湖北省2015届高三12月份月考理科数学试题

合集下载

河南省郑州智林学校2015届高三12月月考数学(理)试题

河南省郑州智林学校2015届高三12月月考数学(理)试题

河南省郑州智林学校2015届高三12月月考数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置. 1.在复平面内,复数323Z i i=+-对应的点位于 ( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 2.已知集合1|lg x M x y x -⎧⎫==⎨⎬⎩⎭,{}2|23N y y x x ==++,则N M C R )(( )A .{x |0<x <1}B .{x |x >1}C .{x |x ≥2}D .{x |1<x <2} 3.设f (x )是定义在R 上的奇函数,当0<x 时,f (x )=x x e -- (e 为自然对数的底数),则(ln 6)f 的值为 ( )A .ln6+6B . ln6-6C . -ln6+6D .-ln6-64.已知等差数列{}n a 的n 前项和为n S ,其中10150,25,n S S S ==则取得最小值时n 的值是( )A .4B .5C .6D .75.过抛物线2y =4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF |=3,则△AOB 的面积为( ) ABCD .6.执行右边的程序框图,若输出的S 是127,则判断框内应该是( )A .n ≤5B .n ≤6C .n ≤7D .n ≤87.设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为( )A.1B.3C.4D.58.某几何体的三视图如图所示,且该几何体的体积是3,则正视图 中的x 的值是( )A .2B .92C .32D .39.设偶函数)sin()(ϕω+=x A x f (,0>A )0,0πϕω<<>的部分图象如图所示,△KLM 为等腰直角三角形,∠KML=90°,||1KL =,则1()6f 的值为正视图 侧视图xA .43-B .14C .12- D .43 10.如图,已知ABC ∆中,点M 在线段AC 上,点P 在线段BM 上且满足2,|2,||3,120,AM MP AB AC BAC AP BC MC PB====∠=︒∙若|则的值为( ) A.2- B.2 C.32 D.311-11已知H 是球O 的直径AB 上一点,AHHB =12,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为A .53π B .4πC .92π D .14435π12.设()ln f x x =,若函数()()g x f x ax =-在区间(]0,3上有三个零点,则实数a 的取值范围是A. 10,e ⎛⎫⎪⎝⎭B.ln 3,3e ⎛⎫⎪⎝⎭C.ln 30,3⎛⎤⎥⎝⎦D.ln 31,3e ⎡⎫⎪⎢⎣⎭二、填空题本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置. 13.已知tan()2θπ-=,则sin cos θθ⋅的值为 14.己知x>0,y>0,且 115x y x y+++=,则x+y 的最大值是______. 15. 设,x y 满足约束条件22002x x y e y x +≥⎧⎪-≥⎨⎪≤≤⎩,则(,)M x y 所在平面区域的面积为___________.16已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取得极大值,则a 的取值范围是________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)已知数列{}n a 的前n 项和为n S ,且*21()n n S a n N =-∈. (1)求数列{}n a 的通项公式;A MCB P(2)设131,log n n n b c a ==,求数列{}n c 的前n 项和n T .18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,22n n S a =-. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2log n n b a =,n c =11n n b b +,记数列{}n c 的前n 项和n T .若对n N *∈, ()4n T k n ≤+ 恒成立,求实数k 的取值范围.19.(本小题满分12分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,AA 1=4,点D 是BC 的中点. (Ⅰ)求证:A 1B ∥平面ADC 1;(Ⅱ)求平面ADC 1与ABA 1所成二面角的正弦值.20. (本小题满分12分)已知椭圆C :()222210x y a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切, (Ⅰ)求该椭圆C 的方程;(Ⅱ)设()4,0A -,过点()3,0R x l 作与轴不重合的直线交椭圆P 、Q 两点,连接AP 、AQ163x M N MR NR =分别交直线与、两点,试问直线、的斜率之积是否为定值?若是求出该定值,若不是请说明理由。

2015届高考数学一轮总复习 阶段性测试题2(函 数)

2015届高考数学一轮总复习 阶段性测试题2(函 数)

阶段性测试题二(函 数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)函数f (x )=3x 21-x +lg(3x+1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13)D .(-∞,-13)[答案] B[解析] 为使f (x )=3x 21-x+lg(3x +1)有意义,须⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,故选B.(理)(2014·山东省德州市期中)已知函数f (x )的定义域为(0,1),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-12,0)C .(-1,0)D .(12,1)[答案] B[解析] 要有f (2x +1)有意义,应有0<2x +1<1, ∴-12<x <0,故选B.2.(2014·营口三中期中)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)[答案] C[解析] ∵f (0)·f (1)=(e 0-2)·(e -1)<0,∴选C.3.(文)(2014·枣庄市期中)函数y =16-3x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)[答案] C[解析] 要使函数有意义,应有16-3x ≥0,∴3x ≤16, 又3x >0,∴0<3x ≤16,∴0≤16-3x <16,∴0≤y <4,故选C.(理)(2014·北京海淀期中)下列函数中,值域为(0,+∞)的函数是( ) A .f (x )=x B .f (x )=ln x C .f (x )=2x D .f (x )=tan x[答案] C[解析] ∵x ≥0,ln x ∈R,2x >0,tan x ∈R ,∴选C.4.(文)(2014·甘肃省金昌市二中期中)设a =0.32,b =20.3,c =log 0.34,则( ) A .b <a <c B .c <b <a C .b <c <a D .c <a <b[答案] D[解析] ∵0<0.32<1,20.3>20=1,log 0.34<log 0.31=0,∴c <a <b . (理)(2014·北京朝阳区期中)若0<m <1,则( ) A .log m (1+m )>log m (1-m ) B .log m (1+m )>0 C .1-m >(1+m )2 D .(1-m )13>(1-m )12[答案] D[解析] ∵0<m <1,∴1<m +1<2,0<1-m <1,∴y =log m x 为减函数,y =(1-m )x 为减函数,∴log m (1+m )<log m 1<log m (1-m ),A 、B 错;(1+m )2>1>1-m ,C 错;(1-m )13>(1-m )12,故正确答案为D.5.(2014·山东省菏泽市期中)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=3,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2[答案] C[解析] ∵f (1)=1,f (2)=3,f (x )为奇函数, ∴f (-1)=-1,f (-2)=-3,∵f (x )周期为5, ∴f (8)-f (4)=f (-2)-f (-1)=-2.6.(文)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知函数f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0,则f [f (116)]=( )A .9B .-19C.19D .-9[答案] C[解析] ∵f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0∴f (116)=log 4116=-2,f [f (116)]=f (-2)=3-2=19,故选C.(理)(2014·江西临川十中期中)若f (x )=⎩⎪⎨⎪⎧2-x(x ≥3),f (x +3) (x <3),则f (-4)等于( )A .2 B.12 C .32 D.132[答案] D[解析] ∵f (x )=⎩⎪⎨⎪⎧2-x(x ≥3),f (x +3) (x <3),∴f (-4)=f (-1)=f (2)=f (5)=2-5=132.7.(文)(2014·河南省实验中学期中)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x B .y =log 2|x | C .y =e x -e -x 2D .y =x 3+1[答案] B[解析] y =x 3+1是非奇非偶函数;y =e x -e -x2为奇函数;y =cos2x 在(1,2)内不是单调增函数,故选B.(理)(2014·广东梅县东山中学期中)下列函数中,既是偶函数又在(0,+∞)上是单调递增的是( )A .y =2|x +1|B .y =x 2+2|x |+3C .y =cos xD .y =log 0.5|x |[答案] B[解析] y =2|x +1|是非奇非偶函数;y =cos x 在(0,+∞)上不是单调增函数,y =log 0.5|x |在(0,+∞)上单调递减,故选B.8.(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)定义在R 上的函数f (x )满足f (x +3)=-f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2013)=( )A .338B .337C .1678D .2013[答案] B[解析] ∵定义在R 上的函数f (x )满足f (x +3)=-f (x ),∴f (x +6)=f [(x +3)+3]=-f (x +3)=f (x ), ∴f (x )是周期为6的周期函数.又当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,2013=6×335+3,故f (1)+f (2)+f (3)+…+f (2013)=335(1+2-1+0-1+0)+1+2-1=337,选B.9.(文)(2014·枣庄市期中)如图是张大爷离开家晨练过程中离家距离y 与行走时间x 之间函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )[答案] D[解析] 由图象知,张大爷散步时,离家的距离y 随散步行走时间x 的变化规律是,先均速增加,中间一段时间保持不变,然后匀速减小,故选D.(理)(2014·泸州市一诊)函数f (x )=(1-1x2)sin x 的图象大致为( )[答案] A[解析] 首先y =1-1x 2为偶函数,y =sin x 为奇函数,从而f (x )为奇函数,故排除C 、D ;其次,当x =0时,f (x )无意义,故排除B ,选A.10.(2014·安徽程集中学期中)已知f (x )=⎩⎪⎨⎪⎧(3-a )x -a (x <1),log a x (x ≥1).是(-∞,+∞)上的增函数,那么实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[32,3)D .(1,3)[答案] C[解析] ∵f (x )在R 上为增函数,∴⎩⎪⎨⎪⎧3-a >0,a >1,3-2a ≤0,∴32≤a <3,故选C. 11.(文)(2014·银川九中一模)如果不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},那么函数y=f (-x )的大致图象是( )[答案] C[解析] 由于不等式ax 2-x -c >0的解集为{x |-2<x <1},∴a <0,且-2和1是方程ax 2-x -c =0的两根,∴a =-1,c =-2,∴f (x )=-x 2-x +2,∴y =f (-x )=-x 2+x +2,故选C.(理)(2014·抚顺市六校联合体期中)函数f (x )=(1-cos x )sin x 在[-π,π]的图象大致为( )[答案] C[解析] f (x )=(1-cos x )sin x =4sin 3x 2cos x 2,∵f (π2)=1,∴排除D ;∵f (x )为奇函数,∴排除B ;∵0<x <π时,f (x )>0,排除A ,故选C. 12.(2014·山西曲沃中学期中)如图,直角坐标平面内的正六边形ABCDEF ,中心在原点,边长为a ,AB 平行于x 轴,直线l :y =kx +t (k 为常数)与正六边形交于M 、N 两点,记△OMN 的面积为S ,则关于函数S =f (t )的奇偶性的判断正确的是( )A .一定是奇函数B .一定是偶函数C .既不是奇函数,也不是偶函数D .奇偶性与k 有关 [答案] B[解析] 设直线OM 、ON 与正六边形的另一个交点分别为M ′、N ′,由于正六边形关于点O 成中心对称,∴OM ′=OM ,ON ′=ON ,从而△OM ′N ′与△OMN 成中心对称,设直线l 交y 轴于T ,直线M ′N ′交y 轴于T ′,则|OT |=|OT ′|,且S △OM ′N ′=S △OMN ,即当t <0时,有S =f (t )=f (-t ),∴S =f (t )为偶函数.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·营口三中期中)定义在R 上的偶函数f (x )满足f (x +1)=f (1-x ).若当0≤x <1时,f (x )=2x ,则f (log 26)=________.[答案] 32[解析] ∵f (x +1)=f (1-x ),∴函数f (x )的图象关于直线x =1对称,又f (x )为偶函数,∴f (-x )=f (x ),∴f (x +2)=f (x ),∴f (x )是周期为2的周期函数,∴f (log 26)=f (log 26-2)=f (log 232),∵0<log 232<1,14.(文)(2014·河南省实验中学期中)方程4x -2x +1-3=0的解是________.[答案] x =log 23[解析] 令2x =t ,则t >0,∴原方程化为t 2-2t -3=0,∴t =3. 即2x =3,∴x =log 23.(理)(2014·长安一中质检)方程33x-1+13=3x -1的实数解为________. [答案] x =log 34[解析] 令3x =t ,则t >0,∴原方程化为3t -1+13=t3,∴t =4,即3x =4,∴x =log 34.15.(2014·北京海淀期中)已知a =log 25,2b =3,c =log 32,则a ,b ,c 的大小关系为________. [答案] a >b >c[解析] 因为,a =log 25>log 24=2,c =log 32<log 33=1,由2b =3得,b =log 23,1=log 22<log 23<log 24=2,所以a >b >c .16.(文)(2014·北京朝阳区期中)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x , x ≥0,x 2-2x , x <0.若f (3-a 2)<f (2a ),则实数a 的取值范围是________.[答案] -3<a <1[解析] 根据所给分段函数,画图象如下:可知函数f (x )在整个定义域上是单调递减的, 由f (3-a 2)<f (2a )可知,3-a 2>2a ,解得-3<a <1. (理)(2014·湖南省五市十校联考)下列命题: ①函数y =sin(x -π2)在[0,π]上是减函数;②点A (1,1),B (2,7)在直线3x -y =0两侧;③数列{a n }为递减的等差数列,a 1+a 5=0,设数列{a n }的前n 项和为S n ,则当n =4时,S n 取得最大值;④定义运算⎪⎪⎪⎪⎪⎪a 1a 2b 1b 2=a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点(1,13)处的切线方程是6x -3y -5=0.其中正确命题的序号是________(把所有正确命题的序号都写上).[答案] ②④[解析] y =sin(x -π2)=-cos x 在[0,π]上为增函数,∴①错;∵(3×1-1)(3×2-7)<0,∴②正确;∵{a n }为递减等差数列,∴d <0,∵a 1+a 5=0,∴a 1>0,a 5<0,且a 3=0,∴当n =2或3时,S n 取得最大值,故③错;由新定义知f (x )=13x 3+x 2-x ,∴f ′(x )=x 2+2x -1,∴f ′(1)=2,故f (x )在(1,13)处的切线方程为y -13=2(x -1),即6x -3y -5=0,∴④正确,故填②④.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·甘肃省金昌市二中期中)已知函数f (x )=2ax 2+4x -3-a ,a ∈R .(1)当a =1时,求函数f (x )在[-1,1]上的最大值;(2)如果函数f (x )在R 上有两个不同的零点,求a 的取值范围. [解析] (1)当a =1时,f (x )=2x 2+4x -4 =2(x 2+2x )-4=2(x +1)2-6.因为x ∈[-1,1],所以x =1时,f (x )取最大值f (1)=2.(2)∵⎩⎪⎨⎪⎧ Δ>0,a ≠0,∴⎩⎪⎨⎪⎧a 2+3a +2>0,a ≠0,∴a <-2或-1<a <0或a >0,∴a 的取值范围是(-∞,-2)∪(-1,0)∪(0,+∞).(理)(2014·北京朝阳区期中)已知函数f (x )=x 2-4x +a +3,a ∈R . (1)若函数y =f (x )的图象与x 轴无交点,求a 的取值范围; (2)若函数y =f (x )在[-1,1]上存在零点,求a 的取值范围;(3)设函数g (x )=bx +5-2b ,b ∈R .当a =0时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使得f (x 1)=g (x 2),求b 的取值范围.[解析] (1)∵f (x )的图象与x 轴无交点,∴Δ=16-4(a +3)<0,∴a >1.(2)∵f (x )的对称轴为x =2,∴f (x )在[-1,1]上单调递减,欲使f (x )在[-1,1]上存在零点,应有⎩⎪⎨⎪⎧ f (1)≤0,f (-1)≥0.即⎩⎪⎨⎪⎧a ≤0,8+a ≥0,∴-8≤a ≤0. (3)若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2),只需函数y =f (x )的值域为函数y =g (x )值域的子集即可.∵函数y =f (x )在区间[1,4]上的值域是[-1,3],当b >0时,g (x )在[1,4]上的值域为[5-b,2b +5],只需⎩⎪⎨⎪⎧5-b ≤-1,2b +5≥3,∴b ≥6;当b =0时,g (x )=5不合题意,当b <0时,g (x )在[1,4]上的值域为[2b +5,5-b ],只需⎩⎪⎨⎪⎧2b +5≤-1,5-b ≥3,∴b ≤-3.综上知b 的取值范围是b ≥6或b ≤-3.18.(本小题满分12分)(文)(2014·韶关市曲江一中月考)已知二次函数f (x )满足条件:①在x =1处导数为0;②图象过点P (0,-3);③在点P 处的切线与直线2x +y =0平行. (1)求函数f (x )的解析式;(2)求在点Q (2,f (2))处的切线方程.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 由题意有⎩⎪⎨⎪⎧f ′(1)=0,f (0)=-3,f ′(0)=-2,即⎩⎪⎨⎪⎧2a +b =0,c =-3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴f (x )=x 2-2x -3.(2)由(1)知f (x )=x 2-2x -3,f ′(x )=2x -2,∴切点Q (2,-3),在Q 点处切线斜率k =f ′(2)=2, 因此切线方程为y +3=2(x -2),即2x -y -7=0.(理)(2014·河南淇县一中模拟)已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)证明当m ≤2时,f (x )>0. [解析] (1)f ′(x )=e x -1x +m,由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=e x -1x +1.函数f ′(x )=e x -1x +1在(-1,+∞)上单调递增,且f ′(0)=0,因此,当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增. (2)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2), 故只需要证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=e x -1x +2在(-2,+∞)上单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一实根x 0,且x 0∈(-1,0). 当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取得最小值. 由f ′(x 0)=0得e x 0=1x 0+2,所以ln(x 0+2)=-x 0,故f (x )≥f (x 0)>0, 综上,当m ≤2时,f (x )>0.19.(本小题满分12分)(文)(2014·枣庄市期中)已知函数f (x )=a -22x -1(a ∈R ).(1)用单调函数的定义探索函数f (x )的单调性; (2)求实数a 使函数f (x )为奇函数.[解析] (1)f (x )的定义域为(-∞,0)∪(0,+∞).任取非零实数x 1,x 2,且x 1<x 2,从而f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2). 所以f (x )在(-∞,0)上单调递增. 同理可证,f (x )在(0,+∞)上单调递增.(2)解法一:对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=a -22x -1+a -22-x -1=2a -22x -1-2·2x1-2x =2a +2·2x -22x -1=2a +2.若函数f (x )为奇函数,则有2a +2=0,解得a =-1, 此时f (-x )=-f (x ). 所以a =-1为所求.解法二:若函数f (x )为奇函数,则f (-1)=-f (1),即a -22-1-1=-(a -221-1).解得a =-1.当a =-1时,对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=-1-22x -1-1-22-x -1=-2-22x -1-2·2x1-2x =0,所以f (-x )=-f (x ),即函数f (x )为奇函数. 所以a =-1为所求.(理)(2014·泉州实验中学期中)已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)已知f (x )是减函数,若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解析] (1)∵f (x )是奇函数,定义域为R , ∴f (0)=0,即b -1a +2=0⇒b =1,∴f (x )=1-2x a +2x +1,又由f (1)=-f (-1)知,1-2a +4=-1-12a +1,∴a =2.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x+1,易知f (x )在(-∞,+∞)上为减函数,∵f (x )是奇函数,∴不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (k -2t 2),∵f (x )为减函数,∴t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,∴判别式Δ=4+12k <0,∴k <-13.20.(本小题满分12分)(文)(2014·福州市八县联考)函数f (x )=2ax -x 2+ln x ,a 为常数. (1)当a =12时,求f (x )的最大值;(2)若函数f (x )在区间[1,2]上为单调函数,求a 的取值范围.[解析] (1)当a =12时,f (x )=x -x 2+ln x ,则f (x )的定义域为(0,+∞),∴f ′(x )=1-2x +1x =-(2x +1)(x -1)x .由f ′(x )>0,得0<x <1;由f ′(x )<0,得x >1; ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )的最大值为f (1)=0. (2)∵f ′(x )=2a -2x +1x.若函数f (x )在区间[1,2]上为单调函数,则f ′(x )≥0,或f ′(x )≤0在区间[1,2]上恒成立. ∴2a -2x +1x ≥0,或2a -2x +1x ≤0在区间[1,2]上恒成立.即2a ≥2x -1x ,或2a ≤2x -1x 在区间[1,2]上恒成立.设h (x )=2x -1x ,∵h ′(x )=2+1x 2>0,∴h (x )=2x -1x 在区间[1,2]上为增函数.∴h (x )max =h (2)=72,h (x )min =h (1)=1,∴只需2a ≥72,或2a ≤1,∴a ≥74,或a ≤12.(理)(2014·韶关市曲江一中月考)如图是函数f (x )=a3x 3-2x 2+3a 2x 的导函数y =f ′(x )的简图,它与x轴的交点是(1,0)和(3,0).(1)求函数f (x )的极小值点和单调递减区间; (2)求实数a 的值.[解析] (1)由图象可知:当x <1时,f ′(x )>0,f (x )在(-∞,1)上为增函数; 当1<x <3时,f ′(x )<0,f (x )在(1,3)上为减函数; 当x >3时,f ′(x )>0,f (x )在(3,+∞)为增函数;∴x =3是函数f (x )的极小值点,函数f (x )的单调减区间是(1,3).(2)f ′(x )=ax 2-4x +3a 2,由图知a >0且⎩⎪⎨⎪⎧f ′(1)=0,f ′(3)=0,∴⎩⎪⎨⎪⎧a >0,a -4+3a 2=0,9a -12+3a 2=0.∴a =1. 21.(本小题满分12分)(文)(2014·湖南省五市十校联考)已知A ,B ,C 是直线l 上的不同三点,O 是l 外一点,向量OA →,OB →,OC →满足OA →=(32x 2+1)OB →+(ln x -y )OC →,记y =f (x ).(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.[解析] (1)∵OA →=(32x 2+1)OB →+(ln x -y )OC →,且A ,B ,C 是直线l 上的不同三点,∴(32x 2+1)+(ln x -y )=1,∴y =32x 2+ln x . (2)∵f (x )=32x 2+ln x ,∴f ′(x )=3x +1x =3x 2+1x,∵f (x )=32x 2+ln x 的定义域为(0,+∞),∴f ′(x )=3x 2+1x 在(0,+∞)上恒正,∴y =f (x )在(0,+∞)上为增函数, 即y =f (x )的单调增区间为(0,+∞).(理)(2014·河北冀州中学期中)已知函数f (x )=ax 3+bx 2+cx +a 2(a >0)的单调递减区间是(1,2)且满足f (0)=1.(1)求f (x )的解析式;(2)对任意m ∈(0,2],关于x 的不等式f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,求实数t的取值范围.[解析] (1)由f (0)=a 2=1,且a >0,可得a =1. 由已知,得f ′(x )=3ax 2+2bx +c =3x 2+2bx +c , ∵函数f (x )=ax 3+bx 2+cx +a 2的单调递减区是(1,2), ∴f ′(x )<0的解是1<x <2.所以方程3x 2+2bx +c =0的两个根分别是1和2,∴⎩⎪⎨⎪⎧3+2b +c =0,12+4b +c =0,得⎩⎪⎨⎪⎧b =-92,c =6.∴f (x )=x 3-92x 2+6x +1.(2)由(1),得f ′(x )=3x 2-9x +6=3(x -1)(x -2),∵当x >2时,f ′(x )>0,∴f (x )在[2,+∞)上单调递增,x ∈[2,+∞)时,f (x )min =f (2)=3, 要使f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,应有12m 3-m ln m -mt +3>f (x )min ,∴12m 3-m ln m -mt +3>3, mt <12m 3-m ln m 对任意m ∈(0,2]恒成立,即t <12m 2-ln m 对任意m ∈(0,2]恒成立.设h (m )=12m 2-ln m ,m ∈(0,2],则t <h (m )min ,h ′(m )=m -1m =m 2-1m =(m -1)(m +1)m,令h ′(m )=0得m =1或m =-1, 由m ∈(0,2],列表如下:∴当m =1时,h (m )min =h (m )极小值=12,∴t <12.22.(本小题满分14分)(文)(2013·泗阳县模拟)某生产旅游纪念品的工厂,拟在2013年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2013年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x 与t 所满足的关系式;(2)请把该工厂2013年的年利润y 万元表示成促销费t 万元的函数; (3)试问:当2013年的促销费投入多少万元时,该工厂的年利润最大? [解析] (1)设比例系数为k (k ≠0).由题意知,3-x =kt +1.又t =0时,x =1.∴3-1=k 0+1.∴k =2,∴x 与t 的关系是x =3-2t +1(t ≥0).(2)依据题意,可知工厂生产x 万件纪念品的生产成本为(3+32x )万元,促销费用为t 万元,则每件纪念品的定价为:(3+32x x ·150%+t2x)元/件.于是,y =x ·(3+32x x ·150%+t2x )-(3+32x )-t ,化简得,y =992-32t +1-t2(t ≥0).因此,工厂2013年的年利润y =992-32t +1-t2(t ≥0)万元.(3)由(2)知,y =992-32t +1-t2(t ≥0)=50-(32t +1+t +12)≤50-232t +1·t +12=42(当t +12=32t +1,即t =7时,等号成立).所以,当2013年的促销费用投入7万元时,工厂的年利润最大,最大利润为42万元. (理)(2014·安徽屯溪一中质检)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p .(以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5].其中x =0表示8月1日,x =1表示9月1日,…,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.[分析] (1)利用价格呈现前几次与后几次均连续上升,中间几次连续下降的趋势,故可从三个函数的单调上考虑,前面两个函数没有出现两个递增区间和一个递减区间,应选f (x )=x (x -q )2-p 为其模拟函数;(2)由题中条件:f (0)=4,f (2)=6,得方程组,求出p ,q 即可得到f (x )的解析式;(3)确定函数解析式,利用导数小于0,即可预测该海鲜产品在哪几个月份内价格下跌.[解析] (1)根据题意,应选模拟函数f (x )=x (x -q )2+p .(2)∵f (0)=4,f (2)=6,∴⎩⎪⎨⎪⎧ p =4,(2-q )2=1,∴⎩⎪⎨⎪⎧p =4,q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5).(3)f (x )=x 3-6x 2+9x +4,f ′(x )=3x 2-12x +9, 令f ′(x )<0得,1<x <3,又∵x ∈[0,5],∴f (x )在(0,1),(3,5)上单调递增,在(1,3)上单调递减. 所以可以预测这种海鲜将在9月,10月两个月内价格下跌.。

湖北省黄冈中学2015届高三上学期期中考试数学理试题 Word版含答案

湖北省黄冈中学2015届高三上学期期中考试数学理试题 Word版含答案

黄冈中学2014年秋季高三年级11月月考数学(理科)一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合{}|12A x x =-<,{}|2,[0,2]xB y y x ==∈,则AB =( )A .[0,2]B .(1,3)C .[)1,3D .(1,4)2. 若α是第三象限角,且1tan 3α=,则cos α=( ) A. BC.D. 3. 函数3()log (21)x f x =+的值域为( )A. (0,)+∞B. [)0,+∞C. (1,)+∞D. [)1,+∞4. 已知向量i 与j 不共线,且,,1AB i m j AD ni j m =+=+≠,若,,A B D 三点共线,则实数,m n 满足的条件是( ) A.1m n += B.1m n +=-C.1mn =D.1mn =-5. 函数1()lg f x x x=-的零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,106. 若数列{}n a 满足110n npa a +-=,*,n N p ∈为非零常数,则称数列{}n a 为“梦想数列”。

已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“梦想数列”,且99123992bb b b =,则892b b +的最小值是( )A .2B .4C .6D .87.已知函数2(1)(10)()1)x x f x x ⎧+-≤≤⎪=<≤,则11()f x dx -=⎰( )A .3812π-B .4312π+C .44π+D .4312π-+8.下列四种说法中,①命题“存在2,0x R x x ∈->”的否定是“对于任意2,0x R x x ∈-<”; ②命题“p 且q 为真”是“p 或q 为真”的必要不充分条件; ③已知幂函数()f x x α=的图象经过点,则(4)f 的值等于12;④已知向量(3,4)a =-,(2,1)b =,则向量a 在向量b 方向上的投影是25. 说法正确的个数是( ) A .1 B .2C .3D .49. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞B .()(),03,-∞+∞UC .()(),01,-∞+∞UD .()3,+∞10.已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,25(02)16()1()1(2)2x x x f x x ⎧≤≤⎪⎪=⎨⎪+>⎪⎩ 若关于x 的方程2[()]()0f x af x b ++=,,a b R ∈有且仅有6个不同实数根,则实数a 的取值范围是( )A .59(,)24--B .9(,1)4-- C. 599(,)(,1)244---- D .5(,1)2--二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应的横线上.) 11.在等比数列{}n a 中,11a =,且14a ,22a ,3a 成等差数列,则通项公式n a = . 12.已知函数()sin()(0)f x x ωϕω=+>的图象如右图所示,则(2)f = . 13.函数2()(1)2ln(1)f x x x =+-+的单调增区间是 . 14.已知ABC ∆中的内角为,,A B C ,重心为G ,若2sin 3sin 3sin 0AGA B GB C GC ⋅+⋅+⋅=,则cos B = . 15.定义函数{}{}()f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{}1.52=,{}2.52-=-.当(]0,x n ∈,*n N ∈时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则12111naa a +++=________.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)若二次函数2() (,,)f x ax bx c a b c R =++∈满足(1)()4f x f x x +-=+,且(0)3f =. (1)求()f x 的解析式;(2)若在区间[1,1]-上,不等式()6f x x m >+恒成立,求实数m 的取值范围.17.(本小题满分12分)已知递增等比数列{}n a 的前n 项和为n S ,11a =,且3221S S =+. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足*21()n n b n a n N =-+∈,且{}n b 的前n 项和n T ,求证:2n T ≥. 18.(本小题满分12分)已知向量3(sin ,)4a x =,(cos ,1)b x =-. (1)当//a b 时,求2cos sin 2x x -的值; (2)设函数()2()f x a b b =+⋅,已知在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,若a =2b =,sin B =,求()4cos(2)6f x A π++([0,]3x π∈)的取值范围.19.(本小题满分12分)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估。

黑龙江省哈尔滨市第六中学2015届高三12月月考数学(理)试题

黑龙江省哈尔滨市第六中学2015届高三12月月考数学(理)试题

黑龙江省哈尔滨市第六中学2015届高三12月月考数学(理)试题4、设,,αβγ是三个互不重合的平面,,m n 是两条不同的直线,给出下列命题:(1),αββγ⊥⊥,则αγ⊥; (2)若α∥β,m β⊄,m ∥α,则m ∥β;(3)若,m n 在γ内的射影互相垂直,则m n ⊥;(4)若m ∥α,n ∥β,αβ⊥,则m n ⊥ 其中正确命题的个数为( )A .0 B. 1 C. 2 D. 35已知()f x 是定义域为正整数集的函数,对于定义域内任意的k ,若 ()2f k k ≥成立, 则()()211f k k +≥+成立,下列命题成立的是 ( )A.若()39f ≥成立,则对于任意1k ≥,均有()2f k k ≥成立;B.若()416f ≥成立,则对于任意的4k ≥,均有()2f k k <成立;C.若()749f ≥成立,则对于任意的7k <,均有()2f k k <成立;D.若()425f =成立,则对于任意的4k ≥,均有()2f k k ≥成立。

6. 已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且,,a b c 成等比数列,且3B π=,则11tan tan A C +=( ) A.3 B.23 C.332 D.3347.设数列{}n a 的前n 项和为n S ,11,2(1)()n n S a a n n N n *==+-∈, 若2321(1)402723n S S S S n n ++++--=,则n 的值为( )A 4027B 2013C 2014D 40268.已知实数,x y 满足不等式20403x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3322x y x y+的取值范围是( )A 19]3B 1[,2]3C 19[3,]3D 55[3,]99. 已知函数)0,0)(cos()(πθωθω<<>+=x x f 的最小正周期为π,且0)()(=+-x f x f ,若2tan =α,则)(αf 等于( ) A. 54 B. 54- C. 53- D. 53 10.已知正实数b a ,满足12=+b a ,则aba b 2+的最小值为( ) A.221+ B.21+ C.4 D.22 11.给定下列命题:(1) 在△ABC 中,B A ∠<∠是B A 2cos 2cos >的充要条件;(2) λ,μ为实数,若μλ=,则与共线; (3)若向量,满足||=||,则=或=-;(4)函数sin 2sin 236y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的最小正周期是π; (5)若命题p 为:011>-x ,则011:≤-⌝x p (6)由1131n a a n =,=-,求出123S S S ,,猜想出数列的前n 项和n S 的表达式的推理是归纳推理.其中正确的命题的个数为:( )A . 1B . 2C . 3D .412.已知函数x xe x f =)(,方程)(01)()(2R t x tf x f ∈=++. 有四个不同的实数根,则t 的取值范围为 ( ).A )1,(2e e +--∞ .B (),2-∞- .C 21,2e e ⎛⎫+-- ⎪⎝⎭.D ),1(2+∞+e e 二、填空题(每题5分共20分)13.已知数列}{n a 满足)2,(*112≥∈=+-n N n a a a n n n ,若4,111164654==++a a a a a ,则 =++654a a a .14.已知四棱锥BCDE A -的底面是边长为2的正方形,面ABC ⊥底面BCDE ,且2==AC AB ,则四棱锥BCDE A -外接球的表面积为________15.在ABC ∆中,已知232BC AC AB ==⋅,则=∠C _______________16.在△ABC 中,E 为AC 上一点,且4AC AE =,P 为BE 上一点,且满足(0,0)AP mAB nAC m n =+>>,则11m n+取最小值时,向量(),a m n =的模为 .三、解答题S E D CBA 17. 已知函数()()21cos cos 02f x x x x ωωωω=+->,其最小正周期为.2π (I )求()f x 的表达式;(II )将函数()f x 的图象向右平移8π个单位,再将图象上各点的横坐标伸长到原的2倍(纵坐标不变),得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围18. 已知三棱柱ABC —A 1B 1C 1的直观图和三视图如图所示,其主视图BB 1A 1A 和侧视图A 1ACC 1均为矩形,其中AA 1=4。

2015届高考数学第一轮复习 第三章 导数及其应用章末检测(新人教A版)

2015届高考数学第一轮复习 第三章 导数及其应用章末检测(新人教A版)

第三章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·泰安高三二模)如图,函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)等于 ( )A.12B .1C .2D .02.函数f (x )=ax 3-x 在(-∞,+∞)上是减函数,则 ( )A .a <1B .a <13C .a <0D .a ≤03.(2013·洛阳模拟)已知f (x )=(a +1)x +a x +1,且f (x -1)的图象的对称中心是(0,3),则f ′(2)的值为 ( )A .-19 B.19C .-14 D.144.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为 ( )A.π2B .0C .钝角D .锐角 5.(2013·山东)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为 ( ) A .13万件 B .11万件C .9万件D .7万件6.已知f (x )=2x 3-6x 2+a (a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f (x )的最小值是 ( )A .-5B .-11C .-29D .-377.(2013·江西) 如图,一个正五角形薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t ) (S (0)=0),则导函数y =S ′(t )的图象大致( )8.已知x ≥0,y ≥0,x +3y =9,则x 2y 的最大值为 ( )A .36B .18C .25D .429.(2013·合肥模拟)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为 ( )A .(-∞,-2)∪(1,+∞)B .(-∞,-2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)10.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于 ( )A.89B.109C.169D.5411.(2013·宝鸡高三检测三)已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是 ( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 12.(2013·唐山月考)已知函数y =f (x )=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p ,q 的值分别为 ( )A .6,9B .9,613.函数f (x )=x ln x 在(0,5)上的单调递增区间是____________.14.(2013·安庆模拟)已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,则f (1),f (2),f (3)的大小关系为________________________.15.(2013·福建改编)22(1cos )x dx ππ-+⎰=________. 16.下列关于函数f (x )=(2x -x 2)e x 的判断正确的是________(填写所有正确的序号). ①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值.三、解答题(本大题共6小题,共70分)17.(10分)设f (x )=x 3-12x 2-2x +5. (1)求函数f (x )的单调递增、递减区间;(2)当x ∈[-1,2]时,f (x )<m 恒成立,求实数m 的取值范围.18.(12分)(2013·莆田月考)已知函数f (x )=23x 3-2ax 2+3x (x ∈R ). (1)若a =1,点P 为曲线y =f (x )上的一个动点,求以点P 为切点的切线斜率取得最小值时的切线方程;(2)若函数y =f (x )在(0,+∞)上为单调增函数,试求满足条件的最大整数a .19.(12分)(2013·福州高三质检)已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数.20.(12分)(2013·全国)已知函数f (x )=3ax 4-2(3a +1)x 2+4x .(1)当a =16时,求f (x )的极值; (2)若f (x )在(-1,1)上是增函数,求a 的取值范围.21.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?22.(12分)(2013·黄山模拟)设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a 和b 的值;(2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,试比较f (x )与g (x )的大小.答案 1.C [由题意知f ′(5)=-1,f (5)=-5+8=3,所以f (5)+f ′(5)=3-1=2.]2.D [由题意知,f ′(x )=3ax 2-1≤0在(-∞,+∞)上恒成立,a =0时,f ′(x )≤0在(-∞,+∞)上恒成立;a >0时,1a≥3x 2在(-∞,+∞)上恒成立,这样的a 不存在; a <0时,1a≤3x 2在(-∞,+∞)上恒成立,而3x 2≥0, ∴a <0.综上,a ≤0.]3.B [f (x )=a +1-1x +1,中心为(-1,a +1),由f (x -1)的中心为(0,3)知f (x )的中心为(-1,3),∴a =2.∴f (x )=3-1x +1. ∴f ′(x )=1(x +1)2.∴f ′(2)=19.] 4.C [f ′(x )=e x sin x +e x cos x=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4, f ′(4)=2e 4sin ⎝⎛⎭⎫4+π4<0, 则此函数图象在点(4,f (4))处的切线的倾斜角为钝角.]5.C [∵y ′=-x 2+81,令y ′=0得x =9(x =-9舍去).当0<x ≤9时,y ′≥0,f (x )为增函数,当x >9时,y ′<0,f (x )为减函数.∴当x =9时,y 有最大值.]6.D [f ′(x )=6x 2-12x ,若f ′(x )>0,则x <0或x >2,又f (x )在x =0处连续,∴f (x )的增区间为[-2,0).同理f ′(x )<0,得减区间(0,2].∴f (0)=a 最大.∴a =3,即f (x )=2x 3-6x 2+3.比较f (-2),f (2)得f (-2)=-37为最小值.]7.A [利用排除法.∵露出水面的图形面积S (t )逐渐增大,∴S ′(t )≥0,排除B.记露出最上端小三角形的时刻为t 0.则S (t )在t =t 0处不可导.排除C 、D ,故选A.]8.A [由x +3y =9,得y =3-x 3≥0,∴0≤x ≤9. 将y =3-x 3代入u =x 2y , 得u =x 2⎝⎛⎭⎫3-x 3=-x 33+3x 2. u ′=-x 2+6x =-x (x -6).令u ′=0,得x =6或x =0.当0<x <6时,u ′>0;6<x <9时,u ′<0.∴x =6时,u =x 2y 取最大值36.]9.D [由f (x )的图象可知,在(-∞,-1),(1,+∞)上f ′(x )>0,在(-1,1)上f ′(x )<0. 由(x 2-2x -3)f ′(x )>0,得⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧ f ′(x )<0,x 2-2x -3<0. 即⎩⎪⎨⎪⎧ x >1或x <-1,x >3或x <-1或⎩⎪⎨⎪⎧-1<x <1-1<x <3, 所以不等式的解集为(-∞,-1)∪(-1,1)∪(3,+∞).]10.C [由图象知f (x )=x (x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d ,∴b =-1,c =-2,d =0.而x 1,x 2是函数f (x )的极值点,故x 1,x 2是f ′(x )=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c 3, x 21+x 22=(x 1+x 2)2-2x 1x 2=49b 2-2c 3=169.] 11.A [∵x ∈[0,+∞),f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又因f (x )是偶函数,∴f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13⇒|2x -1|<13,∴-13<2x -1<13. 即13<x <23.] 12.A [y ′=3x 2+2px +q ,令切点为(a,0),a ≠0,则f (x )=x (x 2+px +q )=0有两个不相等实根a,0 (a ≠0),∴x 2+px +q =(x -a )2.∴f (x )=x (x -a )2,f ′(x )=(x -a )(3x -a ).令f ′(x )=0,得x =a 或x =a 3. 当x =a 时,f (x )=0≠-4,∴f ⎝⎛⎭⎫a 3=y 极小值=-4,即427a 3=-4,a =-3,∴x 2+px +q =(x +3)2. ∴p =6,q =9.]13.⎝⎛⎭⎫1e ,5解析 ∵f ′(x )=ln x +1,f ′(x )>0,∴ln x +1>0,ln x >-1,∴x >1e.∴递增区间为⎝⎛⎭⎫1e ,5. 14.f (3)<f (1)<f (2)解析 由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称, 又当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )=1+cos x >0恒成立, 所以f (x )在⎝⎛⎭⎫-π2,π2上为增函数,。

岳阳县一中2015届高三第三次月考理科数学试题及答案

岳阳县一中2015届高三第三次月考理科数学试题及答案

岳阳县一中2015届高三年级第三次月考试卷理科数学时量:120分钟 总分:150分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.1.设复数11i z =+,22i ()z x x R =+∈,若12R z z ⋅∈,则x = ( ) A .1- B .2- C .1 D .22.下列函数中,既是奇函数又存在极值的是( ) A. 3y x =B. ln()y x =-C. e x y x -=D.2y x x=+3.在ABC ∆中,15,10,60a b A ===︒,则cos B 等于( )A.C.4.已知n {a }为等差数列,其前n 项和为S n ,若9S =12,则下列各式一定为定值的是( ) A.38a a + B.10a C.357a a a ++ D. 27a a +5.已知()3sin f x x x π=-,命题:0,,()02p x f x π⎛⎫∀∈< ⎪⎝⎭,则( )A.p 是假命题;:(0,),()02p x f x π⌝∀∈≥ B.p 是假命题;00:(0,),()02p x f x π⌝∃∈≥C.p 是真命题; :(0,),()02p x f x π⌝∀∈> D.p 是真命题;00:(0,),()02p x f x π⌝∃∈≥6.设等比数列n {a }的前n 项和为n S ,若633,S S =则96SS =( ) A. 2 B.73 C. 83D.3 7.函数44sin cos y x x =+是( ) A.最小正周期为2π,值域为的函数 B.最小正周期为4π,值域为的函数 C.最小正周期为2π,值域为1[,1]2的函数 D.最小正周期为π,值域为1[,1]的函数8.如图,面积为8的平行四边形OABC 中,AC CO ⊥,AC 与BO E ,某指数函数()0,1x y a a a =>≠且,经过点,E B ,则a =( )C.2D.39.已知1,1x y >>,且11ln ,,ln 44x y 成等比数列,则xy 的最小值是( )A. 1B.1eC. eD. 2 10.已知函数e e ()1x x mf x +=+,若对于任意,,a b c ∈R ,都有()()()f a f b f c +>成立,则实数m 的取值范围是( )A. 1[,2]2B. [0,1]C. [1,2]D. 1[,1]2二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡中对应题号后横线上. 11.已知集合{}{}()R|,|12,R A x x a B x x A B =<=<<=且ð,则实数a 的取值范围是 .12.数列{}n a 中,11+21,,N 2nn n a a a n a +==∈+,则5a = . 13.已知1tan(),(0,)43πααπ+=∈,则sin α= .14.平面向量,,a b e 满足||1=e ,1,2,2⋅=⋅=-=a e b e a b ,则向量-a b 与e 的夹角为 15.(2014·天津一模三、解答题:本大题共6小题,共75分.解答应写出必要文字说明,证明过程或演算步骤. 16.(本小题满分12分)在正项等比数列{}n a 中, 公比(0,1)q ∈,且满足32a =,132435225a a a a a a ++=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2log n n b a =,数列{}n b 的前n 项和为n S ,当1212n S S S n++⋅⋅⋅+取最大值时,求n 的值.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c . 已知3a =,cos A =2B A π=+. (Ⅰ)求b 的值; (Ⅱ)求ABC ∆的面积.18.(本小题满分12分)设约束条件021(01)y y xy x t x t t ≥⎧⎪≤⎪⎨≤-⎪≤≤+<<⎪⎩所确定的平面区域为D .(Ⅰ)记平面区域D 的面积为S =f (t ),试求f (t )的表达式.(Ⅱ)设向量(1,1),(2,1)=-=-a b ,(),Q x y 在平面区域D (含边界)上,,OQ m n =+a b (,m)n R ∈,当面积S 取到最大值时,用,x y 表示3m n +,并求3m n +的最大值.19.(本小题满分13分)已知()()f x g x +(Ⅰ)求()f x 的最小值和()g x 的最大值;(Ⅱ)若1a b c x ===+,问是否存在满足下列条件的正数t ,使得对于任意的正数,,,x a b c 都可以成为某个三角形三边的长?若存在,则求出t 的取值范围;若不存在,请说明理由.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令()11112241(1)log log n n n n n b a a -++=-⋅⋅,求数列{}n b 的前n 项和n T .21.(本小题满分13分)已知函数2()ln()g x x x a =++,其中a 为常数. (Ⅰ)讨论函数()g x 的单调性; (Ⅱ)若()g x 存在两个极值点12,x x ,求证:对a R ∀∈,都有1212()()()22g x g x x xg ++>成立.参考答案一、选择题 B D D C D ; C C A C A 二、填空题11.2a ≥.12.13.13..14.23π.15.(1,)+∞.三、解答题16.【解】(Ⅰ)由{}n a 等比,所以132435225a a a a a a ++=可化为2222244242()25a a a a a a ++=+=,且0n a >所以245a a +=,又因32a =, 所以225,q q +=且01,q <<解得12q =,也所以18a = 故1411()22n n n a a --=⋅=.……………………………………………………………………6分 (Ⅱ)由2log 4,n n b a n ==-故(7),2n n n S -=也所以7,2n S nn -= 所以2127113(12)12224n S S S n nn n n -+++⋅⋅⋅+=⨯-+++=,由136.5,2n ==对且n N +∈,所以当67n =或时,1212n S S S n++⋅⋅⋅+有最大值,故67n =或即求. (12)分 17.【解】(Ⅰ)因0A π<<,故sin A ==. (2)分 因2B A π=+,故sin sin cos 2B A A π⎛⎫=+== ⎪⎝⎭分由正弦定理sin sin a bA B=,得3sin sin aB b A ===分 (Ⅱ)由cos cos sin 23B A A π⎛⎫=+=-=- ⎪⎝⎭.……………………………………………8分 故()()sin sin sin C A B A B π=⎡-+⎤=+⎣⎦ sin cos cos sin A B A B =+13⎛= ⎝⎭.………………………………… ……………10分则111sin 3223ABC S ab C ∆==⨯⨯=.……………………… …………………12分 18.【解】(Ⅰ)由约束条件所确定的平面区域是五边形ABCEP , 如图所示,其面积S =f (t )=S △OPD -S △AOB -S △ECD , 而S △OPD =12×1×2=1.S △OAB =12t 2,S △ECD =12(1-t )2, 所以S =f (t )=1-12t 2-12(1-t )2=-t 2+t +12.……6分 (Ⅱ)由OQ m n =+a b ,得223x m nx y m n y m n=+⎧⇒+=+⎨=--⎩ 又S =f (t )=-t 2+t +12,01t <<则当12t =时面积S 取到最大值. 点E 坐标为31(,)22,所以直线2z x y =+经过可行域中点31(,)22E 时z 有最大值.3m n +的最大值为max 3172222z =⨯+=.…………………………… …………………12分19.【解】(Ⅰ)注意到21()()(1)1f x g x x x =-++=……………………………2分2,≥且12x x +≥,都是在1x =时取到“=”号;22+≥=即1x =时,即min ()2f x =分又1()2()g x f x =≤故1x =时,max ()2g x =分 (Ⅱ)显然1a x c =+=,所以若能构成三角形,只需1(1)x x ++>即t t ⎧>⎪⎪⎨⎪<⎪⎩x R +∈恒成立.…………………………………………10分 即max min [()][()]t g x t f x >⎧⎨<⎩,由(Ⅰ)知22t <<所以存在(2t ∈满足题设条件. ……………………………………………13分 20.【解】(Ⅰ) 由612n n S a =-……①可知,1)当1n =时有,11612S a =-,得11612a a =-,解得118a = 2)当2n ≥时,由①式可推出11612n n S a --=- ……②①-②得11,24n n a a n -=≥,且1108a => 所以数列{}n a 是首项118a =,公比14q =的等比数列故11211111()()842n n n n a a q --+==⨯=,………………………………………………………6分(Ⅱ)由(Ⅰ)知2111221log log ()212n n a n +==+,所以11111224(1)4(1)(1)(1)log log (21)(23)n n n n n n n b a a n n --+++=-⋅=-⋅⋅+⋅+所以111(1)()2123n n b n n -=-⋅+++ ①当n 为偶数时,11111111()()()()355721212123n T n n n n =+-++++-+-+++ 11323n =-+ ②当n 为奇数时,11111111()()()()355721212123n T n n n n =+-++-+++-+++ 11323n =++所以11,21,32311,2,323n n k k N n T n k k N n ++⎧+=-∈⎪⎪+=⎨⎪-=∈⎪+⎩…………………………………………………13分 21.【解】(Ⅰ)函数的定义域为(,)a -+∞,且21221()2x ax g x x x a x a++'=+=++, 记2()221h x x ax =++,判别式248a ∆=-①当2480,a ∆=-≤即a,()0h x ≥恒成立,()0g x '≥ 所以()g x 在区间(),a -+∞上单调递增②当a a <>时,0∆>,所以22210x ax ++=有两个不同的实数根12,x x记12x x =,显然12x x <(i)若 a <,2()221h x x ax =++图象的对称轴02ax =->, 注意到()(0)10h a h -==>,所以两根12,x x 在区间(0,)a -上, 所以当x a >-时,()()0h x h a >->,即()0g x '>, 所以()g x 在区间(,)a -+∞上单调递增.(ii)若 a 则2()221h x x ax =++图象的对称轴02ax =-<,注意到()(0)10h a h -==>,所以120a x x -<<<, 则当12x x x <<时,()0h x <,即()0g x '<,函数()g x 递减当12a x x x x -<<>或时,()0h x >,即()0g x '>,函数()g x 递增;综上①②可知,当a ≤()g x 在区间(,)a -+∞上单调递增当a >()g x 在上单调递减,在()a -+∞上单调递增.……………7分(Ⅱ)由(Ⅰ)知当a ≤,()g x 没有极值点,当a >,()g x 有两个极值点12,x x ,且12121,2x x a x x +=-⋅=.22121122()()ln()ln()g x g x x x a x x a +=+++++ ()2212121212()2ln x x x x x x a x x a +-⋅+⎡+++⎤⎣⎦=21ln 2a =--所以212()()1ln 2,22g x g x a +--= 又212()()ln 2242x x a a ag g +=-=+ 故2221212()()1ln 21ln 2()(ln )ln 22242422g x g x x x a a a a g a ++---=-+=--+记21ln 2()ln 422a a a ϕ=--+,其中a >则212()022a a a a aϕ-'=-=>,所以()h a 在a , 21ln 20422ϕ=-+=,即()0a ϕ>,所以1212()()()22g x g x x x g ++>………13分。

湖北省八校2015届高三第一次联考理科数学试卷(解析版)

湖北省八校2015届高三第一次联考理科数学试卷(解析版)

湖北省八校2015届高三第一次联考理科数学试卷(解析版)一、选择题1.已知复数∈+=a ai z (21R ),i z 212-=,若21z z 为纯虚数,则=||1z ( ) A .2 B .3 C .2 D .5 【答案】D 【解析】由于()()()5422521221221ia a i ai i ai z z ++-=++=-+=为纯虚数,则1=a ,则=1z 5,故选择D.考点:复数的概念,复数的代数运算,复数的模 2.如图给出的是计算11112462014++++L 的值的程序框图,其中判断框内应填入的是( )A .2013≤iB .2015≤iC .2017≤iD .2019≤i 【答案】B【解析】由程序知道,2,4,6,2014i =L 都应该满足条件,2016=i 不满足条件,故应该选择B.考点:算法,程序框图3.设224a x dx πππ-⎛⎫=+ ⎪⎝⎭⎰,则二项式6(展开式中含2x 项的系数是( ) A .192- B .193 C .6- D .7【答案】A【解析】由于()22222222cos sin cos sin 24a x dx x x dx xdx xπππππππππ----⎛⎫=+=-=== ⎪⎝⎭⎰⎰⎰则6(含2x 项的系数为192)1(2516-=-C ,故选择A.考点:定积分,二项式定理4.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( )A .314 B .4 C .310D .3 【答案】B【解析】几何体如图,体积为:42213=⨯,故选择B考点:三视图,几何体的体积 5.“5≠a 且5-≠b ”是“0≠+b a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分条件也非必要条件 【答案】D【解析】5≠a 且5-≠b 推不出0≠+b a ,例如2,2-==b a 时0=+b a0≠+b a 推不出5≠a 且5-≠b ,例如6,5-==b a ,故“5≠a 且5-≠b ”是“0≠+b a ”的既不充分又不必要条件,故选择D 考点:充要条件6.已知实数等比数列{a n }的前n 项和为S n ,则下列结论中一定成立的( ) A .若03>a ,则02013<a B .若04>a ,则02014<a C .若03>a ,则02013>SD .若04>a ,则02014>S 【答案】C【解析】设11-=n n q a a ,因为02010>q 所以A ,B 不成立,对于C ,当03>a 时,01>a ,因为q -1与20131q -同号,所以02013>S ,选项C 正确,对于D ,取数列:-1,1,-1,1, ,不满足条件,D 错.故选C考点:等比数列的性质,前n 项和7.用)(A C 表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=-)()(),()()()(),()(||B C A C A C B C B C A C B C A C B A .若}2,1{=A ,}|32||{2a x x x B =-+=,且1||=-B A ,由a 的所有可能值构成的集合为S ,那么C (S )等于( )A .1B .2C .3D .4 【答案】A【解析】由于a x x =-+|32|2的根可能是2个,3个,4个,而|A -B|=1,故a x x =-+|32|2只有3个根,故4=a ,1C(S)=∴,故选A. 考点:集合的性质8.已知x , y , ∈z R ,且522=+-z y x ,则222)3()1()5(++-++z y x 的最小值是( ) A .20 B .25 C .36 D .47 【答案】C【解析】由于()()()()()()324)]3(21)2(5[)]221][(315[2222222=++--++≥+-+++-++z y x z y x 则()()()222315++-++z y x (当且仅当232115+=--=+z y x 即⎪⎩⎪⎨⎧=-=-=133z y x 时取等号).故选C 考点:柯西不等式,最值9.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足)(21OQ OP OR +=,R 在抛物线准线上的射影为S ,设α,β是△PQS 中的两个锐角,则下列四个式子中一定正确的有( )①1tan tan =βα ②2sin sin ≤+βα ③1cos cos >+βα ④2tan|)tan(|βαβα+>-A .1个B .2个C .3个D .4个 【答案】C【解析】由于△PQS 是直角三角形,则2πβα=+,故①②③都对,当PQ 垂直对称轴时|tan()|0tan2αβαβ+-=<,故选C考点:抛物线性质,平面向量,三角函数性质10.设定义在D 上的函数)(x h y =在点))(,(00x h x P 处的切线方程为)(:x g y l =,当0x x ≠时,若0)()(0>--x x x g x h 在D 内恒成立,则称P 为函数)(x h y =的“类对称点”,则x x x x f ln 46)(2+-=的“类对称点”的横坐标是A .1B .2C .eD .3 【答案】B【解析】由于4()26f x x x '=+-,则在点P 处切线的斜率=切k 642)(000/-+=x x x f . 所以切线方程为()20000004()2664ln y g x x x x x x x x ⎛⎫==+--+-+ ⎪⎝⎭200004264ln 4x x x x x ⎛⎫=+--+- ⎪⎝⎭()()()()()22000000464ln 2664ln x f x g x x x x x x x x x x x ϕ⎛⎫=-=-+-+----+ ⎪⎝⎭, 则0()0x ϕ=,)2)((2)21)((2)642(642)('000000x x x x x x x x x x x x x x --=--=-+--+=ϕ.当0x <()x ϕ在002,x x ⎛⎫⎪⎝⎭上单调递减,所以当002,x x x ⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ<= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,0)(0<-x x x ϕ;当0x >()x ϕ在002,x x ⎛⎫ ⎪⎝⎭上单调递减,所以当002,x x x⎛⎫∈ ⎪⎝⎭时,0()()0.x x ϕϕ>= 从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-;所以在(2,)+∞上不存在“类对称点”. 当0x =(22()x x xϕ'=-,所以()x ϕ在(0,)+∞上是增函数,故0()0.x x x ϕ>-所以x =是一个类对称点的横坐标. (可以利用二阶导函数为0,求出24()20f x x''=-=,则2=x )故选择B考点:函数性质,新定义问题 二、填空题11.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是____. 【答案】241π-【解析】分别以三角形的三个顶点为圆心,1为半径作圆,则在三角形内部且在三圆外部的区域即为与三角形三个顶点距离不小于1的部分,即241462112112ππ-=⨯⨯⨯⨯-=P 考点:几何概型12.已知直线)0(:>+=n n my x l 过点)5,35(A ,若可行域⎪⎩⎪⎨⎧≥≥-+≤003y y x n my x 的外接圆直径为20,则n =_____. 【答案】310【解析】如图,∠AOB =30°,要使得外接圆直径为20,根据正弦定理,有020sin 30AB=,即AB =10,而)5,35(A ,B 点在x 轴上,由可行域可知,B (n ,0)于是由|AB|=10推出()10025352=+-n ,则=n 310(n =0舍去) 考点:简单线性规划,正弦定理13.已知函数⎪⎩⎪⎨⎧≤<++-≤≤=31,3210,2)(2x x x x x x f ,将f (x )的图像与x 轴围成的封闭图形绕x 轴旋转一周,则所得旋转体的体积为________. 【答案】203π 【解析】将)(x f 的图像与x 轴围成的封闭图形绕x 轴旋转一周,所得旋转体为一个圆锥和一个半个球的组合体,其中球的半径为2,棱锥的底面半径为2,高为1, 所以所得旋转体的体积为23114202123233πππ=⨯⨯⨯+⨯⨯⨯= 考点:函数图象,旋转体体积14.以(0, m )间的整数∈>m m ,1(N )为分子,以m 为分母组成分数集合A 1,其所有元素和为a 1;以),0(2m 间的整数∈>m m ,1(N )为分子,以2m 为分母组成不属于集合A 1的分数集合A 2,其所有元素和为a 2; ,依次类推以),0(n m 间的整数∈>m m ,1(N )为分子,以n m 为分母组成不属于A 1,A 2, ,1-n A 的分数集合A n ,其所有元素和为a n ;则12n a a a +++=L =________.【答案】12n m -【解析】由题意1a =1m +2m+ +1m m -2a =21m +22m + +21m m -+21m m ++ +221m m -+221m m ++ +21m m- =21m +22m + +21m m --(1m +2m + +1m m -) =21m +22m + +21m m --a 1 a 3=31m +32m + +331m m --a 2-a 1a n =1n m +2n m + +1n nm m--a n -1 -a 2-a 1所以12n a a a ⋅⋅⋅+++=1n m +2n m + +1n nm m -=1n m ·[1+2+ +(m n-1)]=12n m - 考点:整数性质,集合,求和15.(选修4-1:几何证明选讲)如图,C 是以AB 为直径的半圆O 上的一点,过C 的直线交直线AB 于E ,交过A 点的切线于D ,BC ∥OD .若AD =AB = 2,则EB =_________.【答案】23【解析】连接OC ,则COD BCO CBO DOA ∠=∠=∠=∠, 于是COD AOD ∆≅∆,则CD OC ⊥,则CD 是半圆O 的切线 设x EB =,由BC ∥OD 得BOEBCD EC =, 则x EC 2=,所以()()222+⋅=x x x ,有32=x 考点:平面几何,全等三角形,圆的切线 16.(选修4-4:坐标系与参数方程)在极坐标系内,已知曲线C 1的方程为04)sin 2(cos 22=+--θθρρ,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为⎩⎨⎧+=-=t y t x 3185415(t 为参数).设点P 为曲线C 2上的动点,过点P 作曲线C 1的两条切线,则这两条切线所成角余弦的最小值是_______. 【答案】87【解析】曲线1C 的一般方程为044222=++-+y x y x 即()()12122=++-y x ,圆心为()2,1-,半径为1.曲线2C 的一般方程为01543=-+y x 点()2,1-到直线的距离是:451583=--=d ,则这两条切线所成角余弦的最小值是8741212=⎪⎭⎫⎝⎛⨯-.考点:极坐标,参数方程三、解答题17.(本小题满分12分)已知△ABC 的三内角A , B , C 所对边的长依次为a ,b ,c ,若43c o s =A ,81cos =C . (1)求c b a ::;(2)若46||=+BC AC ,求△ABC 的面积.【答案】(1)456;(2)4【解析】 试题分析:(1)由已知求出sinA 和sinC ,进而求出sinB ,再由正弦定理可得三边的比值;(2)根据(1),可设出三边的长,由46||=+BC AC 即可求出三边长,又知道夹角正弦值,可以求出三角形面积.试题解析:(1)依题设:sinA ,sinC=,故cosB =cos[π-(A +C )]=-cos (A +C )=-(cosAcosC -sinAsinC )=-(332-2132)=916.则sinB所以==C B A c b a sin :sin :sin ::456 6分(2)由(1)知:==C B A c b a sin :sin :sin ::456,不妨设:a =4k ,b =5k ,c =6k ,k >0.故知:|AC |=b =5k ,|BC |=a =4k. 依题设知:|AC |2+|BC |2+2|AC ||BC |cosC =46 ⇒ 46k 2=46,又k >0⇒k =1.故△ABC 的三条边长依次为:a =4,b =5,c =6.△ABC 的面积是47158735421=⨯⨯⨯ 12分考点:同角三角函数关系式,正弦定理,三角形面积18.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组组成.设随机变量ξ表示密码中所含不同数字的个数. (1)求)2(=ξP ;(2)求随机变量ξ的分布列和它的数学期望. 【答案】(1)18;(2)10132. 【解析】 试题分析:(1)先确定ξ=2时,只能取1和2,然后分别找出所有的可能性和满足条件的情况数,即得概率;(2)仿(1),分别找出所有可能情况,再注意计算ξ=2,3,4的概率,分布列和期望得解. 试题解析:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码. 3321(2).48P ξ∴===4分(2)由题意可知,ξ的取值为2,3,4三种情形.若3ξ=,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.2123332(221)19(3).324A C P ξ++∴=== 若12223232394,(4)432A A A A P ξξ+====则(或用)3()2(1=-=-ξξP P 求得). 8分ξ∴的分布列为:.32101329432193812=⨯+⨯+⨯=∴ξE 12分考点:古典概型,概率分布列,期望19.(本小题满分12分)如图1,平面四边形ABCD 关于直线AC 对称,︒=∠60A ,︒=∠90C ,2=CD ,把△ABD 沿BD 折起,使二面角C BD A --为直二面角(如图2).(1)求AD 与平面ABC 所成的角的余弦值; (2)求二面角D AC B --的大小的正弦值.【答案】(1)772;(2)734.【解析】试题分析:建立空间直角坐标系,利用直线和平面法向量,直线与平面所成角和二面角都不难求得.试题解析:如图2所示,以BD 的中点O 为原点,OC 所在的直线为x 轴,OD 所在的直线为y 轴,OA 所在的直线为z 轴建立空间直角坐标系,则()0,0,0O ,()0,2,0D ()0,2,0-B()0,0,2C ()6,0,0A(1)设面ABC 的法向量为(),,n x y z =⎪⎩⎪⎨⎧=⋅=⋅0BC n AB n 取1=z有()13,n =()6,2,0-=AD , 721-= AD ∴与面ABC 所成角的余弦值是772. 6分 (2)同理求得面ACD的法向量为()13,n=,则71=则二面角D AC B --的正弦值为734. 12分 考点:空间几何体,空间直角坐标系,直线与平面所成角,二面角20.(本小题满分12分)已知等比数列{a n }的公比1>q ,前n 项和为S n ,S 3=7,且31+a ,23a ,43+a 成等差数列,数列{b n }的前n 项和为T n ,2)13(6++=n n b n T ,其中∈n N *. (1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式;图2BDADC B A 图1(3)设1210{,,}A a a a =L ,1240{,,}B b b b =L ,C A B =U ,求集合C 中所有元素之和.【答案】(1)12-=n n a ;(2)32n b n =-;(3)3318.【解析】试题分析:(1)设a n =a 1q n -1,利用已知条件,可求得a 1和q ,从而得到{a n }的通项公式;(2)将2)13(6++=n n b n T 变更序号作差,可得b n +1与b n 的关系,再迭代(或叠乘)可得{b n }的通项公式;(3)分别求出两个集合中元素之和,再减去公共元素之和即可.试题解析:(1)∵73=S ,∴7321=++a a a ①∵31+a ,23a ,43+a 成等差数列,∴231643a a a =+++ ② 2分②-①得,22=a 即21=q a ③又由①得,5211=+q a a ④消去1a 得,02522=+-q q ,解得2=q 或21=q (舍去) ∴12-=n n a 4分(2)当∈n N *时,2)13(6++=n n b n T ,当2≥n 时,2)23(611+-=--n n b n T ∴当2≥n 时,1)23()13(6---+=n n n b n b n b ,即53231--=-n n b b n n 6分 ∴1412=b b ,4723=b b ,71034=b b , ,53231--=-n n b b n n ∴324123147103214735n n b b b b n b b b b n --⋅⋅⋅⋅=⨯⨯⨯⨯-L L ,即231-=n b b n ∵11=b ,∴)2(23≥-=n n b n ,故∈-=n n b n (23N *) 8分(3)1023122121101010=-=--=S ,23808024140340=-⨯⨯=T 10分 ∵A 与B 的公共元素有1,4,16,64,其和为85,∴集合C 中所有元素之和33188510232380851040=-+=-+=T S 12分 考点:等差数列,等比数列,递推数列,数列求和,容斥原理.21.(本小题满分13分)如图,在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a by a x 的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,23=+CD AB .(1)求椭圆的方程;(2)求由A ,B ,C ,D 四点构成的四边形的面积的取值范围.【答案】(1)2212x y +=;(2)⎥⎦⎤⎢⎣⎡∈2,916四边形S . 【解析】试题分析:(1)利用已知离心率和直线AB 斜率为0时,23=+CD AB ,可求得a ,b ,c 的值,从而得到椭圆标准方程;(2)因为AB ⊥CD ,故1||||2S AB CD =⋅⋅四边形,将AB 和CD 所在直线方程分别与椭圆方程联立,用斜率表示出|AB|和|CD|,然后利用函数思想,结合均值不等式可求得S 的范围.试题解析:(1)由题意知,c e a =,则c b c a ==,2,且AB 斜率为0时,2||||22b AB CD a a+=+== 所以1c =.所以椭圆的方程为2212x y +=. 4分 (2)① 当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意知22222121=⨯⨯=⋅=CD AB S 四边形; 5分 ②当两弦斜率均存在且不为0时,设11(,)A x y ,22(,)B x y ,且设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--. 将直线AB 的方程代入椭圆方程中,并整理得2222(12)4220k x k x k +-+-=,所以)21221|||12k AB x x k +=-==+. 8分同理,2212(1)||21k CD k+==+ 9分所以2242114(1)||||22225k S AB CD k k +=⋅⋅==++四边形 ()()()2221422112121k k k k +==-++++,22121219k k ⎛⎛⎫++≥+= ⎪ ⎝⎭⎝Q 当且仅当1±=k 时取等号 11分 ∴)2,916[∈四边形S 综合①与②可知,⎥⎦⎤⎢⎣⎡∈2,916四边形S 13分 考点:椭圆标准方程,直线与椭圆位置关系,弦长公式,基本不等式. 22.(本小题满分14分)已知0>t ,设函数132)1(3)(23+++-=tx x t x x f . (1)若)(x f 在(0, 2)上无极值,求t 的值;(2)若存在)2,0(0∈x ,使得)(0x f 是)(x f 在[0, 2]上的最大值,求t 的取值范围;(3)若e m xe x f x (2)(+-≤为自然对数的底数)对任意),0[+∞∈x 恒成立时m 的最大值为1,求t 的取值范围.【答案】(1)t =1;(2)5[,)3+∞;(3)⎥⎦⎤ ⎝⎛31,0. 【解析】试题分析:(1)因为f '(x )=(x -1)(x -t ),要使得)(x f 在(0, 2)上无极值,只有t =1时,有f '(x )≥0恒成立;(2)由(1)知t =1时,不满足条件,t ≠1时,因为x =1必定是极值点,对t 的范围分类探究,找出使得f (1)或f (t )(t ∈(0,2)时)为最大值的t 的范围;(3)分离参数m ,找出使得不等式恒成立的m 的范围(与t 相关),注意m 的最大值为1,由此求出t 的取值范围.试题解析:(1)∵2()33(1)33(1)()f x x t x t x x t '=-++=--,又()f x 在(0, 2)无极值 1t ∴= 3分(2)①当01t <<时,()f x 在(0,)t 单调递增,在(,1)t 单调递减,在(1,2)单调递增, ∴()(2)f t f ≥由()(2)f t f ≥得:3234t t -+≥在01t <<时无解②当1t =时,不合题意;③当12t <<时,()f x 在(0,1)单调递增,在(1,)t 单调递减,在(,2)t 单调递增,(1)(2)12f f t ≥⎧∴⎨<<⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩523t ∴≤< ④当2t ≥时,()f x 在(0,1)单调递增,在(1,2)单调递减,满足条件 综上所述:),35[+∞∈t 时,存在)2,0(0∈x ,使得)(0x f 是)(x f 在[0,2]上的最大值. 8分 (3)若323(1)3122x t x x tx xe m +-++≤-+对任意[)0,x ∈+∞恒成立 即3223(1)3(1)313122x x t t m xe x x tx x e x x t ++⎛⎫≤-+-+=-+-+ ⎪⎝⎭对任意[)0,x ∈+∞恒成立 令()23(1)32x t g x e x x t +=-+-,[)0,x ∈+∞ 由于m 的最大值为1, 则()23(1)302x t g x e x x t +=-+-≥恒成立,否则存在()+∞∈,00x 使得()00g x < 则当0x x =,1=m 时,()2x f x xe m ≤-+不恒成立.由于()0310≥-=t g ,则310≤<t 10分 当310≤<t 时,()3(1)22x t g x e x +'=-+,则()2x g x e ''=-,若()20x g x e ''=-= 2ln =x 则()g x '在()2ln ,0上递减,在()+∞,2ln 上递增,则()()()02ln 212322ln min >-++=='t g x g ()x g ∴在[)+∞,0上是递增的函数()()0310≥-=≥∴t g x g ,满足条件∴t 的取值范围是⎥⎦⎤ ⎝⎛31,0 14分 考点:利用导数研究函数性质,最值,范围,不等式恒成立问题,范围.。

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

2015届高考数学一轮总复习 阶段性测试题9(立体几何)

阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·抚顺二中期中)已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下述命题中真命题的是()A.若a⊥c,b⊥c,则a∥b或a⊥bB.若α⊥β,β⊥γ,则α∥βC.若a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则α⊥βD.若a⊥α,b⊂β,a∥b,则α⊥β[答案] D[解析]由a⊥c,b⊥c知,a与b可平行可相交,也可异面,故A错;由直棱柱相邻两个侧面与底面都垂直知B错;当α∩β=l,a⊥l,b∥c∥l时,可满足C的条件,故C错;∵a∥b,a⊥α,∴b⊥α,又b⊂β,∴α⊥β,∴D正确.2.(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是()A.l∥m,l∥β,则m∥βB.α∩β=m,l⊂α,则l∥βC.α⊥β,l⊥α,则l∥βD.l⊥m,m⊥β,l⊥α,则α⊥β[答案] D[解析]l⊄β,l∥m,m⊂β时,l∥β,故A错;α∩β=m,当l⊂α且l∥m时,l∥β,当l与m 相交时,l与β相交,故B错;α⊥β,当l⊂β,l与α和β的交线垂直,l⊥α时,但l∥β不成立,故C错;∵l⊥m,l⊥α,∴m⊂α或m∥α,又m⊥β,∴α⊥β,故D正确.3.(2014·山东省博兴二中质检)某四面体的三视图如图所示,该四面体四个面的面积值最大的是()A.8B.6 2C.8 2 D.10[答案] D[解析]由三视图知,该几何体直观图如图,其中△ABC为以B为直角的直角三角形,AB=4,BC=3,高P A=4,∴S△ABC=12×4×3=6,S△P AB=12×4×4=8,S△PBC=12PB·BC=12×42×3=62,S△P AC=12AC·P A=12×5×4=10,故选D.4.(2014·河南淇县一中模拟)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为()[答案] B[解析]在侧视图中,D1的射影为C1,A的射影为B,D的射影为C,AD1的射影BC1为实线(右下到左上),B1C为虚线,故选B.5.(文)(2014·浙北名校联盟联考)一个几何体的三视图如图所示,则该几何体的体积为()A .4B .8C .4 3D .8 3[答案] B[解析] 作出几何体的直观图如图,这是一个三棱锥P -ABC ,其中P 在底面射影为D 点,PD =23,AD =3,CD =1,E 为AC 的中点,BE ⊥AC ,BE =23,故几何体的体积V =13S △ABC ·PD =13×(12·AC ·BE )·PD =8,故选B.(理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .2C .3D .4 [答案] A[解析] 由三视图知,该几何体是一个三棱锥P -ABC ,其中底面△ABC 为直角三角形,∠A 为直角,顶点P 到A ,C 的距离相等,P 点在底面的射影D ,满足AC ∥BD ,且BD =12AC =1,PD =3,画出其直观图如图所示,其体积V =13S △ABC ·PD =13×(12×2×1)×3=1.6.(2014·辽宁师大附中期中)已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .24+4πC .28+6πD .28+4π [答案] A[解析] 由三视图知,该几何体为组合体,其上部为半球,半球的直径为22,下部为长方体,长、宽、高为2,2,3,其表面积为2×4×3 +12×4π·(222)2+π·(222)2=24+6π,故选A.7.(2014·高州四中质量监测)已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为( )A .24-π3B .24-π2C .24-32πD .24-π[答案] C[解析] 由三视图知,该几何体是由长、宽、高分别为3、4、2的长方体内挖去一个底半径为1,高为3的半圆柱后剩余部分,其体积V =3×4×2-12(π×12×3)=24-32π.8.(2014·山西曲沃中学期中)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2.∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( )A.33B.233C.433D.533[答案] C[解析] 设球心为O ,△ABO 所在平面截球O 得截面如图,∵OA =OB =AB =OS =OC =2,∠ASC =∠BSC =45°,∴SC ⊥平面ABO ,V S -ABC =V S -ABO +V C -ABO =2V S -ABO =2×13×(34×22)×2=433,故选C.9.(文)(2014·陕西工大附中四模)如下图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )[答案] C[解析] 若俯视图为A ,则该几何体是棱长为1的正方体,体积V =1;若俯视图为B ,则该几何体是底半径为12,高为1的圆柱,其体积V =π·(12)2·1=π4;若俯视图为D ,则该几何体是底半径为1,高为1的圆柱的14,其体积V =14·π·12·1=π4;若俯视图为C ,则该几何体是直三棱柱,底面直角三角形两直角边长为1,棱柱高为1,体积为V =(12×1×1)×1=12,因此选C.(理)(2014·开滦二中期中)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,D 、E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为( )A.π6B.π4C.π3D.π2[答案] A[解析] 取AC 中点F ,则DF 綊BE ,∴DE ∥BF , ∴BF 与平面BB 1C 1C 所成的角为所求, ∵AB =1,BC =3,AC =2,∴AB ⊥BC ,又AB ⊥BB 1,∴AB ⊥平面BCC 1B 1,作GF ∥AB 交BC 于G ,则GF ⊥平面BCC 1B 1,∴∠FBG 为直线BF 与平面BCC 1B 1所成的角,由条件知BG =12BC =32,GF =12AB =12,∴tan ∠FBG =GF BG =33,∴∠FBG =π6.10.(2014·绵阳市南山中学检测)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:①若m ⊂β,α⊥β,则m ⊥α; ②若α∥β,m ⊂α,则m ∥β; ③若n ⊥α,n ⊥β,m ⊥α,则m ⊥β; ④若α⊥γ,β⊥γ,m ⊥α,则m ⊥β. 其中正确命题的序号是( ) A .①③ B .①② C .③④ D .②③[答案] D[解析] 由两个平面平行的性质知②正确;∵n ⊥α,n ⊥β,∴α∥β,又m ⊥α,∴m ⊥β,∴③正确,故选D.11.(文)(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A.4π3 B .π C.2π3 D.π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.(理)(2014·吉林延边州质检)正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 由条件知AE ∥平面DD 1C 1C ,平面AEC 1与平面DD 1C 1C 相交,故交线与AE 平行,∵E 为BB 1的中点,故取DD 1的中点F ,∴AE 綊C 1F ,故截面为AEC 1F (如图1),截去正方体的上半部分后,剩余部分几何体直观图如图2,故其左视图形状与直角梯形FD 1A 1A 相同,且C 1E 的射影为虚线,由于B 1E =12AA 1,故E 点射影在直角梯形下底的中点,故选C.12.(文)(2014·吉林省实验中学一模)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若P A 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离为( )A. 2B. 3C.33D.233[答案] C[解析] 由条件知,以P A 、PB 、PC 为三棱作长方体P ADB -CA 1D 1B 1,则该长方体内接于球,体对角线PD 1为球的直径,由于三棱锥P -ABC 为正三棱锥,∴AB =AC =BC ,∴P A =PB =PC ,设P A =a ,则3a =23,∴a =2.设球心到截面的距离为h ,则由V A -PBC =V P -ABC 得, 13(12×2×2)×2=13×34×(22)2×(3-h ), ∴h =33. (理)(2014·成都七中模拟)平面四边形ABCD 中,AD =AB =2,CD =CB =5,且AD ⊥AB ,现将△ABD 沿着对角线BD 翻折成△A ′BD ,则在△A ′BD 折起至转到平面BCD 内的过程中,直线A ′C 与平面BCD 所成的最大角的正切值为( )A .1 B.12 C.33D. 3[答案] C[解析] 如下图,OA =1,OC =2,在△ABD 绕直线BD 旋转过程中,OA 绕点O 旋转形成半圆,显然当A ′C 与圆相切时,直线A ′C 与平面BCD 所成角最大,最大角为30°,其正切值为33,选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·山西省太原五中月考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[答案]8+2 6[解析] 由题意可知,△BCC 1为等腰直角三角形,∵AC =6,BC =CC 1=2,∠ACB =90°,∴∠A 1B =10,BC 1=2,∵A 1B 2=A 1C 21+BC 21,∴∠AC 1B 为直角,将△BCC 1与△A 1BC 1所在平面铺平如图,设A 1C 交BC 1于Q ,则当点P 与Q 重合时,CP +P A 1取到最小值,最小值为A 1C .A 1C =A 1C 21+C 1C 2-2A 1C 1·C 1C cos135° =6+2-2×6×2×(-22)=8+2 6.14.(文)(2014·抚顺市六校联合体期中)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.[答案] 12π[解析] 由V =13Sh =13×(3)2·h =322知,h =322,设正方形ABCD 的中心为M ,则MA =62,∴OA 2=OM 2+MA 2=(322)2+(62)2=3,∴S 球=4π·OA 2=12π.(理)(2014·抚顺二中期中)右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________.[答案]433[解析] 由三视图知,几何体是正四棱锥,底面正方形边长为2,棱锥的斜高为2,故高h =22-12=3,∴体积V =13×4×3=433.15.(文)(2014·西安市长安中学期中)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为________.[答案]3(8-π)6[解析] 根据三视图,该几何体是一个组合体,其中左侧是半个圆锥,右侧是底面为正方形的四棱锥,由于侧视图是一个边长为2的等边三角形,所以高为 3.所以其体积为V =13·(12π·12+22)·3=3(8+π)6.(理)(2014·浙江台州中学期中)把边长为1的正方形ABCD 沿对角线BD 折起,形成三棱锥C -ABD ,它的主视图与俯视图如图所示,则二面角C -AB -D 的正切值为________.[答案] 2[解析] 三棱锥C -ABD 直观图如图,由主视图与俯视图知,平面CBD ⊥平面ABD ,CO ⊥平面ABD ,作OE ∥AD ,∵AD ⊥AB ,∴OE ⊥AB ,连结CE ,则CE ⊥AB ,∴∠CEO 为二面角C -AB -D 的平面角,在Rt △COE 中,OE =12AD =12,CO =22,∴tan ∠CEO =COOE= 2.16.(文)(2014·华安、连城、永安、漳平、泉港一中,龙海二中六校联考)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1. 其中正确的命题序号是________. [答案] ①②④[解析] ①VA -D 1PC =VP -AD 1C ,∵BC 1∥AD 1,AD 1⊂平面AD 1C ,∴BC 1∥平面AD 1C ,∴无论P 在BC 1上任何位置,P 到平面AD 1C 的距离为定值,∴三棱锥A -D 1PC 的体积不变,∴①正确;②∵A 1C 1∥AC ,BC 1∥AD 1,A 1C 1∩BC 1=C 1,AC ∩AD 1=A ,∴平面A 1BC 1∥平面AD 1C ,∵A 1P ⊂平面A 1BC 1,∴A 1P ∥平面ACD 1,∴②正确;③假设DP ⊥BC 1,∵DC ⊥平面BCC 1B 1,∴DC ⊥BC 1, ∴BC 1⊥平面ABCD ,与正方体ABCD -A 1B 1C 1D 1矛盾, ∴③错误;④∵B 1B ⊥AC ,BD ⊥AC ,∴AC ⊥平面B 1BD ,∴AC ⊥B 1D ,同理可证AD 1⊥B 1D ,∴B 1D ⊥平面ACD 1,∵B 1D ⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,∴④正确.(理)(2014·成都七中模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 是BC 1的中点,P 是BB 1一动点,则(AP +MP )2的最小值为________.[答案] 52[解析] 将平面ABB 1A 1展开到与平面CBB 1C 1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP )2最小.AM 2=AB 2+BM 2-2AB ×BM cos135°=12+(22)2-2×1×22×(-22)=52. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·天津市六校联考)在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知BC =1,∠BCC 1=π3,AB =CC 1=2.(1)求证:BC 1⊥平面ABC ;(2)试在棱CC 1(不包含端点C ,C 1)上确定一点E 的位置,使得EA ⊥EB 1; (3)(理)在(2)的条件下,求AE 和平面ABC 1所成角正弦值的大小. [解析] (1)∵BC =1,∠BCC 1=π3,CC 1=2,∴BC 1=3,∴BC 2+BC 21=CC 21,∴BC 1⊥BC ,∵AB ⊥侧面BB 1C 1C ,BC 1⊂平面BB 1C 1C , ∴BC 1⊥AB 且BC ∩AB =B , ∴BC 1⊥平面ABC .(2)E 为C 1C 的中点.连接BE ,∵BC =CE =1,∠BCC 1=π3,等边△BEC 中,∠BEC =π3,同理:B 1C 1=C 1E =1,∠B 1C 1E =2π3,∴∠B 1EC 1=π6,∴∠BEB 1=π2,∴EB 1⊥EB ,∵AB ⊥侧面BB 1C 1C ,EB 1⊂平面BB 1C 1C , ∴EB 1⊥AB 且EB ∩AB =B ,∴B 1E ⊥平面ABE ,EA ⊂平面ABE ,∴EA ⊥EB 1. (3)∵AB ⊥侧面BB 1C 1C ,AB ⊂平面ABC 1, ∵平面BCC 1B 1⊥平面ABC 1,过E 作BC 1的垂线交BC 1于F ,则EF ⊥平面ABC 1, 连接AF ,则∠EAF 为所求, ∵BC ⊥BC 1,EF ⊥BC 1,∴BC ∥EF , ∵E 为C 1C 的中点,∴F 为C 1B 的中点,∴EF =12,由(2)知AE =5,∴sin ∠EAF =125=510.18.(本小题满分12分)(文)(2014·长沙市重点中学月考)如图所示,圆柱的高为2,底面半径为7,AE 、DF是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC ,四边形ABCD 是正方形.(1)求证BC ⊥BE ;(2)求四棱锥E -ABCD 的体积. [解析] (1)∵AE 是圆柱的母线,∴AE ⊥底面EBC ,又BC ⊂底面EBC ,∴AE ⊥BC , 又∵截面ABCD 是正方形,所以BC ⊥AB , 又AB ∩AE =A ,∴BC ⊥平面ABE , 又BE ⊂平面ABE ,∴BC ⊥BE .(2)∵母线AE ⊥底面EBC ,∴AE 是三棱锥A -BCE 的高, 由(1)知BC ⊥平面ABE ,BC ⊂平面ABCD , ∴平面ABCD ⊥平面ABE , 过E 作EO ⊥AB ,交AB 于O ,又∵平面ABCD ∩平面ABE =AB ,EO ⊂平面ABE , ∴EO ⊥平面ABCD ,即EO 就是四棱锥E -ABCD 的高, 设正方形ABCD 的边长为x ,则AB =BC =x , BE =AB 2-AE 2=x 2-4,又∵BC ⊥BE ,∴EC 为直径,即EC =27, 在Rt △BEC 中,EC 2=BE 2+BC 2, 即(27)2=x 2+x 2-4,∴x =4, ∴S 四边形ABCD =4×4=16,OE =AE ·BE AB =2×42-44=3,∴V E -ABCD =13·OE ·S 四边形ABCD =13×3×16=1633.(理)(2014·湖南长沙实验中学、沙城一中联考)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,点D 是棱B 1C 1的中点.(1)求证:A 1D ⊥平面BB 1C 1C ; (2)求证:AB 1∥平面A 1DC ; (3)求二面角D -A 1C -A 的余弦值.[解析] (1)证明:因为侧面ABB 1A 1,ACC 1A 1均为正方形, 所以AA 1⊥AC ,AA 1⊥AB ,所以AA 1⊥平面ABC , 所以AA 1⊥平面A 1B 1C 1.因为A 1D ⊂平面A 1B 1C 1,所以AA 1⊥A 1D , 又因为CC 1∥AA 1,所以CC 1⊥A 1D , 又因为A 1B 1=A 1C 1,D 为B 1C 1中点, 所以A 1D ⊥B 1C 1. 因为CC 1∩B 1C 1=C 1, 所以A 1D ⊥平面BB 1C 1C .(2)证明:连结AC 1,交A 1C 于点O ,连结OD , 因为ACC 1A 1为正方形,所以O 为AC 1中点, 又D 为B 1C 1中点,所以OD 为△AB 1C 1中位线, 所以AB 1∥OD ,因为OD ⊂平面A 1DC ,AB 1⊄平面A 1DC , 所以AB 1∥平面A 1DC .(3)因为侧面ABB 1A 1,ACC 1A 1均为正方形,∠BAC =90°,所以AB ,AC ,AA 1两两互相垂直,如图所示建立直角坐标系A -xyz . 设AB =1,则C (0,1,0),B (1,0,0),A 1(0,0,1),D (12,12,1).A 1D →=(12,12,0),A 1C →=(0,1,-1),设平面A 1DC 的法向量为n =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧n ·A 1D →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧x +y =0,y -z =0,取x =1,得n =(1,-1,-1).又因为AB ⊥平面ACC 1A 1,所以平面ACC 1A 1的法向量为AB →=(1,0,0), 设二面角D -A 1C -A 的平面角为θ,则θ=π-〈n ,AB →〉, ∴cos θ=cos(π-〈n ,AB →〉) =-n ·AB →|n |·|AB →|=-13=-33,所以,二面角D -A 1C -A 的余弦值为-33. 19.(本小题满分12分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =2AB =2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使DE ∥平面ABC 1;若存在,求三棱锥E -ABC 1的体积.[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,有A 1A ⊥平面ABC .∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,∴A 1C ⊥平面ABC 1,∵A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)存在,E 为BB 1的中点.取A 1A 的中点F ,连EF ,FD ,当E 为B 1B 的中点时,EF ∥AB ,DF ∥AC 1, ∴平面EFD ∥平面ABC 1,则有ED ∥平面ABC 1. 当E 为BB 1的中点时,V E -ABC 1=V C1-ABE=13×2×12×1×1=13. (理)(2014·保定市八校联考)如图,在底面是直角梯形的四棱锥P -ABCD 中,∠DAB =90°,P A ⊥平面ABCD ,P A =AB =BC =3,梯形上底AD =1.(1)求证:BC ⊥平面P AB ;(2)在PC 上是否存在一点E ,使得DE ∥平面P AB ?若存在,请找出;若不存在,说明理由; (3)求平面PCD 与平面P AB 所成锐二面角的正切值. [解析] (1)证明:∵BC ∥AD 且∠DAB =90°,∴BC ⊥AB ,又P A ⊥平面ABCD ,∴BC ⊥P A , 而P A ∩AB =A ,∴BC ⊥平面P AB .(2)延长BA 、CD 相交于Q 点,假若在PC 上存在点E ,满足DE ∥平面P AB ,则由平面PCQ 经过DE 与平面P AB 相交于PQ 知DE ∥PQ ,∵AD ∥BC 且AD =1,BC =3, ∴PE CP =QD CQ =AD BC =13, 故E 为CP 的三等分点,PE =12CE .(3)过A 作AH ⊥PQ ,垂足为H ,连DH , 由(1)及AD ∥BC 知:AD ⊥平面P AQ , ∴AD ⊥PQ ,又AH ⊥PQ , ∴PQ ⊥平面HAD ,∴PQ ⊥HD .∴∠AHD 是平面PCD 与平面PBA 所成的二面角的平面角. 易知AQ =32,PQ =352,∴AH =AQ ·P A PQ =355,∴tan ∠AHD =AD AH =53,所以平面PCD 与平面P AB 所成二面角的正切值为53. 20.(本小题满分12分)(文)(2014·北京朝阳区期末)如图,在三棱锥P -ABC 中,平面P AC ⊥平面ABC ,P A ⊥AC ,AB ⊥BC .设D 、E 分别为P A 、AC 中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面P AB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC 平行?若存在,指出点F的位置并证明;若不存在,请说明理由.[解析](1)证明:因为点E是AC中点,点D为P A的中点,所以DE∥PC.又因为DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)证明:因为平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,又P A⊂平面P AC,P A⊥AC,所以P A⊥平面ABC.所以P A⊥BC.又因为AB⊥BC,且P A∩AB=A,所以BC⊥平面P AB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连EF,DF.由(1)可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行.(理)(2014·山东省博兴二中质检)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ;(2)设点M 在线段PC 上,PM MC =12,求证:P A ∥平面MQB ;(3)在(2)的条件下,若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,求二面角M -BQ -C 的大小.[解析] (1)连接BD ,∵四边形ABCD 为菱形,∠BAD =60°,∴△ABD 为正三角形, 又Q 为AD 中点,∴AD ⊥BQ .∵P A =PD ,Q 为AD 的中点,AD ⊥PQ , 又BQ ∩PQ =Q ,∴AD ⊥平面PQB ,∵AD ⊂平面P AD , ∴平面PQB ⊥平面P AD . (2)连接AC 交BQ 于点N ,由AQ ∥BC 可得,△ANQ ∽△CNB ,∴AQ BC =AN NC =12.又PM MC =12,∴PM MC =ANNC.∴P A ∥MN . ∵MN ⊂平面MQB ,P A ⊄平面MQB ,∴P A ∥平面MQB . (3)∵P A =PD =AD =2,Q 为AD 的中点,∴PQ ⊥AD . 又平面P AD ⊥平面ABCD ,∴PQ ⊥平面ABCD .以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则各点坐标为A (1,0,0),B (0,3,0),P (0,0,3).设平面MQB 的法向量n =(x ,y ,z ),可得⎩⎪⎨⎪⎧ n ·QB →=0,n ·MN →=0.∵P A ∥MN ,∴⎩⎪⎨⎪⎧n ·QB →=0,n ·P A →=0.∴⎩⎨⎧3y =0,x -3z =0,取z =1,得n =(3,0,1). 取平面ABCD 的法向量m =(0,0,1). cos 〈m ,n 〉=m ·n |m ||n |=12.故二面角M -BQ -C 的大小为60°.21.(本小题满分12分)(文)如图,E 是以AB 为直径的半圆弧上异于A ,B 的点,矩形ABCD 所在平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①求证:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解析] (1)∵E 是半圆上异于A ,B 的点,∴AE ⊥EB , 又∵平面ABCD ⊥平面ABE ,且CB ⊥AB , 由面面垂直性质定理得CB ⊥平面ABE , 又AE ⊂平面ABE ,∴CB ⊥AE , ∵BC ∩BE =B ,∴AE ⊥平面CBE , 又EC ⊂平面CBE ,∴AE ⊥EC .(2)①由CD ∥AB ,得CD ∥平面ABE , 又∵平面CDE ∩平面ABE =EF , ∴根据线面平行的性质定理得CD ∥EF , 又CD ∥AB ,∴EF ∥AB .②V E -ADF =V D -AEF =13×12×1×32×1=312.(理)(2014·浙江台州中学期中)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上,过点E作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(折起后的点A 记作点P ),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.[解析] (1)在Rt △ABC 中,∵EF ∥BC ,∴EF ⊥AB , ∴EF ⊥EB ,EF ⊥EP ,又∵EB ∩EP =E ,∴EF ⊥平面PEB . 又∵PB ⊂平面PEB ,∴EF ⊥PB .(2)解法一:∵EF ⊥平面PEB ,EF ⊂平面BCFE ,∴平面PEB ⊥平面BCFE ,过P 作PQ ⊥BE 于点Q ,垂足为Q ,则PQ ⊥平面BCFE ,过Q 作QH ⊥FC ,垂足为H .则∠PHQ 即为所求二面角的平面角.设PE =x ,则EQ =12x ,PQ =32x ,QH =(PE +EQ )sin π4=324x ,故tan ∠PHQ =PQ QH =63,cos ∠PHQ =155,即二面角P -FC -B 的平面角的余弦值为定值155. 解法二:在平面PEB 内,经P 点作PD ⊥BE 于D , 由(1)知EF ⊥平面PEB ,∴EF ⊥PD .∴PD ⊥平面BCFE .在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .以B 点为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4)又∵AB =BC =4,∴BE =4-x ,EF =x , 在Rt △PED 中,∠PED =60°,∴PD =32x ,DE =12x , ∴BD =4-x -12x =4-32x ,∴C (4,0,0),F (x,4-x,0),P (0,4-32x ,32x ).从而CF →=(x -4,4-x,0),CP →=(-4,4-32x ,32x ).设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,则 n 1·CF →=0,n 1·CP →=0,∴⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+(4-32x )y 0+32xz 0=0,∴⎩⎨⎧x 0-y 0=0,3x 0-z 0=0, 取y 0=1,得,n 1=(1,1,3).又平面BCF 的一个法向量为n 2=(0,0,1). 设二面角P -FC -B 的平面角为α,则 cos α=|cos 〈n 1,n 2〉|=155. 因此当点E 在线段AB 上移动时,二面角P -FC -B 的平面角的余弦值为定值155. 22.(本小题满分14分)(文)(2014·广东执信中学期中)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?[解析] (1)∵四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, ∴AA 2⊥AB ,AA 2⊥AD ,又∵AB ∩AD =A , ∴AA 2⊥平面ABCD .连接BD ,∵BD ⊂平面ABCD ,∴AA 2⊥BD . ∵底面ABCD 是正方形,∴AC ⊥BD . ∵AA 2∩AC =A ,∴BD ⊥平面ACC 2A 2, 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥BD . ∴B 1D 1⊥平面ACC 2A 2.(2)∵四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形, ∴S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1300(cm 2). 又∵四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形, 等腰梯形的高h ′=132-(20-102)2=12.所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h ′=202+4×12(10+20)×12=1120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1300+1120=2420(cm 2), 故所需加工处理费为0.2S =0.2×2420=484(元).(理)(2014·西安市长安中学期中)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面P AD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,P A =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面P AD ;(2)若M 为棱PC 的中点,求异面直线AP 与BM 所成角的余弦值. [解析] (1)∵BC =12AD ,Q 为AD 的中点,∴BC =DQ ,又∵AD ∥BC ,∴BC ∥DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ , ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD ,又∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴BQ ⊥平面P AD ,又BQ ⊂平面PQB ,∴平面PQB ⊥平面P AD . (2)解法1:∵P A =PD ,Q 为AD 的中点,∴PQ ⊥AD .∵平面P AD ⊥平面ABCD ,且平面P AD ∩平面ABCD =AD ,∴PQ ⊥平面ABCD . 如图,以Q 为原点建立空间直角坐标系.则Q (0,0,0),A (1,0,0),P (0,0,3),B (0,3,0),C (-1,3,0), ∵M 是PC 中点,∴M (-12,32,32),∴AP →=(-1,0,3),BM →=(-12,-32,32),设异面直线AP 与BM 所成角为θ,则cos θ=|cos 〈AP →,BM →〉|=AP →·BM →|AP →|·|BM →|=277,∴异面直线AP 与BM 所成角的余弦值为277.解法2:连接AC 交BQ 于点O ,连接OM ,则OM ∥P A , 所以∠BMO 就是异面直线AP 与BM 所成的角.OM =12P A =1,BO =12BQ =32,由(1)知BQ ⊥平面P AD ,所以BQ ⊥P A ,∴BQ ⊥OM , ∴BM =BO 2+OM 2=(32)2+12=72, ∴cos ∠BMO =OM BM =172=277.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档