2002年东南大学考研高等代数试题
最新东南大学2002——数学分析试题(缺03)

东南大学2002——2009数学分析试题(缺03)东南大学2002年数学分析试题解答一、叙述定义(5分+5分=10分)1.«Skip Record If...».解:设«Skip Record If...»2.当«Skip Record If...»解:设«Skip Record If...»二、计算(9分×7=63分)1.求曲线«Skip Record If...»的弧长。
解:«Skip Record If...»«Skip Record If...»2.设«Skip Record If...»偏导数,«Skip Record If...»解:由«Skip Record If...»=«Skip Record If...»3.求«Skip Record If...»解:令«Skip Record If...»«Skip Record If...»=«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»4.求«Skip Record If...»(«Skip Record If...»解:«Skip Record If...»==«Skip Record If...»=«Skip Record If...»5.计算第二型曲面积分«Skip Record If...»其中S是曲面«Skip Record If...»夹于«Skip Record If...»与«Skip Record If...»之间的部分,积分沿曲面的下侧。
东南大学 2002 年数学分析试题解答

东南大学2002年数学分析试题解答一、叙述定义(5分+5分=10分)1.()+∞=−∞→x f x lim . 解:M x f E x E M >−<∀>∃>∀)( , ,0 ,0.2.当+→a x 时,)(x f 不以A 为极限.解:二、计算(9分×7=63分)1.求曲线210 ),1ln(2≤≤−=x x y 的弧长. 解:dx x f s ∫+=βα 2)]('[1∫∫∫−=−++−=−+=−−+=21 0 210 22210 22213ln )11111(11)12(1dx x x dx x x dx x x . 2.设x y z e x g z y x f u y sin ,0),,( ),,,(2===,g f ,具有一阶连续偏导数,0≠∂∂z g ,求dxdu . 解:由0),,(2=z e x g y 得02321=++dz g dy g e dx xg y,从而 xz z f x y y f x f dx du ∂∂⋅∂∂+∂∂⋅∂∂+∂∂==32121)cos 2(cos f g e x xg f x f y ⋅++⋅+. 3.求∫dx xx 2ln ( 解:令dt e dx e x x t t t === , ,ln ,∫=dx x x 2)ln (∫⋅dt e e t t t 22=∫=−dt e t t 2t t te e t −−−−22C e t +−−2 C xx x +++−=2ln 2)(ln 2. 4.求()20lim x a x a xx x −+→()0>a . 解:()20lim x a x a xx x −+→22222220)]()(ln 2ln 1[)}(]11)[(ln 2ln 1{lim xx o a x a x x o a a x a x x +++−+++++=→ 12a a+=. 5.计算第二型曲面积分∫∫++S dxdy z dzdx y dydz x ,222其中S 是曲面22y x z +=夹于0=z 与1=z 之间的部分,积分沿曲面的下侧解:记222),,(,),,(,),,(z z y x R y z y x Q x z y x P ===,θθsin ,cos r y r x ==,则2r z =,且,10≤≤r πθ20≤≤.∫∫++S dxdy z dzdx y dydz x 222=∫∫++S dxdydz z y x )(2 πθθθπ=++=∫∫dr r r r r d 2 0 10 2)sin cos (2. 6.求常数λ,使得曲线积分22 0, L x x r dx r dy r y yλλ−==∫v 滑闭曲线L 成立.解:7.在曲面)0,0,0(,14222>>>=++z y x z y x 上求一点,使过该点的切平面在三个坐标轴上的截距的平方和最小.解:设14),,(222−++=z y x z y x F ,则2,2,2z z F y y F x x F =∂∂=∂∂=∂∂,所求切平面方程为: 0)(2)(2)(2=−+−+−z Z z y Y y x X x , 求得在三个坐标轴上的截距分别为:,44 ,444 ,444222222222zz y x Z y z y x Y x z y x X ++=++=++= )1161161()44(2222222222z y x z y x Z Y X d ++++=++==2221611z y x ++. 令)14(1611),,(222222−+++++=z y x zy x z y x P λ,则由 02132,022,022333=+−=∂∂=+−=∂∂=+−=∂∂λλλz zz P y y y P x x x P ,,14222=++z y x 解得==y x ,16,2,21==λz =min d 16. 三、证明题(6分+7分+7分+7分=27分)1.判定级数∑∫∞=+1 0 1sin n n dx xx π的敛散性. 解:原级数为正项级数,据积分中值定理, 0sin (sin )ln 1ln 11nx dx x n n n ππππξ⎛⎞⎛⎞=+≤+⎜⎟⎜⎟+⎝⎠⎝⎠∫, 又级数1ln 1n n n ππ∞=⎛⎞+⎜⎟⎝⎠∑收敛,所以原级数收敛. 2.设)(x f 在区间[2,0]上具有二阶连续导数,且对一切]2,0[∈x ,均有 1)('' ,1)(<<x f x f ,证明:对一切]2,0[∈x ,成立2)('<x f . 解:,)0(2)('')0)((')()0(2x f x x f x f f −+−+=ξ 2)2(2)('')2)((')()2(x f x x f x f f −+−+=η, ])('')2)((''[21)('2)0()2(22x f x f x f f f ⋅−−+=−ξη, ])('')2)((''[21)0()2()('222x f x f f f x f ⋅−−−−=ξη, ])('')2)((''[21)0()2(21)('22x f x f f f x f ⋅−−+−=ξη ++≤)0(21)2(21f f 22)(''21)2()(''21x f x f ⋅+−⋅ξη 2221)2(211x x +−+≤2)1(2+−≤x , '()2f x ≤.3.证明积分∫∞+− 0 dy xe xy 在),0(+∞上不一致收敛.4.证明函数x x x f ln )(=在),1[+∞上一致连续. 证明:x x x x x xx f 22ln ln 21)('+=+=,1)(' ,1 ,021ln 21)(''max ===−−=x f x x x x x f 由拉格郎日中值定理,1212121212,[1,), , ()()'()x x x x f x f x f x x x x δξ∀∈+∞−<−=⋅−≤−。
东南大学线性代数几何代数历年试题

《线性代数》教学大纲32学时本课程是以矩阵为主要工具研究数量间的线性关系的基础理论课程,也是本科阶段关于离散量数学的最重要的课程。
本课程的目的是使学生熟悉线性代数的基本概念,掌握线性代数的基本理论和基本方法,提高其抽象思维、逻辑思维的能力,为用线性代数的理论解决实际问题打下基础。
教学内容和基本要求一.行列式1.理解二阶、三阶行列式的定义,熟练掌握它们的计算;12.知道全排列及全排列的逆序数的定义,会计算排列的逆序数,知道对换及对换对于排列的奇偶性的影响;3.了解n阶行列式的定义,会用行列式的定义计算简单的n阶行列式;4.掌握行列式的性质,熟练掌握行列式按行、列展开公式,了解行列式的乘法定理;5.掌握不很复杂的低阶行列式及简单的高阶行列式的计算;6.理解Cramer法则,掌握用Cramer法则求方程组的解的方法。
二.矩阵1.理解矩阵的概念;2.理解矩阵的加法、数乘、乘法运算及矩阵的转置及相关的运算性质,熟练掌握上述运算;3.理解零矩阵、单位矩阵、数量矩阵、对角阵、三角阵、对称矩阵、反对称矩阵的定义及其运算性质;4.理解矩阵的可逆性的概念,掌握矩阵可逆的判别方法,掌握逆矩阵的性质;5.了解伴随矩阵的概念,熟练掌握伴随矩阵的性质,掌握利用伴随矩阵计算矩阵的逆矩阵;26.了解分块矩阵的运算性质,掌握简单的分块矩阵的运算规则。
三.矩阵的初等变换与Gauss消元法1.理解矩阵的初等行变换与Gauss消元法的关系,理解矩阵的初等变换及矩阵的等价关系的概念;2.了解矩阵的等价标准形的概念,理解矩阵的初等变换与矩阵的乘法间的关系;3.了解可逆矩阵与初等矩阵间的关系,掌握用初等变换求逆矩阵的方法,会求简单的矩阵方程的解;4.理解矩阵的秩的概念,熟练掌握矩阵的秩的求法,理解矩阵运算前后的秩之间的关系;5.熟练掌握用矩阵的秩判断线性方程组的相容性及讨论解的情况的方法。
四.向量组的线性相关性1.理解向量的概念,理解线性组合和线性表示的概念;2.理解向量组的线性相关、线性无关的概念以及有关性质,掌握向量组的线性相关性的判别方法;3.理解向量组的秩的概念,理解向量组的秩与矩阵的秩间的关系,熟练掌握向量组的秩的性质;34.理解向量组的最大线性无关组的概念,理解向量组的最大线性无关组与向量组的秩间的关系,会求向量组的最大线性无关组;5.理解齐次线性方程组有非零解的充要条件,理解齐次线性方程组的基础解系的概念,熟练掌握基础解系的求法;6.理解非齐次线性方程组有解的充要条件,理解非齐次线性方程组与相应的齐次线性方程组的解之间的关系,熟练掌握非齐次线性方程组的通解的表达式的求法;7.知道向量空间、子空间、向量空间的基及维数的概念,会判断向两空间的子集是否构成子空间,会求由一向量组生成的子空间及一齐次线性方程组的解空间的基及它们的维数;8.知道坐标变换公式,会求两组基间的过渡矩阵。
2002年全国硕士研究生入学统一数学考试

r (A) = 3,且 A中任两个平行向量都线性无关.
类似地,(D)中有两个平面平行,故 r (A) = 2 , r (A) = 3 ,且 A中有两个平行向量 共线.
1 n→ +∞
un
n
lim 1 u n→ +∞
n
= 0, 不妨认为 ∀n, un
> 0, 因而所考虑级数是交错级数,但不能保证 1 的单 un
调性. 按定义考察部分和
∑ ∑ ∑ Sn
=
n (−1)k+1 ( 1
k =1
uk
+ 1 )= u k +1
n k =1
(− 1)k+1 1 uk
+
n k =1
方程,并求极限 lim nf ( 2) .
n→∞
n
五、(本题满分 7 分)
∫∫ 计算二重积分 emax{x 2 ,y d 2} xdy ,其中 D = {( x, y) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1} . D
六、(本题满分 8 分) 设函数 f (x) 在 R 上具有一阶连续导数, L 是上半平面( y >0)内的有向分段光
(A)当 lim f (x) = 0 时,必有 lim f ′(x) = 0
x→ +∞
x→ +∞
有 lim f ′(x) = 0 x→ +∞
(C) 当 lim f ( x) = 0 时,必有 lim f ′( x) = 0
x →0+
02-03-2几代B 东南大学几何与代数试卷

4.空间四点 A(1,1,1) ,B(2,3, 4) ,C(1, 2, k) ,D(−1, 4,9) 共面的充要条件是 k = ;
5.点 P(2, −1,1) 到直线 l : x= −1 y= +1 z 的距离为 ;
2 −2 1
6.若4阶方阵 A 的秩为2,则伴随矩阵 A∗ 的秩为 ;
7.若可逆矩阵
(1) 求 a, b ;
(2) 求V 的一个基,并求 β 在此基下的坐标;
(3) 求V 的一个标准正交基.
17.用正交变换化简二次曲面方程
x12 + x22 − 4x1x2 − 2x1x3 − 2x2 x3 = 1
求出正交变换和标准形)并指出曲面类型.
18.设 D 为由 yoz 平面中的直线 z = 0 ,直= 线 z y, ( y ≥ 0) 及抛物线 y + z2 = 2 围成 的平面区域.将 D 绕 y 轴旋转一周得旋转体 Ω .(1)画出平面区域 D 的图形; (2)分别写出围成 Ω 的两块曲面 S1, S2 的方程;(3)求 S1, S2 的交线 l 在 zox 平 面上的投影曲线 C 的方程;(4)画出 S1, S2 和 l , C 的图形.
四. 证明题、解答题(每小题4分,共8分)
19.设η 是线性方程组 Ax = b 的一个解,b ≠ 0 ,ξ1,ξ2 是导出组 Ax = 0 的基础解系.证 明:η,ξ1 +η,ξ2 +η 线性无关.
20.设α 是3维非零实列向量, α = 2 .又 A = αα T .(1)求 A 的秩;(2)求 A 的全部特征值;(3)问 A 是否与对角阵相似?(4)求 I − A3 .
程.
15.设 X=A
1 0 2
−1
东南大学线性代数试题及答案

03-04学年第二学期《空间解析几何与线性代数》期终试题解答一 (24%) 填空题:1. 若向量k j a i -+=α, k j i b ++=β,k =γ共面, 则参数a , b 满足ab = 1.2. 过点P (1, 2, 1)且包含x 轴的平面方程为y - 2z = 0.3. 已知矩阵A 满足A 2 + 2A - 3I = O , 其中I 表示单位矩阵, 则A 的逆矩阵A -1 = )2(31I A +. 4. 设矩阵A =⎥⎥⎦⎤⎢⎢⎣⎡031130021, B =⎥⎥⎦⎤⎢⎢⎣⎡700650432, 则行列式|A 2B -1| = 1/70 . 5. 设向量组α1 = ⎥⎥⎦⎤⎢⎢⎣⎡321, α2 = ⎥⎥⎦⎤⎢⎢⎣⎡123, α3 = ⎥⎥⎦⎤⎢⎢⎣⎡-11k , 则当参数k =0时, α1, α2, α3线性相关. 6. 向量空间R 2中向量η = (2, 3)在R 2的基,与α = (1, 1) β = (0, 1)下的坐标为(2, 1).7. 满足下述三个条件的一个向量组为(-2, 1, 0), (1, 0, -1), 这三个条件是: ①它们是线性无关的; ②其中的每个向量均与α = (1, 2, 1)正交; ③凡与α正交的向量均可由它们线性表示.8. 已知2×2矩阵A = ⎥⎦⎤⎢⎣⎡d c b a , 若对任意的2维列向量η有ηT A η = 0, 则abcd 满足条件 a = d = 0, b = -c .二 (12%) 假设矩阵A , B 满足A - B = AB , 其中A =⎥⎥⎦⎤⎢⎢⎣⎡---021021020, 求B . 解: (法一) 由A - B = AB 得 (A +I )B = A , 其中I 表示单位矩阵. A +I = ⎥⎥⎦⎤⎢⎢⎣⎡---121011021. A +I 的行列式|A +I | = 1, 伴随矩阵(A +I )* = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021. 因而(A +I )-1 = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021. 于是B = (A +I ) -1A = ⎥⎥⎦⎤⎢⎢⎣⎡--101011021⎥⎥⎦⎤⎢⎢⎣⎡---021021020 = ⎥⎥⎦⎤⎢⎢⎣⎡--001001022. (注意B 未必等于A (A +I ) -1 !)(法二) 由A - B = AB 得 (A +I )B = A , 其中I 表示单位矩阵. A +I = ⎥⎥⎦⎤⎢⎢⎣⎡---121011021. [A +I , A ] =⎥⎥⎦⎤⎢⎢⎣⎡------021021020 121011021 ⎥⎥⎦⎤⎢⎢⎣⎡--001001022 100010001= [I , (A +I ) -1A ] 初等行变换于是B = (A +I ) -1A = ⎥⎥⎦⎤⎢⎢⎣⎡--001001022. 三 (15%) 设向量α1 = (a , 2, 10)T , α2 = (-2, 1, 5)T , α3 = (-1, 2, 4)T , β = (2, b , c )T , 问当参数a , b ,c 满足什么条件时1. β能用α1, α2, α3唯一线性表示?2. β不能用α1, α2, α3线性表示?3. β能用α1, α2, α3线性表示, 但表示方法不唯一? 求这时β用α1, α2, α3线性表示的一般表达式.解: 令A = [α3, α2, α1] = ⎥⎥⎦⎤⎢⎢⎣⎡--105421221a , (注: 这里把α3放在第一列纯粹是为了方便) [A , β] = ⎥⎥⎦⎤⎢⎢⎣⎡--c b a 2 105421221 ⎥⎥⎦⎤⎢⎢⎣⎡+-+-++--442 2800223021b c b a a a = ]~ ,~[βA 1. 当参数a ≠ -4时, 秩(A ) = 3, 此时β能用α1, α2, α3唯一线性表示.2. 当参数a = -4, 而b - c ≠ 4时, 秩(A ) =2, 秩(A , β) = 3, 此时β不能用α1, α2, α3线性表示.3. 当参数a = -4, 且b - c = 4时, 秩(A ) = 秩(A , β) = 2, 此时β能用α1, α2, α3线性表示, 但表示方法不唯一.这时]~ ,~[βA = ⎥⎥⎦⎤⎢⎢⎣⎡+---042 000630421b ⎥⎥⎦⎤⎢⎢⎣⎡+-03/)1(22 000210001b 由此可得Ax = β的通解⎪⎩⎪⎨⎧=++-=-=333213/)1(222x x b x x x , 其中x 3为自由未知量.因而β用α1, α2, α3线性表示的一般表达式为β = t α1 + [-2t + 2(b +1)/3]α2 -2α3其中t 为任意数.四 (8%) 设实二次型f (x , y , z ) = x 2 + y 2 + z 2 + 2axy + 2ayz . 问: 实数a 满足什么条件时, 方程f (x , y , z ) = 1表示直角坐标系中的椭球面?解: 实二次型f (x , y , z ) = x 2 + y 2 + z 2 + 2axy + 2ayz 的矩阵A = ⎥⎥⎦⎤⎢⎢⎣⎡10101a a a a . A 的顺序主子式a 11 = 1 > 0; 22211211a a a a = 1 - a 2; |A | = 1 - 2a 2. f (x , y , z ) = 1表示直角坐标系中的椭球面当且仅当A 正定, 当且仅当A 的顺序主子式全为正数, 即a 2 < 1/2.五 (12%) 设3阶方阵A 的特征值为2, -2, 1, 矩阵B = aA 3 - 4aA + I .1. 求参数a 的值, 使得矩阵B 不可逆.2. 问矩阵B 是否相似于对角阵? 请说明你的理由.解: 1. 因为3阶方阵A 有3个不同的特征值2, -2, 1, 所以存在可逆矩阵P , 使得P -1AP = ⎥⎥⎦⎤⎢⎢⎣⎡-100020002. 初等行变换 初等行变换于是P -1BP = P -1(aA 3 - 4aA + I )P = a (P -1AP )3 - 4a (P -1AP ) + I = ⎥⎥⎦⎤⎢⎢⎣⎡-a 3100010001. 因而矩阵B 不可逆当且仅当|B | = 0, 而|B | = |P -1BP | = 1 -3a .所以当a = 1/3时, 矩阵B 不可逆.2. 由1可知矩阵B 相似于对角阵. 六 (12%) 已知二次曲面S 1的方程为z = 3x 2 + y 2, S 2的方程为z = 1 - x 2.1. 问: S 1与S 2分别属于哪一类二次曲面?2. 求S 1与S 2的交线在xOy 平面上的投影曲线方程;3. 画出由S 1与S 2所围成的立体的草图.解: 1. S 1与S 2分别属于椭圆抛物面和抛物柱面.2. 由z = 3x 2 + y 2和z = 1 - x 2消去z 得S 1与S 2的交线在xOy 平面上的投影曲线方程:⎩⎨⎧==+01422z y x 3. 由S 1与S 2所围成的立体的草图如右图所示: 七 (10%) 设3×3实对称矩阵A 的秩为2, 并且AB = C , 其中B = ⎥⎥⎦⎤⎢⎢⎣⎡-110011与C =⎥⎥⎦⎤⎢⎢⎣⎡-110011. 求A 的所有特征值及相应的特征向量; 并求矩阵A 及A 9999.解: 因为A 是3阶矩阵, 且秩为2, 所以|A | = 0, 因而有一个特征值为0.又因为AB = C , 其中B = ⎥⎥⎦⎤⎢⎢⎣⎡-110011与C =⎥⎥⎦⎤⎢⎢⎣⎡-110011, 令p 1 = ⎥⎥⎦⎤⎢⎢⎣⎡-101, p 2 = ⎥⎥⎦⎤⎢⎢⎣⎡101, 则Ap 1 = -p 1, Ap 2 = p 2, 可见p 1, p 2分别是A 的对应于λ = -1和λ = 1的特征向量. 由于A 是3×3的实对称矩阵, 所以对应于特征值0的特征向量与p 1, p 2正交,由此可得对应于特征值0的一个特征向量p 3 = ⎥⎥⎦⎤⎢⎢⎣⎡010. 令P = [p 1, p 2, p 3], 则P -1AP = Λ = ⎥⎥⎦⎤⎢⎢⎣⎡-000010001. 故A = P ΛP -1 = ⎥⎥⎦⎤⎢⎢⎣⎡-011100011⎥⎥⎦⎤⎢⎢⎣⎡-000010001⎥⎥⎦⎤⎢⎢⎣⎡-0102/102/12/102/1= ⎥⎥⎦⎤⎢⎢⎣⎡001000100. A 9999 = (P ΛP -1)9999 = P Λ9999P -1 = P ΛP -1 = A = ⎥⎥⎦⎤⎢⎢⎣⎡001000100. 八 (7%) 证明题:1. 设η1, η2, …, ηt 是齐次线性方程组Ax = θ的线性无关的解向量, β不是其解向量. 证明: β, β+η1, β+η2, …, β+ηt 也线性无关.证明: 因为η1, η2, …, ηt 是齐次线性方程组Ax = θ的线性无关的解向量, β不是其解向量.所以β, η1, η2, …, ηt 线性无关, 否则β能由η1, η2, …, ηt 线性表示, 从而是线性方程组Ax = θ的解, 矛盾!假若k 1β + k 2(β+η1) + k 3(β+η2) + … + k t +1(β+ηt )= θ,则(k 1 + k 2 + k 3 + … + k t +1)β + k 2η1 + k 3η2 + … + k t +1ηt = θ. 于是(k 1 + k 2 + k 3 + … + k t +1) = k 2 = k 3 = … = k t +1 = 0,即k 1 = k 2 = k 3 = … = k t +1 = 0.所以β, β+η1, β+η2, …, β+ηt 线性无关.2. 设A 是n 阶正定矩阵, 证明: |I +A | > 1, 其中I 是n 阶单位矩阵. 证明: 因为A 是n 阶正定矩阵, 所以A 的特征值λ1, λ2, …, λn 都是正数.于是存在可逆矩阵P , 使得P -1AP = Λ = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n λλλ 00000021. 因而|I +A | = |P -1||I +A ||P | = |P -1(I +A )P | = |I + P -1AP | = nλλλ+++1000100121 = (1+λ1)(1+λ2)…(1+λn ) > 1.生活的辩证法就是这样:当苦难压来时,只有具备善良的愿望,坚定信念的人;只有不计回报,只求奉献的人;只有坚强不屈,不折不挠的人,才有希望趟过苦难,收获甘甜。
东南大学考研真题—东南大学2002年管理学
东南大学2002年攻读硕士学位研究生入学考试试题一、概念解释(共30分,每题5分)1.权力2.概念技能3.满意因素4.具体环境5.态度6.反馈控制二、论述题(共30分,每题15分)1.有机型组织的特点,应用条件与管理重点。
2.管理者的作用类型及其影响因素。
三、分析题(40分)我国有句古话:“失败乃成功之母”,但现在有管理学家指出,对于现代社会的企业来说,情况可能正相反,企业运行中很可能会出现“成功是失败之母”,试解释这句话的管理学含义,分析积极意义存在的前提条件以及这句话对现代企业管理所产生的影响。
参考答案东南大学2002年攻读硕士学位研究生入学考试试题一、概念解释(共30分,每题5分)1.权力(9.9邓力文修改整理)答:权力指影响别人行为的能力,这是对权力最简单的理解。
对管理过程和职能的领导而言,一般认为,这种能力包括三个方面:①领导者个人的专长权,即产生于领导者所拥有的专门知识或特殊技能;②领导者的个人影响权,即来自于追随者认可的个人经历、性格或榜样产生的力量;③领导者担任的管理岗位所赋予的管理制度权力。
管理意义上的领导,一般是指上述的第三种权力。
所以,领导就是关于如何有效行使管理制度权力的过程。
显然,上述三种权力中,第一和第二种权力的主观性较强。
如果领导的权力发挥主要来自这两种权力,无论是组织的稳定性还是组织成员的职业生涯,都将受到不稳定因素的冲击。
因此,在管理中,权力的配置至关重要。
2.概念技能3.满意因素答:满意因素,即激励因素。
美国心理学家赫茨伯格将企业中影响人的工作的因素分为满意因素和不满意因素两大类。
满意因素即可以使人得到很大的激励和对工作的满足的因素。
赫茨伯格归纳出六个满意因素:(1)工作上的成就感;(2)工作上得到承认和赞赏;(3)工作本身的挑战性和兴趣;(4)工作职务上的责任感;(5)工作的发展前途;(6)个人成长和晋升的机会。
满意因素都是属于工作本身方面的因素,是适合个人成长的因素,满意因素得到满足,就能产生巨大的满足感和激励作用。
东南大学2002——2009数学分析试题(缺03)
3.求 (
ln x 2 ) dx x
t t
解:令 t ln x, 则x e , dx e dt , (
t2 ln x 2 ) dx 2t e t dt = t 2 e t dt t 2 e t 2te t x e
2e t C
(ln x) 2 2 ln x 2 C x
f ' ( x)
1 1 1 1 f (2) f (0) [ f ' ' ( )(2 x) 2 f ' ' ( ) x 2 ] f (2) f (0) 2 2 2 2 1 1 1 (2 x) 2 x 2 2 2
( x 1) 2 2
,
1 1 f ' ' ( ) (2 x) 2 f ' ' ( ) x 2 2 2
和发散,并证明 F ( p) 在 p > 0 上连续. 五、(本题满分 12 分) 证明级数
å
¥
(- 1)n- 1 ( n n - 1) 条件收敛.
n= 1
六、(本题满分 12 分) 设函数项级数
å
¥
un ( x) 在区间 I 上一致收敛于 f ( x) ,且对每个 n , un ( x) 在上 I 上一
解 :
f ' ' ( ) (0 x ) 2 , 2 f ' ' ( ) f (2) f ( x) f ' ( x)(2 x) ( 2 x) 2 2 1 f (2) f (0) 2 f ' ( x) [ f ' ' ( )(2 x) 2 f ' ' ( ) x 2 ] 2 1 2 f ' ( x) f (2) f (0) [ f ' ' ( )(2 x) 2 f ' ' ( ) x 2 ] 2 f (0) f ( x) f ' ( x)(0 x)
东南大学 02 03 数学分析 高等代数 04 高代 04数分_少一页
东南大学2002年数学分析试题解答 一、叙述定义(5分+5分=10分)1.()+∞=-∞→x f x lim.解:设.)(,,0,0,0E M x f x E M >-<>∃><∀就有时则当δδ 2.当.)(,为极限不以时A x f a x +→解:设.)(,,0,0E A x f a x E >->->∃>∀时使得当δδ 二、计算(9分×7=63分)1. 求曲线210),1ln(2≤≤-=x x y 的弧长。
解:=+=⎰dx x f s βα2)]('[1⎰⎰⎰-=-++-=-+=--+2121222122213ln )11111(11)12(1dx xxdx xx dx xx2. 设都具有一阶连续与且己知g f x y z e x g z y x f u y,sin ,0),,(),,,(2===偏导数,.,0dx du zg 求≠∂∂解:由xz zf xy yf xf dxdu dz g dy g e dx xg z e x g y y ∂∂⋅∂∂+∂∂⋅∂∂+∂∂==++=从而知,02,0),,(3212=32121)cos 2(cos f g e x xg f x f y ⋅++⋅+ 3.求⎰dx x x 2)ln (解:令⎰====dx xx dt e dx e x x t tt 2)ln (,,,ln 则⎰⋅dt e ett t22=⎰=-dt e t t 2ttteet ----22C et+--2C xx x +++-=2ln 2)(ln 24.求()2limxax a xxx -+→()0>a解:()2li mxax a xxx -+→==2222222)]()(ln 2ln 1[)}(]11)[(ln 2ln 1{limxx o a xa x x o aa xa x x +++-+++++=→=aa 21+5.计算第二型曲面积分⎰⎰++Sdxdy z dzdx y dydz x ,222其中S 是曲面22y x z +=夹于0=z 与1=z 之间的部分,积分沿曲面的下侧。
东南大学高等数学B2002高数(下)期中试卷
2002级(非电类)高等数学(下)期中试卷一、 单项选择题(2143'=⨯')在以下级数或反常积分后的括号内填入适当的字母,各字母的含义是:(A )绝对收敛;(B )条件收敛;(C )发散;(D )可能收敛,可能发散。
1.∑∞=-2ln )1(n n n n ( C ); 2.设∑∞=1n n u 条件收敛,则∑∞=12n n u ( D ); 3.3sin 313π∑∞=n n n n ( A ); 4.设为任意实数 P ,则⎰∞+0p xdx ( C )。
二、单项选择题(6144'=⨯')1.设π 平面:01472=-++z y x 及1L 直线:32 ,1 ,3-=+==t z t y t x ,2L :332111--=+=--z y x ,则( C ) (A )π∥1L ; (B )1L ⊥π; (C )π∥2L ; (D )2L ⊥π。
2.曲线12222=+b y a x ,0=z 绕轴旋转而成 x 的曲面方程为( A )(A )122222=++bz y a x ; (B )122222=++b y a z x ; (C )2222b y a x z +=; (D )12222-+=b y a x z 。
3.设}1 ,2 ,1{--=a ,}2 ,1 ,1{-=b ,}5 ,4 ,3{-=c ,则( D )(A )b a ⊥; (B )c b ⊥; (C )a c ⊥; (D )共面 , ,c b a 。
4.两非零向量γ'β'α'γβα , , , , 及的方向角分别为及b a ,则=) ,cos(b a ( B )(A )γ'β'α'+γβαcos cos cos cos cos cos ; (B )γ'γ+β'β+α'αcos cos cos cos cos cos ;(C ))cos()cos()cos(γ'+γ+β'+β+α'+α;(D ))cos()cos()cos(γ'-γ+β'-β+α'-α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学二○○二年攻读硕士学位研究生入学考试试卷(高等代数)
一、以下结论是否成立,如成立,试证明。
否则举实例。
(每题4分,共24分)
1、若α为()f x '的k 重根,则α为)(x f 的1+k 重根。
这里)(x f '表示多项式)(x f 的微商(或导数)。
2、设A 为n m ⨯阵,B 为m n ⨯阵,且,n m >则0AB =。
3、若,A B 均为n 阶实对称阵,具有相同的特征多项式,则A 与B 相似。
4、设4321,,,αααα线性无关,则12233441,,,αααααααα++++秩为3。
5、设21,v v 均为线性空间v 的子空间,满足{}021=⋂v v ,则21v v v ⊕=。
6、设A 为n 阶正定矩阵,则一定存在正定阵B ,使2
B A =。
二、(10分)以知线性方程组21ββ+=k Ax ,其中,=A ⎪⎪⎪⎭⎫ ⎝⎛-----111121111,⎪⎪⎪⎭
⎫ ⎝⎛=3121β,⎪⎪⎪⎭⎫ ⎝⎛-=1312β,求
k 使方程组有解,并求有解时的通解。
三、(10分)已知A 是n 阶实对矩阵,n λλ,,1 是A 的特征阵,相对应的标准正交特征向量为1,,n εε。
求
证:T n n n T A εελεελ++= 111。
这里“T ”表示转置。
四、(12分)设线性变换A 在线性空间V 的基123,,ααα下矩阵为101210,113⎛⎫ ⎪- ⎪ ⎪⎝⎭
1、求值域AV ,核1(0)A -的基。
2、问1(0)V AV A -=+吗?为什么?
五、(12分)设(),ij n n A a ⨯=如果10,1,
,n ij j a i n ===∑。
求证:11221n A A A ===。
(这里ij A 为1j a 的代数余子式)
六、(12分)设A 为n 阶矩阵,试证:2A A =的充要条件为()()r A r I A n +-=。
(这里I 为n 阶单位阵,()r A 表示A 的秩)
七、(10分)设A 为4阶矩阵,且存在正整数k ,使0k A =,又A 的秩为3,分别求A 与2A 的若当()Jordan 标准形。
八、(12分)证明,若()f x 与()g x 互素,并且(),()f x g x 次数都大于零,那么可以选取(),()u x v x 使(())(()),(())(()),u x g x v x f x ∂<∂∂<∂且有()()()()1f x u x g x v x +=,并且这样的(),()u x v x 是惟一的。
这里(())f x ∂表示()f x 的次数。