信号与线性系统分析 LTI离散系统的响应 §3-1-§3-2
信号与线性系统分析第三章

系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足
信号与线性系统分析--第三章

第三章 离散系统的时域分析
本章概述
离散时间域的方程求解
连续时间域 时间函数 微分方程 卷积积分 离散时间域 离散序列 差分方程 卷积求和
求解方法
迭代法 经典法 卷积法
连续时间信号、连续时间系统
连续时间信号
f(t)是连续变化的t的函数,除若干不连续点之外 对于任意时间值都可以给出确定的函数值。函数 的波形一般具有平滑曲线的形状,一般也称模拟 信号
f (n) .... f (1) (n 1) f (0) (n) f (1) (n 1) ...
i
f (i) (n i)
f(k ) f(2) f(-1) f(1) f(0) … 1 2 i f(i) … k
可推出:离散系统的零状态响应
y zs (n)
m
f (m) (n m)
单位阶跃序列
与阶跃函数的不同?
延时的单位阶跃序列
用单位样值序列来表示
u( n) ( n) ( n 1) ( n 2) ( n 3) (n k )
k 0
( n) u(n) u( n 1)
题目中 y0 y1 0 ,是激励加上以后的,不是初始状 态,需迭代求出 y 1, y 2 。
n 1 y1 3 y0 2 y 1 2u 1 2 u 0
0
0 0 2 y1 2 1 1
1 y 1 2
n0
y0 3 y 1 2 y 2 2 u 0 2 u 1
0 1
0 3 y 1 2 y 2 1
y 2 5 4
将初始状态代入方程求系数
信号与线性系统分析习题答案

1 / 257信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fε=t(t(sin)(5))tf=(sinr(t)2 / 257(7))tf kε(k=(2)(10))f kεk-=(k+]()1()1[3 / 2574 / 2571-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε5 / 2576 / 257(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε7 / 2571-3 写出图1-3所示各波形的表达式。
8 / 2571-4 写出图1-4所示各序列的闭合形式表达式。
离散时间LTI系统分析讲义-学生讲解

实验四 离散时间LTI 系统分析实验目的●学会运用MATLAB 求解离散时间系统的零状态响应; ●学会运用MATLAB 求解离散时间系统的单位冲激响应; ●学会运用MATLAB 求解离散时间系统的卷积和。
●学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ●学会运用MATLAB 分析离散时间系统的系统函数的零极点; ●学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ● 学会运用MATLAB 进行离散时间系统的频率特性分析。
实验原理及实例分析1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。
MATLAB 中函数filter 可对式(1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。
【实例1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。
解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1所示。
《信号与线性系统分析》重要公式汇总

《信号与线性系统分析》重要公式汇总信号与线性系统分析是电子信息工程及相关学科中的重要课程,对于学习者来说,熟悉和掌握相关公式是非常重要的。
下面是《信号与线性系统分析》中一些重要的公式汇总。
一、信号的基本概念与性质:1.单位冲激函数:δ(t)2.单位阶跃函数:u(t)3.奇偶性质:f(-t)=-f(t),f(t)是偶函数;f(-t)=f(t),f(t)是奇函数4.时域的线性性质:y(t)=a1f1(t)+a2f2(t)5.周期函数的性质:f(t+T)=f(t),T为周期6. 时域尺度变换:y(at) = f(bt)7.时域平移变换:y(t-t0)=f(t)8.频域的线性性质:y(t)=a1f1(t)+a2f2(t)9. 延迟性质:F(s) = e^(-st0)F(s)10. 尺度变换:F(as) = (1/a)F(s/a)11.卷积定理:F[f*g]=F[f]×F[g]12.等式性质:F[e^(-at)f(t)] = F[s + a]二、线性时不变系统与系统概念:1.连续时间系统输出的表达:y(t)=∫[h(t-τ)x(τ)]dτ2.离散时间系统输出的表达:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)3.时不变系统输出与输入的傅里叶变换关系:Y(s)=H(s)X(s)4.线性系统的性质:系统的输出是输入的线性组合;系统对信号的平移不敏感;系统对信号幅度的线性变化三、连续时间系统的传递函数与频率响应:1.传递函数的定义:H(s)=Y(s)/X(s)2.传递函数与输出信号的拉氏变换关系:Y(s)=H(s)X(s)3.传递函数与等效电路:H(s)=Y(s)/X(s)=R(s)/S(s)4.系统的无穷大增益:,H(jω),→∞5.零极点:分子多项式中令H(s)=0的根和分母多项式中令H(s)=∞的根6.频率响应:H(jω)=,H(jω),e^(jθ),θ为相位四、离散时间系统的传递函数与频率响应:1.离散时间线性时不变系统的传递函数:H(z)=Y(z)/X(z)2.离散时间线性时不变系统的单位脉冲响应:h[n]=Z[x[n]]3.离散时间线性时不变系统的输出:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)4.离散时间线性时不变系统的传递函数与频率响应的关系:H(z)=X(z)e(z)/Y(z)5.频率响应:H(e^(jω))=,H(e^(jω)),e^(jθ),θ为相位五、线性系统的稳定性与有限长度冲激响应(LTI)系统:1.有限长度冲激响应(LTI)系统的定义:输出的响应是输入信号与冲激响应的线性组合2.LTI系统的单位脉冲响应:h[n]={1,n=0;0,n≠0}3.稳定性的定义:输入有界时,输出也有界4.必要稳定性条件:系统的传递函数的所有极点都在单位圆内以上是《信号与线性系统分析》中的一些重要公式的汇总。
信号与系统-31-§LTI离散系统的LTI离散系统的响应86100

§3.1 LTI离散系统的响应
差分与差分方程 差分方程的经典解 零输入响应和零状态响应
Yun Liu, Information College, Zhongkai University of Agriculture and Engineering
一、差分与差分方程
1.差分
cos k sin k
P1 cos k P2 sin k
三、零输入响应
输入为零,
为齐次解形式 C11k C2 2 k ....
• Ci可直接由初始状态定
例
四、零状态响应
• 由 yzs1 yzs 2 0 递推出初始条件
• 齐次解+特解(由k>0 输入形式确定)
例
本节小结
➢零输入响应+零状态响应 ➢注意: 区分初始条件(激励作用后) 与 初始状态(激励作用前)
(1)一阶前向差分:f(k) = f(k+1) –f(k)
(2)一阶后向差分:f(k) = f(k) –f(k –1)
本书主要用后向差分,简称为差分。
(3)m阶差分: mf(k) = f(k) + b1f(k-1) +…+ bmf(k-m)
2. 差分方程
y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m) 若已知初始条件和激励,利用迭代法可递推求得其 数值解。
根据特征根,齐次解两种情况
1.无重根 λ1 λ2 λn n阶方程
yh k C11k C22 k Cn n k
2.有重根 特征根λ为r重根时
yh k (Cr1k r1 Cr2k r2 C1k C0 )k
信号与系统第3章 信号通过LTI系统的频域分析
但回顾电路基础课程中使用的相量 概念就可明白,复指数函数或即复正弦 信号是实正弦信号的一种表示方式。
在随后的分析中,读者还将会发现,复指 数形式的傅里叶级数实际上更易进行操作,正 因为如此,这一形式在分析中更常使用。
还必须指出的是,各次谐波的系数 Cn现在不仅反映了谐波分量的幅度,也 反映了其相位,即Cn是个复数,可以进 jn 一步表示为 Cn Cn e ,因此,式(38)中的 Cne jt 就是一个幅度为 Cn ,初 始相位为n而频率为的复正弦信号。
式(3-8)的意义与三角函数形式的傅 里叶级数一样,表明函数f(t)可以分解为无 限个复正弦谐波信号 e jn0t 的线性组合。
必须注意的是,这里出现了n为负 的频率,但这个负频率只是“视在”的 ,是数学表达上的存在。
傅里叶级数的复指数形式在高等数学 课程中并未出现,而且表达式中出现了n为 负的频率,初学者可能会感到困惑。
第3章 信号通过LTI系统的频域分析
3.1
引言
3.2
周期信号的频域分解—傅里叶级数
3.3
复正弦信号通过LTI系统
3.4
信号频谱、带宽与系统带宽的概念
3.5
周期信号通过LTI的频域分析
3.6
非周期信号的频域分解
3.7
重要的例和傅里叶变换的性质
3.1 引言
图3-1
矩形脉冲通过一阶RC滤波电路
由图3-1可见,随着信号参数τ与系统 中的参数RC之间关系的不同,输出y(t)的 波形与输入x(t)波形的相似程度将会不同 ,也即x(t)经过系统h(t)后产生的失真不 同。
傅里叶级数表达式的物理意义是, 周期信号可以分解为由基波及其各次谐 波组成的正弦波的线性组合,这也就是 通常所称的谐波分析。
信号与系统实验报告实验三 连续时间LTI系统的频域分析报告
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
[工学] 第3章1 LTI系统的描述及特点_连续LTI系统响应
2、冲激平衡法 求系统的单位冲激响应
h ( n ) (t ) an1h ( n1) (t ) a1h' (t ) a0 h(t ) bm ( m) (t ) bm1 ( m1) (t ) b1 ' (t ) b0 (t )
由于t >0+后, 方程右端为零, 故 n>m 时
求解系统的零状态响应yzs (t)方法:
1) 直接求解初始状态为零的微分方程。
2) 卷积法:
利用信号分解和线性时不变系统的特性求解。
卷积法求解系统零状态响应yzs(t)的思路
1) 将任意信号分解为单位冲激信号的线性组合
2) 求出单位冲激信号作用在系统上的响应 —— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意 信号f(t)激励下系统的零状态响应yzs (t) 。
?线性时不变系统的描述及特点?连续时间lti系统的响应连续时间系统的冲激响应卷积积分及其性质连续时间系统的冲激响应卷积积分及其性质?离散时间lti系统的响应离散时间系统的单位脉冲响应卷积和及其性质系统的响应离散时间系统的单位脉冲响应卷积和及其性质?冲激响应表示的系统特性第第3章系统的时域分析lti系统分析方法概述一系统理论中的主要问题
§3.1 线性时不变系统的描述及特点
例1 求并联电路的端电压 vt 与激励 is t 间的关系。
解
1 电阻 iR t vt R
iR
iL
L C
电感
d vt 电容 iC t C dt iR t iL t iC t iS t 根据KCL
s1 2,s2 3
y x (t ) K1e 2t K 2 e 3t
y(0)=yx(0)=K1+K2=1
信号与系统(郑君里)复习要点
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征 单根
a、差分方程特征方程特征根y(k)的解析式 b、由起始状态初始值y(0)、y(1)…y(n-1) 确定ci
迭代法
第
3.零输入响应+零状态响应
y( k ) y x ( k ) y f ( k )
特征单根:
c xi c fi ik y p ( k )
j0
k
i
h(i ) h(k j )
j 0
( k ) ( k ) ( k ) ( k 1)
h( k ) g( k ) g( k ) g( k 1)
例题
本节要点:
• 单位序列和单位阶跃序列
——单位序列和单位阶跃序列的定义、性质及相互 关系
第
二、单位阶跃序列
单位阶跃序列的定义:
(k )
1 . . . . .
10 页
1 (k ) 0
k 0 k 0
0 1 2 3 4
k
单位阶跃序列位移
(k i )
1 (k i ) 0
k i k i
0
1 . . . . .
i
k
第
ε(k)与δ(k)的关系
§3.1 LTI离散系统的响应
西安邮电学院电子工程学院 2010.3
第
一、差分、差分方程
1、前向差分与后向差分 一阶前向差分:
2 页
f (k ) f (k 1) f (k )
一阶后向差分: f ( k ) f ( k ) f ( k 1) 2、前向差分与后向差分的关系
f (k ) f (k 1)
自由响应 强迫响应
方程的左边。反应了系统 本身的特性
第 6 页
y( k ) c xi ik c fi ik y p ( k )
i 0 i 0
n
n
强迫响应
自由响应
作业:3.6(1、3、5)
§3.2 单位序列和单位序列响应
西安邮电学院电子工程学院 2010.3
第
一、单位序列
利用差分方程的递推 关系,求得数值解
第 4 页
nm
n个初始条件:y(0), y(1), y( 2),..., y( n 1)
1.迭代法:例题 基础方法,无通解,适用于低阶方程 2.时域经典法:y( k ) yh ( k ) y p ( k ) ci y p ( k )
i 0 k i n
t k
H
k ht
2.阶跃响应
LTI离散系统在单位阶跃序列 (k ) 作用下的零状态响应, 称为单位阶跃响应或阶跃响应,用g(k)表示。
t) (k
H
g (k ht )
第
3、 h(k)与 g(k)的关系
13 页
(k )
g( k )
i k
(i ) (k j )
差分运算具有线性性质(板书推导)
第
3、n阶常系数线性差分方程:
3 页
y( k ) an1 y( k 1) an 2 y( k 2) ... a0 y( k n)
y(k ) an1 y(k 1) an2 y(k 2) ... a0 y(k n) bm f (k ) bm1 f (k 1) ...b0 f (k m), n m
b.零状态响应:初始状态为0y f (1) y f (2) ... y f (n) 0
c fi由初始值y f (0), y f (1),..., y f ( n 1)确定
迭代法
例题
小结:
y ( k ) y x ( k ) y f ( k ) yh ( k ) y p ( k )
bm f (k ) bm 1 f (k 1) ...b0 f (k m ),
nm
通式 :
a
i 0
N
N i
y k i bM j f k j
j 0
M
差分方程的阶数n : 差分方程中变量的最大位移和最小位移之差。
二、差分方程解法
y( k ) an1 y( k 1) an 2 y( k 2) ... a0 y( k n) bm f ( k ) bm 1 f (k 1) ...b0 f (k m ),
单位序列的定义:
(k )
8 页1 (k ) 0k Nhomakorabea0 k 0
1
0
k
也称单位样值序列或单位脉冲序列。 δ(k)位移
1 (k i ) 0
k i k i
0
(k i ) 1
i
k
第
δ(k)的取样性质
9 页
f (k ) (k ) f (0) (k )
f (k ) (k i) f (i) (k i)
离散信号的分解:
例题
f ( k ) f ( 1) ( k 1) f (0) ( k ) f (1) ( k 1) f ( i ) ( k i )
i
f ( i ) ( k i )
i 0 k i i 0 n n
5 页
a.零输入响应:输入为零,差分方程为齐次
c 由初始条件 (1 y ),...,y (n)确定 y c xi由初始条件y x (1),), (y2x (2),..., y x ( n)确定
xi x x x
yx (1) y(1), yx (2) y(2),..., yx (n) y(n)
• 单位序列响应和阶跃响应
——单位序列响应和单位阶跃响应的定义和求解方法
作业:3.8(1)(3) 3.9(c) 3.8(1)(3) 3.9(c)(第四版)
11 页
(k ) (k ) (k ) (k 1)
(k )
i
(i)
k
mk i
(k j )
(k j )
j 0
j 0
第
三、单位序列响应和阶跃响应
1.单位序列响应
12 页
LTI离散系统在单位序列 (k ) 作用下的零状态响应,称为 单位序列响应,用h(k)表示。