八年级数学上册 第十三章 全等三角形 13.4 尺规作图教学设计 (新版)华东师大版
华东师大版八年级上册数学教学设计《13.4尺规作图(1)》

华东师大版八年级上册数学教学设计《13.4尺规作图(1)》一. 教材分析华东师大版八年级上册数学教材第十三章第四节《尺规作图(1)》的内容主要包括:尺规作图的定义、特点及基本方法。
这部分内容是学生在学习了几何基础和直线、圆的性质之后,进一步对几何图形进行操作和探究的过程。
通过尺规作图,学生可以更好地理解几何图形的内在联系,提高空间想象能力和逻辑思维能力。
本节内容为学生提供了丰富的操作活动,有助于激发学生的学习兴趣,培养学生的动手能力。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对直线、圆等基本几何图形有了一定的了解。
但是,学生在尺规作图方面可能还存在一些困难,如对尺规作图的定义、特点及方法的理解不够深入,操作过程中可能出现错误。
因此,在教学过程中,教师需要关注学生的学习情况,及时引导学生纠正错误,提高学生的作图能力。
三. 教学目标1.让学生理解尺规作图的定义、特点及基本方法。
2.培养学生动手操作、空间想象和逻辑思维能力。
3.激发学生学习数学的兴趣,培养学生的合作意识。
四. 教学重难点1.尺规作图的定义、特点及基本方法。
2.学生在尺规作图过程中可能出现的操作错误。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究尺规作图的方法。
2.运用小组合作学习,让学生在讨论、交流中共同提高。
3.采用案例分析法,让学生通过分析具体案例,理解尺规作图的特点。
4.运用启发式教学,教师引导学生思考,激发学生的思维潜能。
六. 教学准备1.准备尺规作图的相关案例,用于讲解和分析。
2.准备尺规作图的练习题,巩固学生所学知识。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾已学过的几何知识,为新课的学习做好铺垫。
例如:“你们还记得直线、圆的性质吗?今天我们将学习一种新的作图方法,你们猜猜是什么?”2.呈现(10分钟)教师讲解尺规作图的定义、特点及基本方法,并结合案例进行分析。
华师大版数学八年级上册13.4《尺规作图》说课稿

华师大版数学八年级上册13.4《尺规作图》说课稿一. 教材分析华师大版数学八年级上册13.4《尺规作图》这一节的内容是在学生已经掌握了直线、圆、三角形等基本几何图形的基础上进行讲解的。
本节课主要让学生了解尺规作图的基本方法和步骤,通过实例让学生学会使用尺规作图解决一些简单的问题。
教材从实际问题出发,引导学生用尺规作图的方法去解决问题,培养了学生的动手操作能力和解决问题的能力。
二. 学情分析学生在学习这一节之前,已经掌握了基本的几何图形和一些基本的作图方法。
但是,对于尺规作图这一概念,学生可能还比较陌生,需要通过实例和练习让学生理解和掌握。
此外,学生在这一阶段的学习中,可能对数学的学习兴趣有所下降,因此,在教学过程中,需要注重激发学生的学习兴趣,提高学生的学习积极性。
三. 说教学目标1.知识与技能目标:让学生了解尺规作图的基本方法和步骤,能运用尺规作图解决一些简单的问题。
2.过程与方法目标:通过实例讲解和动手操作,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,提高学生对数学的认识和理解。
四. 说教学重难点1.教学重点:尺规作图的基本方法和步骤。
2.教学难点:如何引导学生运用尺规作图解决实际问题。
五. 说教学方法与手段1.教学方法:采用实例讲解法、问题驱动法、动手操作法等。
2.教学手段:多媒体课件、黑板、尺规等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用尺规作图解决问题,激发学生的学习兴趣。
2.新课讲解:讲解尺规作图的基本方法和步骤,通过实例让学生理解和掌握。
3.动手操作:让学生分组进行尺规作图的练习,教师巡回指导。
4.问题解决:让学生运用尺规作图解决一些实际问题,培养学生的解决问题的能力。
5.总结与拓展:总结本节课所学内容,提出一些拓展问题,激发学生的学习兴趣。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以设计如下板书:1.基本方法:–确定作图工具–解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
2020八年级数学上册 第13章 全等三角形 13.4 尺规作图教案2 (新版)华东师大版

尺规作图
进一步熟练尺规作图.掌握尺规的基本作图:画角平分线.
进一步学习解尺规作图题,会写已知、求作和作法,以及掌握
准确的作图语言.运用尺规基本作图解决有关的作图问题.
写出作图的主要画法
.
OC.A
准确地画出已知角
平分线
三.归纳知识,培养能力:
用直尺和圆规准确地画出一个角的平分线.
四.运用知识,分析解题:
例1 已知∠α与∠β,求作一个角,使它等于(∠α+∠β)的一半.
例2 已知三角形中的一个角,此角的平分线长,以及这个角的一边长,求作三角形
例3 已知三角形的一边及这边上的中线和高(中线长大于高),求作三角形.
例 4 已知直线和直线外两点(过这两点的直线与已知直线不垂直),利用尺规作图在直线上求作一点,使其到直线外已知两点的距离和最小.
五.课堂练习:请见教材和练习册
六.课后小结:角的平分线的画法.
七.课后作业:复印给学生.
讨论、探索、交流、归纳出具体的作图方法.
同学们先自主思考探索,然后各小组同学讨论、交流、归纳出具体的作图方法.再请学生代表上黑板示范,并解释原由.
同学们先自主思考,然后各小组交流意见,完成作图.
请同学们自己对本课内容进行小结.。
八年级数学上册13.4三角形的尺规作图教案冀教版(2021-2022学年)

二、师生互动,探究新知
1.已知三角形的两边及夹角,求作三角形。
已知:∠α,线段a,c,如图所示.
求作:△ABC,使∠A=∠α,AB=a,AC=c。
作法:
(1)作一条线段AB=a,如图甲。
(2)以A为顶点,以AB为一边作∠A=∠α,如图乙。
(3)在射线AD上截取线段AC=c,如图丙.
(4)连接BC,△ABC就是所求作的三角形,如图
丁。
ﻬ
2。
已知三角形的两角及夹边,求作三角形。
已知:∠α,∠β,线段c,如图。
求作:△ABC,使∠B=∠α,∠C=∠β,BC=c。
作法:
(1)作∠DBE=∠α,如图甲.
(2)在射线BE上截取线段BC=c,如图乙.
(3)作∠BCF=∠β,BD与FC交于A,则△ABC为所求,如图丙。
3.已知三角形的三条边,求作三角形.
已知:线段a,b,c,求作△ABC,使BC=a,AC=b,A B=c。
作法:
(1)在射线AD上截取AB=c,
(2)以A为圆心,b为半径画弧,以B为圆心,a为半径画弧,交点为C,△ABC为所求作.
三、运用新知,解决问题
ﻬ
3。
利用基本作图,不能作出唯一三角形的是[JY]()
A.已知两边及其夹角[WB]B.已知两角及其夹边
C.已知两边及一边的对角[DW]D。
已知三边
4。
已知∠α和线段a,用尺规作一个三角形,使其中一个内角为α,另一个内角为2α,且这两内角的夹边等
于a。
八年级数学上册第十三章全等三角形13.4三角形的尺规作图教案(新版)冀教版

教学目标【知识与能力】1.经历尺规作图实践操作的过程,训练和提高学生尺规作图的技能,能根据已知条件作三角形.2.能对新三角形给出合理的解释.【过程与方法】1.在实践操作过程中,逐步规范作图语言,能依据规范作图语言作出相应的图形.2.在作图中,大胆尝试,动手作图,提高有条理叙述问题及解决问题的能力.【情感态度价值观】1.通过与同伴交流作图的过程和结果的合理性,体会对问题的说明要有理有据.2.体会数学作图语言和图形的和谐统一.教学重难点【教学重点】训练和提高学生的尺规作图技能,能依据作图语言作出相应的图形.【教学难点】培养学生用规范的作图语言描述作法,并能依据要求作出相应的图形.课前准备多媒体课件教学过程一、新课导入:导入一:豆豆书上的三角形被墨迹污染了一部分,你能帮他在作业本上画出一个与书上完全一样的三角形吗?如何作一个三角形与已有的三角形一样呢?[设计意图]情境导入,让学生带着问题进入本节的学习,体现学习数学知识的重要性及数学应用的价值.导入二:前面我们学习了全等三角形的性质、判定及一些简单的几何证明题.在学习中常常需要有准确、方便的画图方法,画出符合条件的几何图形.本节我们学习几种作图方法.[设计意图]直接导入,切入主题,使学生很自然地进入到本节课的学习之中.导入三:学生回顾三角形的基本元素,以及学过的基本作图——作一条线段等于已知线段、作一个角等于已知角.【课件】1.如图所示,已知线段a,求作线段AB,使得AB=a.2.如图所示,已知∠α,求作∠AOB,使∠AOB=∠α.说明:对于两种基本作图,可以根据两个具体题目,找两名学生板演示范,其他学生在练习本上完成.完成后,请学生试着叙述作法,教师规范学生的语言.[设计意图]对两个基本作图的复习,是为后面的学习做铺垫.教师应对做得好的学生给予鼓励,说明学习知识要扎实,基础要打好,后续的学习才会比较容易.二、新知构建:探究一:尺规作图的意义说明:我们前面所画的图形大都是用刻度尺、三角尺、量角器和圆规等各种工具画出的.实际上,只用直尺(没有刻度)和圆规也可以画出一些图形.这种方法被称为尺规作图.用直尺(没有刻度)和圆规作图,是一种具有特殊要求的作图方法,这种作图方法不必用具体数据,只是按给定图形进行作图,这也是它与画图的区别所在.[知识拓展]画图一般不限定工具,既可以用直尺和圆规,也可以用其他辅助工具,比如量角器、三角板、刻度尺等.在尺规作图中,直尺的作用只能用来连接两点之间的线段或过两点画直线和射线.探究二:尺规作三角形思路一师生共同探索、研究、交流、经历利用尺规作三角形,学生用自己的语言表述作图的过程.本环节学生要按要求完成三个尺规作三角形的内容:(1)已知三角形的两角及一边,求作这个三角形;(2)已知三角形的两边及其夹角,求作这个三角形;(3)已知三角形的三边,求作这个三角形.说明:在此环节中要求学生小组合作完成,对于学生出现的问题,教师巡视指导,再全班讲评,并用多媒体演示画图的过程.1.基础练习活动内容:①如图所示,你能用尺规作一个直角三角形,使其两条直角边分别等于已知线段a,b吗?并写出作法.②如图所示,已知∠α和∠β,线段a,用尺规作一个三角形,使其一个内角等于∠α,另一个内角等于∠β,且∠α的对边等于 a.2.拓展提高活动内容:如图所示,已知线段a,b和∠α,求作ΔABC,使其有一个内角等于∠α,且∠α的对边等于a,另有一边等于b.做完后进一步提问:同样是已知两边及一角,为什么会出现两个三角形呢?你从中可以感悟到什么?思路二活动1:已知三角形的三条边,求作这个三角形.如图所示,已知线段a,b,c,求作ΔABC,使AB=c,AC=b,BC=a.作法:(1)作一条线段AB=c;(2)分别以A,B为圆心,以b,a为半径画弧,两弧交于C点;(3)连接AC,BC.如图所示的ΔABC就是所求作的三角形.课件展示:想一想:你作的三角形和其他同学作的三角形是什么关系?为什么?想一想:三条线段满足什么条件时,才能作出三角形?活动2:已知三角形的两角和一边,求作三角形.(1)已知三角形的两角及其夹边,求作这个三角形.如图所示,已知∠α,∠β,线段c,求作ΔABC,使∠A=∠α,∠B=∠β,AB=c.作法:(1)作∠DAF=∠α;(2)在射线AF上截取线段AB=c;(3)以B为顶点,以BA为一边,作∠ABE=∠β,BE交AD于点C.则ΔABC就是所求作的三角形.(2)已知两角和一角的对边,求作三角形.如图所示,已知∠α,∠β,线段c,求作ΔABC,使∠A=∠α,∠B=∠β,AC=c.先作出一个角等于∠α+∠β,通过反向延长角的一边得到它的补角,即三角形中的第三个内角∠γ.由此转换成已知∠α和∠γ及其这两角的夹边c,求作这个三角形.活动3:已知三角形的两边和一角,求作三角形.已知三角形的两边及夹角,求作这个三角形.如图所示,已知线段a,b,∠α,求作:ΔABC,使BC=a,AB=b,∠ABC=∠α.作法:(1)作∠DBE=∠α,(2)在射线BD,BE上分别截取BA=b,BC=a,(3)连接AC,ΔABC就是所求作的三角形.想一想:已知三角形的两边和一边的对角能做出三角形吗?若能,请作出图形,若不能,请说明理由.如图所示,已知线段a,b,∠α,求作ΔABC,使BC=a,AB=b,∠ACB=∠α.【规律方法小结】要掌握尺规作图的具体操作方法,当作图要求写作法时,要注意语言的规范性.(1)用直尺作图时的规范性语言:①过点✕作直线✕✕,作线段✕✕,以点✕为端点作射线✕✕.②连接✕✕,以点✕为端点作线段✕✕,延长线段✕✕到点✕,使✕✕=✕✕.(2)用圆规作图时的规范性语言:①以点✕为圆心,✕✕为半径作弧.②以点✕为圆心,✕✕为半径作弧,交✕✕于点✕.三、课堂小结:1.作三角形的方法作一个三角形与已知三角形全等,根据的就是三角形全等的条件.因此,作三角形时,所给的条件可以是三条边或两条边及夹角或两角及夹边或两角及一角的对边.2.作三角形的步骤在寻找作法的时候,一定要根据已知画出草图,确定作图步骤.3.尺规作图的基本要求①画图形;②写作法;③保留痕迹.有些作图题,只要求保留痕迹,不用写作法.。
华师版八年级数学上册第13章 全等三角形【创新学案】13.4 尺规作图

13.4 尺规作图学习目标:1.掌握三种尺规作图的方法及一般步骤,并能熟练掌握基本作图语言。
2.通过动手操作、合作探究,培养学生的作图能力、语言表达能力、逻辑思维和推理能力。
3.激情投入,全力以赴,认识到尺规作图与实际生活的紧密联系,激发学生的学习兴趣重点:掌握经过一已知点作已知直线的垂线,作已知线段的垂直平分线难点:尺规作图的理论依据教学过程预习88--90一.复习已知如图,ΔABC,求作ΔA'B'C',使ΔA'B'C'≌Δ方法1:方法2:二.新课(1)经过一已知点作已知直线的垂线已知:直线l 及其外一点C .求作:过C 点垂直于直线l 的直线. 作法:①以点为圆心,以大于C 点到直线L的距离为半经画弧,交直线于A、B 两点;②分别以、两点为圆心,以大于1/2AB的长度为半径画弧,两弧相交于D 点;③过、两点作直线,即为所求作的垂线. 证明:AB ClCl如果过直线上一点作已知直线的垂线能否利用画平角的平分线的方法解决呢?试试看,自己完成整个作图.作法:(2)画线段的垂直平分线已知:线段AB ,画出它的垂直平分线.作法:(1)分别以、两点为圆心,以大于AB 线段一半的长为半径画弧,两弧交于C、D 两点;(2)过C、D 两点作直线,即为所求作线段AB 的垂直平分线.证明:三练习1.如图,过点P画∠O两边的垂线2已知:线段a和b,求作:一个Rt△ABC,使它的两条直角边分别等于线段a和b 。
作法:3(2011.青岛)已知:如图线段a和h。
求作:△ABC,使AB=AC,BC=a,且BC边上的高AD=h。
华师版八年级数学 13.4 尺规作图(学习、上课课件)

图示
感悟新知
知2-讲
特别解读 作一条线段等于已知线段,也可以用度量方法截取,
但由于度量时会有误差,故选择尺规作图更精确.
感悟新知
知2-练
例 2 如图13.4-1,已知线段a,b(a>b),求作一条线段AB, 使AB=2(a-b).
解题秘方:运用线段的和、差来转化线段之间的 数量关系.
知3-练
解题秘方:通过作一对相等 的内错角来作已知直线的平 行线.
感悟新知
解:作法如下: (1)过点C作直线MN与AB相交,交点为F; (2)在直线MN的右侧作∠FCE,使 ∠FCE=∠AFC; (3)反向延长射线CE得到射线CD,则 直线DE即为所求(如图13.4 -5).
知3-练
感悟新知
知3-练
3-1. 如图,已知∠α,求作∠AOB,使∠AOB=3∠α .(写 出作法)
感悟新知
解:如图所示.
知3-练
作法:(1)作射线OA,分别以∠α的顶点和点O为圆心,以 相等的任意长为半径作弧,分别交∠α的两边于点M,N, 交OA于点E;
感悟新知
知3-练
(2)以点E为圆心,以线段MN的长为半径作弧,两弧交于 点F; (3)过点F作射线OC,则∠AOC=∠α; (4)同理,以OC为一边,在∠AOC 的外部,作∠COD= ∠α,再以OD为一边,在∠AOD的外部,作∠BOD = ∠α,则∠AOB=3∠α. ∠AOB就是所求作的角.
感悟新知
例 1 下列属于尺规作图的是( ) A. 用量角器画出∠AOB的平分线OC B. 已知线段a,求作线段AB,使AB=2a C. 作线段AC=3 cm D. 平移法作线段AB的平行线CD
知1-练
解题秘方:紧扣尺规作图的工具及常见的五种基本
新华东师大版八年级数学上册《13章 全等三角形 13.4 尺规作图 作一个角等于已知角》优质课课件_2

2.已知三边作三角形.
a b
已知:线段a,b,c.
c
求作:△ABC,使得三边为线段a,b,c.
作法:(1)画一条线段AB,使得AB=c.
(2)以点A为圆心,以线段b的长为半
径画圆弧;再以点B为圆心,以线段
a的长为半径画圆弧;两弧交于点C. (3)连结AC,BC.
△ABC即为所求.
如图13.4.3,∠AOB为已知角,试按下
列步骤用圆规和直尺准确地画一个角
等于∠AOB.
B
第一步: 画射线O′A′. 第二步:以点O为圆心,以适
当长为半径画弧,交OA于C,
交OB于D.
O 图13.4.3 A
第三步:以点O′为圆心,以OC长为半径画弧,
交O′A′于C′. 第四步:以点C′为圆心,以CD长为半径画弧, 交前一条弧于D′.
注意:几何作图要保留作图痕迹!
如图13.4.3,∠AOB为已知角,试按下 列步骤用圆规和直尺准确地画一个角 等于∠AOB.
第五步: 经过点D′画射线O′B′.
∠A′O′B′就是所要画的角.
请你利用直尺和圆规分别画出满足图 13.4.4和图13.4.5中条件的三角形ABC.
(1)已知两边及夹角; (2)已知两角及夹边.
‘
图 13.4.4
如图13.4.1,MN为已知线段,你能用 直尺和圆规准确地画一条与MN相等的 线段吗?
图 24.4.1
如图13.4.2,我们可以先画射线AB, 然后用圆规量出线段MN的长,再在 射线AB上截取AC=MN,线段AC就 是所要画的线段.
图 13.4.2
1.已知线段AB和CD,如下图,求作 ห้องสมุดไป่ตู้线段,使它的长度等于AB+2CD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 尺规作图
教学目标:
1. 知道什么是尺规作图;
2. 掌握尺规作图的基本作图:画一条线段等于已知线段,画一个角等于已知角;
3. 掌握画图的步骤并会灵活应用.
教学重难点:
分析实际作图问题,运用尺规的基本作图,写出作图的主要画法.
教学过程:
课前预习
1.线段有__________个端点;
2.角是由两条有公共端点的射线组成的__________;
3.尺规作图是指用没有刻度的直尺和__________作图.
【答案】1.2
2.图形
3.圆规
合作探究
探究1:作一条线段等于已知线段
如图,已知线段AB,如何作一条线段等于已知线段AB?你有什么办法?如果只有圆规和没有刻度的直尺这两个工具,你能按要求作出图形吗?
合作交流:
①用刻度尺量出AB的长度,可以作一条线段等于已知线段AB吗?
②我们研究只有圆规和没有刻度的直尺这两个工具,你能按要求作出图形吗?如何作图?试试看!
③作射线DC,以点D为圆心,以AB的长为半径作弧,交射线DC于点E,线段DE就是所要作的线段.你能作出图形吗?
探究2:已知角∠MPN,用直尺和圆规准确地画一个角等于已知角∠MPN.
请同学们讨论、探索、交流、归纳出具体的作图方法.
2 作法:
(1)画射线OA .
(2)以角∠MPN 的顶点P 为圆心,以适当长为半径画弧,交∠MPN 的两边于E.F .
(3)以点O 为圆心,以PE 长为半径画弧,交OA 于点C .
(4)以点C 为圆心,以EF 长为半径画弧,交前一条弧于点D .
(5)经过点D 作射线OB .
∠AOB 就是所画的角.(如图
)
课堂巩固
已知:两角分别为α∠、β∠,线段a ,
求作:△ABC ,使AB =a ,BAC α∠=∠,∠ABC =β∠.
作法:
(1)作线段AB = a
(2)分别以A ,B 点为顶点,射线AB ,
BA 为一边,在AB 的同侧作DAB α∠=∠,
∠EBA =β∠,AD ,BE 交于C 点,则△ABC 就是所求作的三角形.
课堂小结
1.尺规作图是指用圆规和无刻度的直尺.
2.基本作图:
(1)用尺规作一条线段等于已知线段;
(2)用尺规作一个角等于已知角.
课堂作业
课本。