商业银行对大数据的运用及应对策略
商业银行的大数据分析与

商业银行的大数据分析与商业银行的大数据分析与决策随着信息技术的快速发展,大数据分析在商业银行的运营中扮演着越来越重要的角色。
商业银行拥有海量的交易数据和客户信息,通过对这些数据的深入挖掘和分析,可以为银行提供全面的洞察力和决策支持。
本文将探讨商业银行如何利用大数据分析来优化经营和决策。
一、大数据分析在商业银行中的应用领域1. 个人征信风险评估:商业银行通过对大数据的分析,可以更准确地评估个人征信风险。
通过分析客户的信用历史、还款能力等数据,银行可以根据个人征信评估结果来制定个性化的贷款利率和额度,从而降低风险和提高贷款收益。
2. 营销策略优化:通过对客户的行为数据进行分析,商业银行可以更好地理解客户的需求和偏好,并根据这些信息来制定更精准的营销策略。
例如,对客户的消费习惯进行分析,可以根据其购买行为来推荐相关产品,提高销售转化率。
3. 风险管理:商业银行通过对大数据进行分析,可以实时监测交易风险,并及时采取相应的应对措施。
通过对异常交易、欺诈行为等进行识别和分析,银行可以降低金融风险,保障资金安全。
二、商业银行的大数据分析平台建设商业银行在进行大数据分析之前,需要建设一个稳定、可靠的大数据分析平台。
该平台可以基于云计算、大数据存储和计算等技术来实现。
以下是商业银行构建大数据分析平台的关键步骤:1. 数据收集与清洗:商业银行需要收集、整理和清洗各类数据,包括交易数据、客户数据、市场数据等。
清洗后的数据才能确保质量和准确性,为后续分析提供可靠的基础。
2. 数据存储与管理:商业银行需要选择合适的数据存储系统,如分布式文件系统或关系数据库等,来存储和管理大量的数据。
这些系统需要具备高可靠性、高可扩展性和高性能等特点。
3. 数据分析与挖掘:商业银行可以通过各种数据分析技术,如机器学习、数据挖掘和统计分析等,来对大数据进行深度挖掘。
这些技术可以帮助银行发现隐藏在数据中的规律和模式,为决策提供支持。
4. 结果可视化与应用:商业银行需要将分析结果以可视化形式展示,如数据仪表盘、报表和图表等,方便管理层和决策者理解和运用。
金融脱媒下我国商业银行的现状分析及应对策略

金融脱媒下我国商业银行的现状分析及应对策略金融脱媒是指利用科技手段和创新模式,将金融服务从传统实体银行渠道中解放出来,实现金融服务的数字化、网络化和智能化。
在金融脱媒的大背景下,我国商业银行面临着巨大的挑战和机遇。
本文将针对金融脱媒下我国商业银行的现状进行分析,并提出相应的应对策略。
一、我国商业银行的现状分析1. 脱媒加速商业银行业务变革随着移动互联网、大数据、云计算、人工智能等技术的迅速发展,金融服务已经开始走向全面的数字化、网络化和智能化。
金融脱媒加速了商业银行业务的变革,传统的柜台业务逐渐向网上、移动端转移,线上渠道成为了客户获取金融服务的主要途径。
2. 客户需求多元化随着经济的不断发展和人们生活水平的提高,客户的金融需求也变得更加多元化和个性化。
传统的银行产品已经不能满足客户的多样化需求,因此商业银行亟需创新金融产品和服务,提高金融服务的质量和效率。
3. 竞争日益激烈金融脱媒带来了金融市场的开放和竞争的加剧,金融科技公司等新兴机构的崛起给传统商业银行带来了挑战。
与此监管政策的松绑也让民营银行等新兴机构有更多的机会进入金融市场,商业银行在市场上的竞争压力变得更加巨大。
4. 面临转型升级的压力面对金融脱媒的趋势,传统的商业银行业务模式和经营理念已经不能适应当前的发展需求,需要进行转型升级。
商业银行需要整合现有资源,创新业务模式,优化经营管理,提升核心竞争力。
二、商业银行应对金融脱媒的策略1. 加速数字化转型商业银行应重点推进数字化转型建设,加大对移动互联网、大数据、人工智能等技术的应用,提升金融服务的智能化水平。
加快推进线上业务的发展,打通线上线下的渠道,提高金融服务的便捷性和个性化。
2. 创新金融产品和服务商业银行应根据客户需求的变化,不断创新金融产品和服务,开发具有差异化竞争优势的金融产品。
加强金融科技与金融服务的融合,推出更具吸引力的创新产品,提升金融服务的水平和品质。
3. 建立健全的风险管理体系商业银行应加强风险管理意识,建立健全的风险管理体系,做好风险防范和控制工作。
大数据在商业银行中的运用与发展论文

大数据在商业银行中的运用与发展论文大数据在商业银行中的运用与发展摘要:随着科技的不断进步和信息化发展的推动,商业银行作为金融行业的中枢,也面临着巨大的变革。
大数据作为一种新兴的技术和工具,对商业银行的发展具有重要的意义。
本文将着重探讨大数据在商业银行中的运用和发展。
1. 引言商业银行作为金融行业的中枢,具有信息量大、特定行业和客户群体的特点。
随着金融行业的不断发展,商业银行面临着巨大的挑战和机遇。
大数据的兴起为商业银行带来了新的发展机遇。
2. 大数据在商业银行中的运用2.1 风控和欺诈检测商业银行需要不断进行风控和欺诈检测以确保金融交易的安全和稳定。
大数据可以帮助银行分析海量的交易数据,识别潜在的风险和欺诈行为,提前做出预警和处理。
2.2 客户分析和营销商业银行拥有大量的客户数据,通过对这些数据的分析,可以更好地了解客户的需求和喜好,为客户提供个性化的金融产品和服务,并提高客户的满意度和忠诚度。
2.3 信用评估和贷款审批商业银行需要对客户的信用评估和贷款审批进行准确和高效的处理。
大数据可以帮助银行从海量的数据中提取有用的信息,为信用评估和贷款审批提供更准确和全面的依据。
3. 大数据在商业银行中的发展3.1 技术支持和人才培养商业银行需要持续投入资金和资源来推动大数据技术的应用和发展,并培养专业人才来应对大数据的挑战和机遇。
3.2 数据安全和隐私保护商业银行需要加大对大数据的安全和隐私保护的力度,确保客户信息的安全和保密,避免数据泄露和滥用。
3.3 合作与共享商业银行可以与科技公司、数据公司和其他金融机构进行合作,共享和交流数据和技术,提高数据的利用价值和商业化程度。
4. 面临的挑战和机遇大数据在商业银行中的运用和发展不仅面临着各种技术和安全问题,还需要应对监管政策和商业模式的变革等多重挑战。
但同时也带来了更大的机遇,可以提高银行的效率、降低成本,并且创造更多的商业机会。
5. 结论大数据在商业银行中的运用和发展具有重要的意义和潜力。
商业银行的大数据应用及发展建议

商业银行的大数据应用及发展建议摘要:本文综合分析了大数据时代,商业银行信息化建设发展的情况、存在的问题及对未来商业银行在信息化建设提出现实可行的建议。
关键词:大数据时代;商业银行;数据应用;信息化发展引言现阶段,我国商业银行的发展面临着新的问题,变量主要来自社会的发展和信息技术的进步,一方面,先进技术代表的生产力进步给社会生活造成了巨大的冲击,尤其是大数据技术,创新了商业经营模式,拓宽了人类的行动空间。
在商业银行业,大数据技术的出现淡化了传统行业之间的界限,当前商业银行的金融生态朝着更加开放化的方向变革,并且,金融生态的发展速度前所未有地提升,得到了社会各界的普遍认同。
以大数据为代表的信息技术发展是金融创新的根本。
另一方面,商业银行的经营内容与外部政策环境之间存在着不可分割的关系,支付结算开放就是其中重要的一点。
目前,微信支付和支付宝支付等独立于商业银行之外的第三方支付公司纷纷与各个商业银行之间展开了合作,建立起支付结算的通道,以网络融资产品为代表的互联网金融产品层出不穷。
鉴于此,传统商业银行需要积极展开变革,革新经营管理理念、创新运营的业务。
只有充分利用以大数据为代表的信息技术,朝着信息化的方向发展,才能在当下的环境下提高商业银行的竞争能力。
1.信息化及大数据信息化并非独立进行,其是经济社会逐渐发展过程中的产物,并且信息化处于一种动态变化的过程中,信息化作为一种先进的生产力代表,正在主导着经济社会的发展演变,以大数据为代表的新技术正在加速这一进程。
被广泛认可的“大数据”概念,最早是2001年由高德纳咨询公司的分析师道格拉斯·兰尼提出。
2011年,麦肯锡在发布的研究报告中提到大数据时代已到来。
目前公认的大数据特征有以下四点。
(1)规模性。
大数据最为明显的一个特征就是量大,需要我们有强大的数据处理技术,对信息进行统计和分析。
随着信息化技术的高速发展,数据开始爆发性增长。
大数据中的数据不再以几个GB或几个TB为单位来衡量,而是以PB(1千个T)、EB(1百万个T)或ZB(10亿个T)为计量单位。
大数据在商业银行的具体应用

大数据在商业银行的具体应用大数据技术的快速发展为商业银行带来了诸多机遇和挑战。
在传统金融领域,商业银行的数据量庞大、涵盖多样化,而大数据技术的应用能够帮助银行更好地管理客户信息、风险控制、市场营销、运营管理等方面,从而提高经营效率,降低成本,提升服务质量。
本文将详细介绍大数据在商业银行中的具体应用。
一、客户管理商业银行拥有大量客户数据,包括个人信息、资产状况、交易记录等。
利用大数据技术,可以进行客户画像分析,从而更好地了解客户的需求和喜好,为其提供个性化的金融产品和服务。
通过大数据技术,银行还可以实现客户行为预测,识别风险客户和未来潜在客户,提高风险管理和市场推广的精准度。
二、风险控制大数据技术在风险控制方面的应用主要体现在两方面:一是通过对大量的数据进行分析,实现风险预警和动态监控,及时发现异常交易和信用风险,保障银行的资产安全;二是构建风险评估模型,利用大数据技术对客户的信用记录和还款能力进行全面评估,从而更加精准地授信和定价,降低不良贷款率。
三、市场营销通过大数据技术,商业银行可以实现精准营销。
银行可以根据客户的消费行为和偏好,通过数据分析和算法模型精准推送个性化的金融产品和活动信息,提高宣传效率和客户转化率。
大数据技术还可以帮助银行进行市场细分和竞争对手分析,从而更好地制定市场营销策略。
四、运营管理大数据技术在商业银行的运营管理中也发挥着重要作用。
银行可以通过大数据技术对业务流程和服务质量进行监控和分析,及时发现问题和瓶颈,提升运营效率和客户满意度。
大数据技术还可以帮助银行进行资金管理和资产配置,实现资金的最优配置和运用。
五、合规与风控在金融行业,合规与风险控制一直是极为重要的方面。
大数据技术的应用可以帮助银行更好地进行反洗钱(AML)和反欺诈(Fraud)工作,通过对大量的数据进行分析,识别可疑交易和风险行为。
大数据技术还可以实现对银行合规和风险控制流程的自动化管理,并通过数据可视化手段帮助监管机构进行监管和评估。
商业银行如何应对互联网金融的挑战

商业银行如何应对互联网金融的挑战互联网金融的快速发展使得传统商业银行面临了新的挑战。
随着技术的进步和用户需求的变化,许多新型金融机构和创新业务模式迅速崛起。
在这种情况下,商业银行必须积极应对互联网金融的挑战,以保持竞争力并实现可持续发展。
本文将探讨商业银行如何应对互联网金融的挑战,并提出相应的应对策略。
一、加强数字化转型商业银行应当积极加强数字化转型,提升自身的数字化技术能力。
通过引入新技术和创新产品,商业银行可以提高客户体验和服务质量,增强客户粘性。
比如,商业银行可以开发移动金融应用程序,方便用户随时随地进行银行业务操作。
此外,商业银行还可以利用人工智能和大数据分析技术来提高风险管理和反欺诈能力,为客户提供更安全可靠的金融服务。
二、建立合作伙伴关系商业银行可以通过与互联网金融机构建立合作伙伴关系来应对挑战。
互联网金融机构通常具有创新的业务模式和灵活的运营机制,与商业银行形成互补关系。
商业银行可以通过与互联网金融机构合作,共同开发新产品和服务,拓展市场份额。
同时,商业银行还可以利用互联网金融机构的技术和渠道优势,提升自身的服务能力和竞争力。
三、优化产品和服务商业银行应当结合互联网金融的特点,优化现有的产品和服务,满足客户多样化的需求。
商业银行可以引入互联网金融的理念和技术,开发更具吸引力和个性化的产品。
例如,商业银行可以推出互联网金融产品,如P2P借贷、数字货币等,以满足一部分年轻用户的需求。
同时,商业银行还可以通过优化线上服务流程和增加自助服务设施,提高服务效率和便捷性。
四、加强风险管理互联网金融的快速发展也带来了一系列风险挑战,商业银行应加强风险管理,确保金融安全和稳定。
商业银行可以利用大数据分析和人工智能技术,对客户交易行为和风险进行实时监测和预警。
同时,商业银行还应加强与监管机构和执法部门的合作,加大对金融犯罪和网络安全的打击力度。
只有健全的风险管理制度和安全保障措施,商业银行才能在互联网金融的竞争中立于不败之地。
大数据在商业银行的具体应用

大数据在商业银行的具体应用随着信息技术的飞速发展和数据规模的不断扩大,大数据已经成为商业银行业务中不可或缺的一部分。
商业银行利用大数据技术,可以更好地理解客户需求,提高风险管理能力,优化运营效率,创新金融产品及服务,并提升市场竞争力。
本文将就大数据在商业银行的具体应用进行分析和讨论。
一、客户需求分析商业银行可以通过大数据技术实现对客户需求的深度分析,包括客户行为、偏好、消费习惯等。
通过大数据分析,银行可以更全面地了解客户的借贷需求、投资偏好以及消费习惯,从而为客户定制个性化金融产品和服务。
这包括通过分析客户的社交媒体数据、消费记录等信息,实现精准营销和精准推荐,提高产品销售效率和客户满意度。
二、风险管理能力提升大数据技术可以帮助商业银行更准确地评估客户的信用风险和市场风险。
通过对海量数据的分析,可以建立更加精细化的风险评估模型,更好地发现异常交易和欺诈行为。
大数据还能帮助银行进行更加精准的反欺诈监控和客户身份识别,提升风险管理能力,降低信用风险。
三、运营效率优化利用大数据技术,商业银行可以对业务流程进行优化,提高各项运营指标的效率。
通过对数据的深度分析,可以找到运营流程的瓶颈和优化空间,实现对业务流程的精细化管理。
通过大数据分析实现精准风控、准确预测客户需求以及进行客户服务的智能化升级,提升整体运营效率和服务水平。
四、金融产品及服务创新大数据技术可以帮助商业银行对金融产品及服务进行创新。
通过对客户行为数据的分析,银行可以更好地了解客户需求,研发符合客户需求的创新金融产品。
大数据技术还可以帮助银行进行智能化风险定价,实现风险定价的精准化,为客户提供更加个性化的金融产品及服务。
五、市场竞争力提升大数据技术可以帮助商业银行更好地理解市场趋势,把握商机,提升市场竞争力。
通过对市场数据的深度分析,银行可以更准确快速地发现市场机会,及时调整产品定位和营销策略,更好地满足客户需求。
大数据技术也可以帮助银行对竞争对手进行深度分析,发现对手的优势和劣势,帮助银行进行更加有效的战略规划。
商业银行的数据分析与风险预警利用大数据技术提前识别风险

商业银行的数据分析与风险预警利用大数据技术提前识别风险近年来,随着大数据技术的迅猛发展,商业银行也开始广泛应用数据分析和风险预警技术来提前识别和应对潜在风险。
本文将探讨商业银行如何利用大数据技术进行数据分析和风险预警,以帮助银行提高业务水平及风险管理能力。
一、大数据技术在商业银行的应用1. 数据收集与存储:商业银行通过各种渠道收集客户的交易数据、信用数据以及其他与风险相关的数据。
这些数据结构庞大,需要高效的存储方式来确保数据的完整性和安全性。
商业银行通常采用分布式存储系统和云计算技术,以应对大数据的高速增长和分析需求。
2. 数据清洗与整理:商业银行的交易数据通常包含大量的噪声和异常值,需要进行数据清洗和整理,以消除不准确和冗余的数据。
商业银行可以利用数据挖掘算法和机器学习技术,自动识别和纠正这些错误,提高数据质量。
3. 数据分析与模型建立:商业银行通过数据分析和模型建立,揭示数据背后的规律和趋势,以识别风险和机会。
商业银行可以利用统计分析、机器学习和深度学习等技术,构建预测模型来预测客户的违约概率、信用风险等,并作出相应的业务决策。
二、商业银行利用大数据技术进行风险预警的应用案例1. 客户信用风险预警:商业银行可以通过分析客户的交易数据、信用数据等,构建客户信用评分模型,对客户的信用风险进行预警。
当客户的信用评分低于一定的阈值时,银行可以采取措施,如提高贷款利率、降低额度等,以减小潜在的信用风险。
2. 交易欺诈预警:商业银行可以通过分析客户的交易行为和模式,检测交易欺诈的风险。
通过比对历史交易数据和实时交易数据,银行可以发现异常交易,并自动触发风险预警系统。
当出现异常交易时,银行可以及时采取措施,如冻结账户、拒绝交易等,以避免损失。
3. 市场风险预警:商业银行可以通过分析金融市场数据和经济数据,预测市场的波动和变化,并提前制定相应的应对策略。
商业银行可以利用大数据技术,对市场进行实时监测和预警,及时发现潜在的市场风险,并采取相应的风险对策,以保护银行的利益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商业银行对大数据的运用及应对策略商业银行对大数据的运用及应对策略摘要随着大数据时代的到来,各商业银行纷纷进行战略转型,营销模式逐渐实时化和精准化,立足于大数据时代,各商业银行如何及时调整并发展营销策略,灵活运用市场营销组合,寻求基于大数据时代营销特征的营销策略是商业银行面临的现实问题。
本文运用理论联系实际的方法首先以商业银行大数据特征及其对传统营销理论的影响为基础,针对我国商业银行如何实现精准营销所存在的问题,提出了大数据时代下的商业银行实现精准营销的解决方法和建议。
随着大数据时代的到来,各商业银行纷纷进行战略转型,营销模式逐渐实时化和精准化,立足于大数据时代,各商业银行如何及时调整并发展营销策略,灵活运用市场营销组合,寻求基于大数据时代营销特征的营销策略是商业银行面临的现实问题。
本文运用理论联系实际的方法首先以商业银行大数据特征及其对传统营销理论的影响为基础,针对我国商业银行如何实现精准营销所存在的问题,提出了大数据时代下的商业银行实现精准营销的解决方法和建议。
随着大数据时代的到来,各商业银行纷纷进行战略转型,营销模式逐渐实时化和精准化,立足于大数据时代,各商业银行如何及时调整并发展营销策略,灵活运用市场营销组合,寻求基于大数据时代营销特征的营销策略是商业银行面临的现实问题。
本文运用理论联系实际的方法首先以商业银行大数据特征及其对传统营销理论的影响为基础,针对我国商业银行如何实现精准营销所存在的问题,提出了大数据时代下的商业银行实现精准营销的解决方法和建议。
关键词:大数据,商业银行,营销策略AbstractDue to the marketization of interest rate and financial disintermediation deepening, China's commercial Banks will face more fierce market competition, commercial Banks are making strategic transition. In the era of big data, gradually real-time and accurate marketing mode, service mode constantly customization and personalization. And continually development and extension of market research, product strategy, channel segmentation and other traditional marketing strategy, promotion strategy, real time marketing, social marketing, behavior and so on in the development of new marketing methods. Integration and real-time update of structure, multi-dimensional information will deeply influence the commercial bank marketing rules. Based on the era of big data, timely adjustment and development of marketing strategy, flexible use of marketing mix, is our country commercialbank marketing principles to adapt to the market demand. The current various commercial bank attaches great importance to the big data applications in the field of marketing, in the face of social produce large amounts of data, they need to seek marketing strategy based on marketing big data era characteristics. With the characteristics of large data of commercial Banks and its influence on traditional marketing theory as the foundation, in view of the existing problems of our country commercial bank marketing, based on PEST model and SWOT model analysis of macro environment and the marketing environment, focus on commercial Banks under the era of big data solutions and Suggestions are put forward. Understand customers' preferences and behavior characteristics, choose appropriate marketing strategy, make its can better guide our country commercial bank in marketing activities, so as to adapt to the fierce market competition environment.Key words: Big data, Commercial Banks, Marketing strategy目录摘要 (2)绪论 (9)一、研究背景及意义 (9)二、文献综述 (9)第一章大数据概述及其对我国商业银行营销理论的影响 (11)一、大数据及其特点 (11)二、传统商业银行营销理论 (11)三、大数据对商业银行营销理论的影响 (12)第二章大数据时代我国商业银行营销现状及问题 (14)一、我国商业银行营销模式发展史 (14)二、大数据下我国商业银行营销现状 (14)三、我国商业银行营销存在的问题 (14)(一)市场营销定位不准确 (14)(二)营销渠道建设有待加强 (15)(三)金融产品创新力不足 (15)(四)大数据利用与实施的基础不完善 (15)第三章大数据背景下我国商业银行营销环境分析 (16)一、大数据背景下我国商业银行营销宏观环境分析 (16)(一)政策和法律环境 (16)(二)经济环境 (16)(三)社会环境 (16)(四)技术环境 (17)二、大数据背景下我国商业银行营销的SWOT分析 (17)(一)优势(S)——Strength (17)(二)劣势(W )——W eakness (18)(三)机会(O )——O pportunity (18)(四)威胁(T)——Threat (18)第四章大数据时代对我国商业银行营销提出的解决方法和建议 (19)一、大数据时代对我国商业银行营销提出的解决方法 (19)(一)进行精准化营销 (19)(二)大力推进金融产品创新 (19)(三)完善大数据网络硬件基础设施 (19)二、大数据时代对我国商业银行营销提出的建议 (19)(一)搭建大数据基础设施,构建更加高效的金融服务体系. 19(二)规划并建立数据标准化体系,夯实数据仓库建设 (19)(三)加强与大数据平台的合作,培育良好的“数据生态”. 19(四)加强信息安全保障工作,建立全面风险管理体系 (20)第五章总结和展望 (21)参考文献 (22)致谢 (23)绪论一、研究背景及意义随着互联网金融席卷而来,电子商务的崛起对商业银行的营销产生了巨大的压力,颠覆了商业银行的营销观念,商业银行因此需要应对来自电商和互联网金融的冲击。
相比之下,电子渠道具有不能比拟的成本优势、客户优势和渠道优势,不需要投入过多的成本发展新客户,只需为现有客户提供新产品和服务以创造新价值。
随着大数据广泛地被应用到生活之中,人们用它定义在服务业爆发式发展所产生的大量数据,并用于领域创新和技术进步。
哈佛大学教授加里·金认为,“大数据带来的是一场新的革命,海量的数据资源会使得制造业、金融界还有学术界和政府等各个领域都开始量化。
”商业银行通过对客户数据的深入挖掘,对大数据时代的营销环境加以分析,将为营销决策提供可靠依据。
在大数据时代下,商业银行若要赢得继续发展的空间,应树立符合现代金融竞争要求的营销策略,在市场调查、产品策略、渠道细分,促销策略等传统的营销手段上适应大数据时代。
不仅如此,除充分利用各种资源外,在营销方式上进行创新,开展实时营销,社交营销等,实现以低成本投入来获取更大市场。
为使业务适应发展要求,我国商业银行必须应用大数据支撑新的商业模式的创新,加快推进业务战略转型。
因此,在适应目前市场环境基础上,通过合理有效的商业银行营销战略,紧跟市场变化的趋势,提升商业银行的盈利能力。
商业银行制定新的营销策略,在市场定位、产品策略、渠道分销、客户服务等流程进行全面调整和深度整合,不断提升核心竞争力,以应对未来大数据时代带来的各种变革。
本文正是大数据时代的背景下,基于对商业银行营销环境和问题的分析,通过对商业银行营销策略延伸的研究,力求适应市场变化趋势,为我国商业银行营销策略提供解决方法和建议,以使商业银行可持续性发展。
二、文献综述大数据战略重点实验室(2016年)提出了有关大数据的多种定义和概念,庞引明,张绍华,宋俊典(2016年)则介绍了大数据的四个特征:数据体量巨大;数据类型繁多;处理要求高,处理效率快;价值密度低,商业价值高。
孙桂芳(2011年)论述了传统商业银行营销的含义与特征。
何自云(2008年)强调商业银行的市场营销是一系列活动的组合,由许多要素构成。
对市场营销的构成要素,有多种不同的概括,包括4P组合(以及后来不断扩展而形成的12P组合)、4C组合和4R组合,因其所概括要素的英文单词分别以字母P、C、R开头而得名,并分别被称为“P字游戏”“C字游戏”和“R字游戏”。
大数据的应用对金融服务产生了深远的影响,促使银行服务营销更加灵活。