b,c 的值,注意符号②求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.③在ac b 42-≥0的前提下把a ,b ,c 的值带入公式.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3. 一元二次方程求根公式适用于任意一个一元二次方程. 五、作业设计 必做:P42:4、5 选做:P43:11、12某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示) (2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学时间: 教学课题:22.2.3因式分解法 教学课型:新授课 教学目标1.了解因式分解法的概念.2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.4.体验解决问题方法的多样性,灵活选择解方程的方法.教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程 教学难点:将整理成一般形式的方程左边因式分解 教学过程 一、复习引入我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法. 二、探究新知 1.因式分解x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1 2.若ab=0,则可以得到什么结论? 3.试求下列方程的根 :x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解. 4. 试求下列方程的根①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0 ②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2 ③、x 2+10x+25=0 9x 2-24x+16=0; ④、5x 2-2x-41= x 2-2x+432x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. ④中的方程结构较复杂,需要先整理.5.选用合适方法解方程x2+x+41=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.三、课堂训练1.完成课本练习2.补充练习:①已知(x+y)2 –x-y=0,求x+y的值.②下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x 两边同除以x,得x=1③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳本节课应掌握:1.用因式分解法解一元二次方程2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程五、作业设计必做:P43:6、10选做:P43:13、14教学时间:教学课题:22.2.4一元二次方程的根与系数关系教学课型:新授课教学目标:1.熟练掌握一元二次方程的根与系数关系.2.灵活运用一元二次方程的根与系数关系解决实际问题.3.提高学生综合运用基础知识分析解决较复杂问题的能力.4.学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明教学重点:一元二次方程的根与系数关系教学难点:对根与系数关系的理解和推导教学过程一、复习引入一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考分析:将(x- x1)(x-x2)=0化为一般形式x2-( x1 +x2)x+ x1 x2=0与x2+px+ q=0对比,易知p=-( x1 +x2),q= x1 x2. 即二次项系数是1的一元二次方程如果有实数根,则一次项系数等于两根和的相反数,常数项等于两根之积.2.跟踪练习求下列方程的两根x1、x2. 的和与积.x2+3x+2=0;x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x2和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比. 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到,因此,任何一个一元二次方程化为一般形式后根与系数之间都有这一关系.5.跟踪练习求下列方程的两根x1、x2. 的和与积.①3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;②5x-1=4x2;5x2-1=4x2+x6.拓展练习①已知一元二次方程2x 2+bx+c=0的两个根是-1,3,则b= ,c= .②已知关于x 的方程x 2+kx-2=0的一个根是1,则另一个根是 ,k 的值是 .③若关于x 的一元二次方程x 2+px+q=0的两个根互为相反数,则p= ; 若两个根互为倒数,则q= . 分析:方程中含有一个字母系数时利用方程一根的值可求得另一根和这个字母系数;方程中含有两个字母系数时利用方程的两根的值可求得这两个字母系数.二次项系数是1时,若方程的两根互为相反数或互为倒数,利用根与系数的关系可求得方程的一次项系数和常数项.④两个根均为负数的一元二次方程是( )A.4x 2+21x+5=0B.6x 2-13x-5=0C.7x 2-12x+5=0D.2x 2+15x-8=0⑤.两根异号,且正根的绝对值较大的方程是( )A.4x 2-3=0B.-3x 2+5x-4=0C.0.5x 2-4x-3=0D.2x 2+53x-6=0⑥.若关于x 的一元二次方程2x 2-3x+m=0,当m 时方程有两个正根;当m 时方程有两个负根;当m 时方程有一个正根一个负根,且正根的绝对值较大.三、课堂训练1.完成课本练习2.补充练习:x 1 ,x 2是方程3x 2-2x-4=0的两根,利用根与系数的关系求下列各式的值:①2111x x +; ②221212x x x x + ③2221x x +; ④()221x x -;⑤2112x x x x + 四、小结归纳本节课应掌握:1. 韦达定理二次项系数不是1的方程根与系数的关系2. 运用韦达定理时,注意隐含条件:二次项系数不为0,△≥0;3.韦达定理的应用常见题型:①不解方程,判断两个数是否是某一个一元二次方程的两根;②已知方程和方程的一根,求另一个根和字母系数的值;③由给出的两根满足的条件,确定字母系数的值;④判断两个根的符号;○5不解方程求含有方程的两根的式子的值. 五、作业设 计必做:P43:7选做:补充作业:已知一元二次方程x 2+3x+1=0的两个根是βα、,求αββα+的值.教学时间:教学课题:22.3实际问题与一元二次方程(1)教学课型:新授课教学目标:1.使学生会列出一元二次方程解应用题,初步掌握利用一元二次方程解决生活中的实际问题.2.培养学生的阅读能力.3.通过根据实际问题列方程,向学生渗透知识来源于生活.4.通过观察,思考,交流,进一步提高逻辑思维和分析问题解决问题能力.5.经历观察,归纳列一元二次方程的一般步骤教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程一、复习引入同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.二、探究新知●探究课本30页问题1分析:设正方体的棱长是xdm,则一个正方体的表面积是多少?10个呢?等量关系是什么?●探究课本38页问题分析:设物体经过xs落回地面,这时它离地面的高度是多少?●某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税为利息的20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推●课本46页探究2分析:设甲种药品的成本年平均下降率为x,则一年后甲种药品成本是多少?两年后甲种药品成本是多少?相关的等量关系是什么?类似的乙甲种药品成本的年平均下降率是多少?相关的等量关系是什么?方程的解都是该问题的解吗?如果不是,如何选择?为什么?如何回答课本46页思考?归纳:通过解决以上问题,列一元二次方程解实际问题的基本步骤是什么?与以前学过的列方程解实际问题的步骤有何异同?●某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:设平均增长率是x ,则二月份生产电视机的台数是多少?三月份生产电视机的台数是多少?第一季度生产电视机的总台数还可以怎样表示?等量关系是什么?归纳:以上这几道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.三、课堂训练补充练习:①.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元②.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ ③. 2009年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )2四、小结归纳1.列一元二次方程解应用题的一般步骤2.利用一元二次方程解决实际生活中的百分率问题五、作业设计必做:P48:1、2、3选做:P49:9补充作业:上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?教学时间:教学课题:22.3实际问题与一元二次方程(2)教学课型:新授课教学目标:1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.4.通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程教学重点:建立数学模型,找等量关系,列方程教学难点;找等量关系,列方程教学过程:一、复习引入通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知●课本45页探究1分析:①设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.②第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?③第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?④本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.●课本47页探究3分析:①正中央的长方形与整个封面的长宽比例相同,是什么含义?②上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?③若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?④“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为。

第22章 一元二次方程复习

第22章 一元二次方程复习

第22章一元二次方程复习(1)一元二次方程及其解法樊城区太平店中学刘玉萍一、内容与内容解析1、内容复习一元二次方程及其有关的概念,一元二次方程的基本解————配方法、公式法、因式分解法,一元二次方程根与系数的关系等知识,建立知识体系,综合运用一元二次方程的知识解决有关的问题。

2、内容解析本章学习了一元二次方程。

在学习中通过具体实例认识了一元二次方程,探索了一元二次方程的解法,研究了实际问题与一元二次方程,分别讨论了传播问题、增长率问题和几何图形面积问题。

本章的重点是一元二次方程的解法及应用一元二次方程解决实际问题。

这些知识都是方程领域的基础知识,在以后学习“二次函数”中“用函数的观点看一元二次方程”也要用到,这部分内容掌握不好,将会影响后续内容的学习。

学好这部分内容的关键是要使学生理解一元二次方程的一般形式;一元二次方程根的情况;一元二次方程根与系数的关系等知识。

并将一元二次方程与一元一次方程作类比,因为一元二次方程是一元一次方程的拓展和延伸,一元一次方程是学习一元二次方程的基础。

在本章的学习过程中需要学生通过观察、对比、归纳、类比等来发现一元二次方程的解法,同时还要注意引导学生分析方程的特点,引导学生进行转化,是学生学会把未知化为已知,把复杂问题化为简单问题的思考方法。

作为本章复习课的第一节课,本节主要复习一元二次方程的有关概念;一元二次方程的解法;一元二次方程的根与系数的关系。

本节内容是对本章重点知识的巩固和提高,通过复习使学生能够熟练地选用适当的方法解一元二次方程,进一步体会一元二次方程化归降次的思想。

由以上的分析,确定本节课的教学重点是:灵活应用一元二次方程的解法解决有关的问题。

二、教材解析本节课主要内容是复习巩固一元二次方程有关概念和一元二次方程的解法及根与系数的关系等知识,重点是一元二次方程的解法。

在知识回顾的过程中,结合问题让学生通过独立思考,回顾所学的内容,建立相应的知识结构图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1 一元二次方程一.知识点总结1> 一元二次方程的概念 2、 一元二次方程的一般形式 3、 一元二次方程的解(根)题型一:一元二次方程的概念问题卜列方程中,一元二次方程共有().1 * ①谿+ “0②加-3&+—0③八严 ④宀]⑤宀§+3=0A. 2个B ・3个C ・4个D ・5卜列方程中是关丁 X 的一元二次方程的是14、 __________________________________________ 方程3妒=7x+3的一般形式是 .15、 _____________________________________________________ 把一元二次方程兀仗~9 = 4化简为一般形式是 ________________________________________________ •一 16、 若方程(m-2) x m2_5m+8+(m+3)x +5=0是一元二次方程,求m 的值17、 已知关丁・x 的方程⑷一加八十側十1)工十3心1二0.当尬为何值时,该方程是-元二 次方程?18、已知关丁• x 的方程(圧/ +必+,-1 = 0题型总结2、 A.%2+7 = 0 B .卅+加+*Oc(兀一1)(兀+2) = 1 D=03、 卜列方程中,是一元二次方程的是( ).A. r+3=0B.x 2-3y = 0c.4、 A r- - = 0x5、 A. (x +3)(1-3) = 1 D. 若5x2=6x —8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是5, 6, —8B 、5, —6, —8C 、5, —6, 8D 、6, 5, —8一元二次方程3X 2-4X =5的二次项系数是( )3 B. -4 C.5 D.・5 C> 5, —6, 8<1)当d为何值时,方程是一元二次方程:(2)当该方程有两个实根.其中一根为0时,求日的值.题型二:一元二次方程的解(根)2K若x=2是关Tx的一元二次方程运+8 =°的一个解,则m的值是(〉A. 6B. 5C. 2D・・62、如果x=4是一元二次方程x -3x=a的一个根,那么常数a的值是().A.2B.-2C.±2D.+42 十3、已知关丁x的方程兀°的一个根为= 则实数上的值为()A. 1B. 一1C. 2D. 一22 24、若x=1是关丁・X的方程2x = °的一个实数根,则a的值为()A. 0B. -2C. 1D.・2或15、关丁朋的一元二次方程@一1)尤_1 =°有一个根是0,则么值为()A. 1 B・ T C. 1 或T D. 26、己知关Tx的方程* 一2兀+2怎=°的一个根是仁则矗________ .7、若方程4戏一喘汇+汇=2的一个根2,则酬=2&己知一元二次方程么兀+兀一$ = °的一根为仁则a・b的值是_________ ・2 29、己知自是方程x -2x-1= 0的一个根,则自-2^+3的值是 _________________ :10、若乳=1是方程QX —3 = °的一个根,则如・题型三:利用一元二次方程巧求代数式的值仁己知m是方程x2-x- 1 =0的一个根,则代数m2—m的值等于()A、1B、一1C、0 Dx 22、已知关丁x的方程x2+bx+a=0有一个根是一a(aHO丿,则d—b的值为()A. - 1 B・ 0 C・ 1 D・ 22A. 1B. 2 C・ 1 或2 D・ 03、若关丁•兀的-元二次方程为处一如-4 0(x0) ,那么4a-6b的值是(A.4B.5C.8D.1O4、在方程衣+加+c = 0("0)中,若有a_b+c = 0,则方程必有-根为()。

A、1B、TC、±1D、05、在方对严+加+*0(x0)中,若有a_b+c = 0,则方程必有一根为()。

A、1B、TC、±1D、06、如果代数式4y2—2y+5的值为7,那么代数式2y2-y+1的值等亍________ .27、若a是方程%+J_1= °的一个实数根,则代数式3«2+3a-5的值为___________________ . & 己知(+4“一2=:0,那么3x2+12x+2002的值为________________ ・ax + bx + c = 9、若一元二次方程0(a工°)有一个根是1,则a+b + c10>若乳= 一1是方程=0(a黑°)的根, 则a-b+u =1K 若%=•T是方程处彳+療+二=0(<2兰°)的根, 则a-b-^e =212. ______________________________________________________ 己知一元二次方程么兀+兀一“ =°的一根为1,则a・b的值是__________________________________ .2 213. ___________________________________________________________ 己知自是方程x -2x-1= 0的一个根,则自-2$+3的值是_________________________________________ :2 门a4、已知x=1是一元二次方程ax2+bx-40=0的一个絡且aHb.求2a-2b的值.15、设自、b是方程* +兀一2010=0的两实数根,求/ + N+B的值.16、己知a,b是一元二次方程x2-x-1=0的两个根,求代数式3a2+2b2-3a-2b的值.2 宀200九十兰勺17、设a是方程兀-2006^ + 1= °的一个根,求代数式2006的值.18、已知点5x=3,求(兀一1)(2"1)十+ 1『+1的值.19、己知x是一元二次方程兀2十3x-l = °的实数根,求代数式:的值.22. 2.1降次一解一元二次方程一、知识点总结1、用直接开平方法解一元二次方程2、用配方法解一元二次方程3、用公式法解一元二次方程4、用因式分解法解一元二次方程5、一元二次方程根与系数的关系二、分类题型总结题型一:用直接开平方法解一元二次方程1、方程*一9=0的解是()A.兀=3B・^ = -2 C・兀=4・5 D・X =2. 方程3x49=0的根为().A. 3B. -3C. ±3D.无实数根3、方程*一2二°的根是 ___________ .4、方程(3x—1)2= —5的解是___5、若8x2-16=0,则x的值是________6. 如果方程2 (x-3) 2=72,那么,这个一元二次方程的两根是.7、方程(x+1)2=1的根是_________ :方程4(x+1)2=1的根是_________6. 解下列方程(1) x2-7=0 (2) 3x2-5二0题型二:用配方法解一元二次方程仁用配方法解一元二次方程X 时,此方程可变形为( )D 承二一3,尬二一7A. E T2、用配方法解方程兀2B.(T =1 c・ E-2x-5 = 0时,原方程应变形为()9 D.(-2)= 9A. 0+1:6B. (T—C.("90.(7=93、用配方法解方程X?十4兀二6,卜列配方正确的是( )A (x+2)2=10 B.的窃二22C.(兀 + 2)2 = 8 D (才 + 2)2 = 64、方程开2 + ©&_5= 0的左边配成完全平方后所得方程为( )A (X+3)2=14B.(5" c.E2 _ 1~ 2D.以上答案都不对5、用配方法解方程尤2+4x+l = 0,配方后的方程是【JA ('+2)2 = 3 B. U c.(-2)2 =5 D.0+2)2 = 526 Ji] 丿【解一元二次方程x -4A =5时,此方程可变形为()A& 十2)—1 B.(x .2)2 =1 c(X +2)2 =9 D. &•2)2 =97、用配方法解方程戸" ‘一切+ 7 = 0,得叨丫=“贝! )()B承二一3?尬二2。

承=3尬二9C・x= -3±2石8. 用配方法解方程^+8X+7=0I则配方正确的是( )A.U-4/ = 9B.U +矿=9 c.U 一幼=16D0 +邮"79. 用配方法将二次三项式a2-4a+5变形,结果是()A・(a-2) 2+1 B・(a+2) 2-l C・(a+2) 2+l D・(a・2) 2-l10. 用配方法解方程x2+4x=l0的根为()A・ 2±>/10 B・-2± V14 C・-2+V10 D・ 2->/1011. 用适当的数填空:(1) x2-3x+ _______ = (x- _______ ) 2(2) a (x2+x+ _______ ) =a (x+ ________ )212. 将一元二次方程x2-2x-4=O用配方法化成(x+a) ?=b的形式为______________ , •所以方程的根为__________ •13. 将二次三项式2x2-3x-5进行配方,英结果为______________ •14. 已知4x2-ax+l可变为(2x・b) ?的形式,则ab= __________ ・15. 若x2+6x+m2是一个完全平方式,则m的值是()A. 3 B・・3 C・±3 D・以上都不对16. 解下列方程:(1) x2+8x=9 (2) 6x2+7x-3=0 (3) 3x2-5x=2. (3) x2+12x-15=0 (4)丄4 x2-x-4=017、用配方法求解下列问题.(1) 2x2-7x+2的最小值18、试说明:不论x、y取何值,代数式4x2+yMx+6y+ll的值总是正数.•你能求出当x、y 取何值时,这个代数式的值最小吗?题型三:用公式法解一元二次方程1. 用公式法解方程4x2-12x=3,得到().(2) -3x2+5x+l的最大值222(4) -3x 2+22x-24 = 0 (5) 2x (x~3) =x —3 (6) 3x 3+5(2x+l)=02. 方程^x 2+4>/3x+6V2=0 的根是().C ・ x l=2>/2 > X 2=\/2D ・ X I =X 2=・ V64.方程x 2+4x=2的正根为( )5、 一元二次方程ax 2+bx+c=0 (aHO)的求根公式是 _____________ ,条件是6、 当侶 _______ 时,代数式x 2-8x+12的值是4.7、 2X 2-J^X -5=0 的二根为 XI = ___________ » X2= ___________ ・ 8、 若 9*一25=0,则 X1= _______ ,X2= _____ ・9. 用公式法解方程 x := -8x-15t H 中 b=4ac 二 __________ , xi= ______ , x := ______ ・ 10. 不解方程,判断方程:①x'+3x+7二0:②£+4二0; @x :+x-l=o 中,有实数根的方程有 个 11. 当昨 ____________ 时,代数式匕上与-的值互为相反数.3 4 12. 若方程x-4x+a=0的两根之差为0,则a 的值为 ______________ . 13. 利用公式法解下列方程 (1 )疋一5岳+ 2 = 0( 2 )3亍一6—12 = 0( 3 ) x=4x+2B ・ x 】=6, X2=A /2*3・(m 2-n 2) (m 2-n 2-2 ) -8=0,A. 4 B ・-2则mF?的值是(). C. 4或・2D ・4或2A. 2-^6 B ・ 2+A /6C. 一2-J^D ・ 一2+J^(7) (x+l)(x+8)二-12(8) 2(x~3) "=x "—9 (9) -3x :+22x-24 = 0a —4 1 ?14. (2007.泰州)先化简,再求值:( ------------ 一——)+ ——,其中a 是方程x :+3x+l 二0cr -4^ + 4 2-a cr - 2a 的根.题型四:根据根的判别式判断方程根的情况1・概念:对于一个一元二次方程ax :+bx+c 二OG H O )來说,圧-4必称为根的判别式,记为△<>A > 0 时,根的判别式2•意义丿△ = ()时,A < 0 时,3.公式法:解为x="士 即为“兰三2a laE 下列方程®x 2+l = 0; ®x 2+x = O ; @x 2+x-l = O : ®x 2-x = 0中,无实根的方程是 __________ ,2、已知关于x 的方程F 一〃八・+ 2 = 0有两个相等的实数根,那么加的值是 ________________ o1、 下列方程中,无实数根的是()A 、、/x-1 + Jl-x =0B 、2y + — = 7 C% J«v +1 + 2 = 0D 、x" — 3x + 2 = 0v •*2、 若关于x 的一元二次方程(m-2)2x 2+(2m + l )x + l = 0有两个不相等的实根,则加的取值范围是( )33 33A 、m < —B 、mW —C 、加>—且加H2D 、m2 —且加 H244 443、在方程ax 2+bx + c = O (aHO )中,若a 与c 异号,则方程()A 、有两个不等实根B 、有两个相等实根C 、没有实根4、试证:关于X 的方程曲2—(〃2 + 2)X = —1必有实根匚方程有2个不相等的根方程有2个相等的根 方程没有实数根 D 、无法确立5、已知关于X的方程x2-/m + 2/H-/7= 0的根的判别式为零,方程的一个根为1,求〃八〃的值。

相关文档
最新文档