高等数学第3版(张卓奎 王金金)第三章习题解答
高等数学第三册教材答案

高等数学第三册教材答案第一章:函数与极限1. 函数的概念与性质2. 极限的概念与性质3. 数列极限4. 函数极限第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 高阶导数4. 微分的概念与性质第三章:一元函数微分学1. 可导函数与连续函数的关系2. 导数的运算法则3. 高阶导数的应用4. 幂指函数的微分第四章:函数的积分学1. 定积分的意义与性质2. 不定积分3. 积分的运算法则4. 牛顿-莱布尼茨公式第五章:定积分的应用1. 几何应用2. 物理应用3. 统计应用4. 应用题解析技巧第六章:多元函数微分学1. 多元函数的极限与连续2. 偏导数与全微分3. 隐函数与参数方程的微分4. 多元函数的极值与条件极值第七章:多元函数积分学1. 二重积分的概念与性质2. 三重积分的概念与性质3. 曲线与曲面的积分4. 应用题解析技巧第八章:无穷级数1. 数项级数2. 幂级数3. 函数项级数4. 序列与函数项级数的收敛性第九章:常微分方程1. 方程与解的概念2. 一阶常微分方程3. 二阶常微分方程4. 齐次与非齐次常微分方程第十章:高级数学的应用1. 现实生活中的数学模型2. 数学在科学与工程中的应用3. 数学在经济学中的应用4. 数学在物理学中的应用以上是《高等数学第三册教材》的答案概述,涵盖了每个章节的主要内容和重点。
这些答案有助于学生巩固对每个主题的理解,并通过实际的应用题目来提高解题能力。
希望这份答案可以帮助你更好地掌握高等数学知识。
高等数学第3版(张卓奎 王金金)第七章习题解答

习题7-11. 已知函数22(,)tanxf x y x y xy y=+-,试求(,)f tx ty . 解 ()()()()222222(,)tan(tan )(,)tx xf tx ty tx ty tx ty t x y xy t f x y ty y=+-=+-=. 2. 已知函数()(,)(),(2,3),-=++x y f x y x y f f x y y 求,.解 ()1(2,3)=,=(2)5x f f x y y x y ++,.3. 已知()22(,),+=-yf x y x y f x y x求,. 解 令 , y x y u v x +==⇒ , 11u uvx y v v==++,则 ()2221(,)111u v u uv f u v v v v -⎛⎫⎛⎫=-= ⎪ ⎪+++⎝⎭⎝⎭, 故 ()2(1) , (1)1x y f x y y y-=≠-+,. 4. 求下列各函数的定义域,并画出定义域的图形:(1)ln()=z xy ; (2)23z =(3)ln()z y x =- (4)=z ;(5)u =R >r >0);解 (1){}(,)0,00,0>><<x y x y x y 或;(2){}222(,)24,x y x y x y≤+≤>;(3)0y x ->,0x ≥且2210x y -->,故函数的定义域为,{}22(,)0,1D x y y x x y =>≥+<.(4)2222(,)1⎧⎫⎪⎪+≤⎨⎬⎪⎪⎩⎭x y x y a b .(5)22220R x y z ---≥且22220x y z r ++->,故函数的定义域为{}22222(,,)D x y z r x y z R =<++≤.5. 求下列各极限: (1)22011limx y xyx y →→-+; (2)00x y →→; (3)220sin()lim →→x y xy x y ; (4)222222001cos()lim ()x y x y x y x y e →→-++; 解 (1)2211lim=1x y xyx y→→-+; (2)0000014x x x y y y →→→→→→-;(3)22200sin()1sin()1limlim 2x x y y xy xy x y x xy →→→→⎡⎤=⋅=⎢⎥⎣⎦ (4)22222224222200001cos()11cos limlimlim 1lim 02()x y xyx x t t y y x y t t tt x y ee →→→→→→-+-=⋅=⋅=+ 6. 从012lim (,0)0,lim (,)25→→==x x f x f x x ,能否断定00lim (,)→→x y f x y 不存在?答 因为函数(,)f x y 沿不同路径的极限不相等,所以极限0lim (,)→→x y f x y 不存在.7. 函数2222y xz y x+=-在何处是间断的?解 为了使函数的表达式有意义,需要220y x -≠,所以曲线220y x -=上的点均是函数2222y xz y x+=-的间断点.8. 证明:极限00limx y x yx y →→+-不存在。
考研高等数学教材答案

考研高等数学教材答案
教材:《高等数学》(第三版)
答案版本:参考答案
引言:
在考研备考过程中,高等数学是一门重要的学科。
为了更好地帮助
广大考生对高等数学知识点进行复习和巩固,本文提供了《高等数学》(第三版)教材的答案。
考生可以参考本文答案,结合教材进行自我
检测,以达到更好的备考效果。
第一章微分学
1. 函数、极限与连续
答案:略
2. 导数与微分
答案:略
3. 高阶导数与隐函数、参数方程的微分
答案:略
......
第二章积分学
1. 不定积分
2. 定积分及其应用
答案:略
3. 定积分的计算
答案:略
4. 微积分基本定理与换元积分法答案:略
......
第三章级数
1. 数项级数
答案:略
2. 幂级数
答案:略
3. 函数项级数
答案:略
......
第四章常微分方程
1. 微分方程基本概念与初等解法
2. 可降阶的高阶线性微分方程答案:略
3. 高阶线性微分方程的解法答案:略
......
第五章多元函数微分学
1. 二元函数微分学
答案:略
2. 多元函数微分学
答案:略
3. 隐函数与参数方程
答案:略
......
第六章无穷级数与函数展开1. 广义积分
答案:略
2. 无穷级数
......
结语:
本文提供了《高等数学》(第三版)教材答案的相应章节,以帮助考生在备考过程中进行自我检测,巩固知识点。
考生可以结合教材进行学习和复习,加深对数学知识的理解和掌握。
祝愿广大考生在考研中取得优异成绩!。
高数上册第三章微分中值定理和导数的应用习题答案

《高等数学教程》第三章 习题答案习题3-1 (A)1. 34=ξ 2. 14-=πξ习题3-2 (A)1. (1)31 (2) 81- 1)12()11()10(1)9(31)8(21)7()6(21)5(1)4(3)3(31e e --∞习题3-2 (B)1. n a a a e e 21)8(1)7(0)6(2)5(21)4(32)3(1281)2(41)1(--2. 连续4. )(a f ''5. )0()1(g a '=⎪⎪⎩⎪⎪⎨⎧=+''≠--+'='0]1)0([210]c o s )([]s i n)([)()2(2x g x x x x g x x g x x f(3) 处处连续.习题3-31. 432)4()4(11)4(37)4(2156)(-+-+-+-+-=x x x x x f2. 193045309)(23456+-+-+-=x x x x x x x f3. )40(,)(cos 3]2)()[sin sin(31tan 4523<<+++=θθθθx x x x x x x4.)10()]4(4[16!4)4(15)4(5121)4(641)4(412432<<-+---+---+=θθx x x x x x5. )10()(!)1(2132<<+-++++=θn nxx O n x x x x xe6. 645.1≈e7. 430533103.1;3090.018sin )2(1088.1;10724.330)1(--⨯<≈⨯<≈R R8. 121)3(21)2(23)1(-习题3-4 (A)1. 单调减少2. 单调增加3. .),23()23,()1(内单调下降在内单调上升;在+∞-∞.),2[]2,0()2(内单调增加在内单调减少;在+∞ .),()3(内单调增加在+∞-∞.),21()21,()4(内单调增加在内单调减少;在+∞-∞ .),[]0[)5(内单调下降在上单调上升;,在+∞n n7. (1) 凸 (2) 凹 (3)内凸内凹,在在),0[]0,(+∞-∞ (4)凹 8. ),(内凹,拐点内凸,在)在(82),2[]2,(1-+∞-∞ ),(内凹,拐点内凸,在)在(222),2[]2,(2e+∞-∞ 内凹,无拐点)在(),(3+∞-∞),(),(:内凹,拐点,内凸,在),,)在(2ln 1;2ln 1]11[1[]1,(4--∞+--∞ ),(内凸,拐点内凹,在)在(3arctan 21),21[]21,(5e +∞-∞ ),(凹,拐点),、凸,在、)在(001[]0,1[]1,0[]1,(6∞+---∞ 9. 29,32=-=b a10. a = 3, b = -9, c = 811. a = 1, b = -3, c = 24, d = 16习题3-4 (B)1. .)1,21(),1()21,0()0,()1(内单调增加在内单调减少;、、在∞+-∞.]22,32[]32,2[)2(内单调下降在内单调上升;在πππππππ+++k k k k .],32[),[]32,()3(内单调下降在内单调上升;、在a a a a ∞+-∞ 2. .1)3(10)2(1)1(是有一个实根时有两个实根时无实根ea e a e a =<<>3. .)2,0(内只有一个实根在π8. .9320时及当=≤k k 9. 在)(凹,拐点凹,在2,),[],(a b b b +∞-∞ 12. 82±=k 习题3-5 (A)1. .1)2(,5)0()1(==y y 极小值极大值.0)0(,4)2()2(2==-y e y 极小值极大值.25)16(,1)4()3(==y y 极小值极大值.205101)512()4(=y 极大值.45)43()5(=y 极大值.0)0()6(=y 极小值 (7) 没有极值. .)()8(1e e e y =极大值.3)1()9(=y 极大值.0)5()1(,18881)21()10(3==-=y y y 极小值极大值2. .14)2(,11)3()1(-==y y 最小值最大值.22)2ln 21(,2)1()2(1=-+=-y e e y 最小值最大值.2ln )41(,0)1()3(-==y y 最小值最大值3. 提示:可导函数的极值点必为驻点,.在题设条件下无驻点所以可证明y '4. .29)1(-=y 最大值5. .27)3(=-y 最小值6. .3)32(,2为极大值==f a7. .21,2-=-=b a8. 长为100m ,宽为5m.9. .1:1:;22,233===h d v h v r ππ 10. .44ππππ++aa ,正方形周长为圆的周长为11. .3843a a h π时,最小体积为锥体的高为=12. .22.1.776小时时间为公里处应在公路右方13. .6000)2(1000)1(==x x14. .45060075.3元件,每天最大利润为元,进货量为定价为 15. .167080,101利润=p习题3-5 (B)1. 1,0,43,41==-==d c b a 2. x = 1为极小点,y (1) = 1为极小值3. 当c = 1时,a = 0,b = -3,当c = -1时,a = 4,b = 5.4. 296)(23++-=x x x x P5. (1) f (x ) 在x = 0处连续;(2) 当ex 1=时,f (x ) 取极小值;当 x = 0时f (x ) 取极大值. 6. 310=x 当时,三角形面积最小7. 323)2()(11)1(032=--=-l x x x x y 8. .1222-≥<b b b b 时为,当时为当 9. 400 10.bc a 2 11. c a e bd L ae bd q -+-=+-=)(4)(,)(2)1(2最大利润eqedd -=η)2( ed q 21)3(==得当η 12. 2)2()4(25)1(=-=t t x 13. 156250元14. (1) 263.01吨 (2) 19.66批/年 (3)一周期为18.31天 (4)22408.74元15. 2)2()111(1)()1(-+-+=e n n n n M n16. 提示:.)1()1(ln )1()(22是极小值,证明令f x x x x f ---=习题3-6 (A)1. (1) x = 0, y = 1; (2) x = -1, y = 0; (3) x = -1, x = 1, y = 0 ; (4) x = 1, x = 2, x = -3.2. 略习题3-6 (B)1. ex y e x 1,1)1(+=-=(2)x= -1,x=1,y= -2 (3)y=x, x=0 (4)y= -2, x=0 4121,21)5(-=-=x y x2. 略习题3-7 (A)1. k=22. x x k sec ,cos ==ρ3. 02sin 32t a k =4. a a k t 4,41,===ρπ 5. 233)22ln ,22(处曲率半径有最小值- 习题3-7 (B)1. 略2. ⎪⎪⎭⎫ ⎝⎛++=)2(),2(,332323132323131x a y y a x axyR 曲率圆心3. 8)2()3(22=++-ηξ4. 约1246 (N) [提示:作匀速圆周运动的物体所受的向心力为Rmv F 2=]5. 16125)49()410(22=-+--ηπξ 习题3-81.19.018.0<<ξ 2. 19.020.0-<<-ξ 3. 33.032.0<<ξ 4. 51.250.2<<ξ总复习题三一. (1)B (2)B (3)B (4)D (5)C (6)B (7)C (8)B (9)C (10)C] 二. 25)8(/82)7()0,1()6(3)5(63)4()22,22()3(2ln 1)2(2)1(3s cm π+--x x x xeyx y 4)1(,)1(4)10()9(2222+++=三. 9)3(0)2(3)1(,7541,6,50,40,31,221,123---e⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0)1)0((210)1()()()()1(,82x g x x e x x g x g x x f x上连续在),()()2(+∞-∞'x f 9, 略四、证明题和应用题 6.)027.0,025.0()2(450449)1(7.)2,2(b a P8.12ln 31,2ln 3121-+ 9.%82.0%13)3(173)2(20)1(总收益增加,时,若价格上涨当=-p pp10.略。
高数(上)第三章 复习题(含参考答案)

高数上第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限:(1)xe e xx x sin lim0-→-;解2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (2)22)2(sin ln lim x x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2)1sin lim )sin (cos 22lim 00==--=→→xxx x x x x . 4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的.因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x xx xx xx x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x ,也就是221)1ln(1x x x x +>+++.5. 判定曲线y =x arctan x 的凹凸性: 解21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间: (1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2. 因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1); 解122+='x x y ,22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1.列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1,ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xx x x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x<e时, f'(x)>0; 当x>e时, f'(x)<0, 所以唯一驻点x=e 为最大值点.因此所求最大项为333max{=.,2}3。
张卓奎、王金金-高等数学第3版(上)第三章本章提要

x x
x
渐近线
若 lim x x0
f
(x)
,则直线
x
x0 是曲线
y
f
(x) 的垂直渐近线;
若 lim f (x) A ,则直线 y A 是曲线 y f (x) 的水平渐近线; x
若 lim f (x) k, lim[ f (x) kx] b ,则直线 y kx b 是曲线 y f (x) 的斜渐近线。
0 型 满足条件(1),(2)(3),且其中 B=0,则 lim f (x) lim f (x) A(或 )
0
xa F (x) xa F (x)
型 满足条件(1),(2)(3),且其中 B= ,则 lim f (x) lim f (x) A(或 )
xa F (x) xa F (x)
其它 0 , , 1 , 00, 0 可化为 0 型或 型,将 x a 改为 x 时结论 0
第三章 微分中值定理与导数的应用
本章分三部分
微分中值定理
洛必达法则
函数的性态
微分中值定理
三 个 条 件 (1)在[a, b] 上连续,(2)在 (a, b) 内可导,(3) f (a) f (b) 。
罗尔中值定理 函数 f (x) 满足(1),(2),(3),则在 (a,b) 内至少存在一点 ,
微分中值定理
泰 勒 公 式 f (x) 具有 n 1阶导数,则
麦克劳林公式
n
f (x)
k 0
f
(k ) (x0 k!
)
(
x
x0
)k
f (n1) ( ) (n 1)!
(
x
x0
)n1
,
在 x 与 x0 之间。
高等数学第3版(张卓奎王金金)第六章习题解答

⾼等数学第3版(张卓奎王⾦⾦)第六章习题解答习题 6-11.设2=-+u a b c , 3=-+-va b c .试⽤a 、b 、c 表⽰23-u v .解 23-u v =5a -11b +7c .2.试⽤向量证明:三⾓形两边中点的连线平⾏且等于底边的⼀半.解设三⾓形ABC 中,E 是BC 的中点, F 是AC 的中点(图6-1),则11,,22AE AB AF AC == ⼜ ,,EF AF AE BC AC AB =-=- 所以 11()22EF AC AB BC =-=,图6-1 即EF 平⾏且等于底边BC 的⼀半。
3.求平⾏于向量43=-a i k 的单位向量.解所求单位向量为{}14,0,35±,即43{,0,}55-和43{,0,}55-. 4.求点M (-3, 4 ,5)到各坐标轴的距离.解过M 点做与x 轴垂直相交的直线,其交点坐标为 (-3,0,0),所以,点M 到x 轴=M 到y=Z 轴5=.5.在yOz ⾯上,求与三点A (3,1,2)、B (4,-2,-2)和C (0,5,1)等距离的点.解设点(0,,)P y z 与A B C 、、三点等距离,则 222 PA PB PC ==, 即 222222222223(1)(2)4(2)(2)(5)(1)4(2)(2)y z y z y z y z ?+-+-=+--+--??-+-=+--+--??,解⽅程组得,1,2y z ==-,故所求点为(0,1,2)-.6.求证以1M (4,3,1)、2M (7,1,2)、3M (5,2,3)三点为顶点的三⾓形是⼀个等腰三⾓形.解因为{}{}{}1213233,2,1,1,1,2,2,1,1M M M M M M =-=-=-,则13M M 236M M ==故三⾓形123M M M 是⼀个等腰三⾓形.A B FC E7.已知两点1M ,1)和2M (3,0,2).计算向量12M M 的模、⽅向余弦和⽅向⾓.解因为{}121,M M =-,所以模 122M M =;⽅向余弦分别为 1cos ,2α=-cos ,2β=-1cos 2γ=;⽅向⾓分别为23π,34π,3π. 8.已知向量447=-+a i j k 的终点在点B (2,-1,7),求这向量起点A 的坐标.解设A 点坐标为(,,)x y z ,则AB ={}{}2,1,74,4,,7x y z ----=-,解得2,3,0x y z =-==,故A (-2,3,0).9.设358247=++=--m i j k,n i j k 和54=+-p i j k .求向量43=+-a m n p 在y 轴上的分向量.解由于4(358)3(247)(54)=+++---+-a i j k i j k i j k 13715=+i j +k 故a 在y 轴上的分向量为7j .10.设a =(1,4,5),b =(1,1,2),求λ使λ+ab 垂直于λ-a b .解由于两个向量垂直,所以 2222()()4260λλλλ+?-=-=-=a b a b a b ,解得7λ=±.11.设质量为200kg 的物体从点1M (2,5,6)沿直线移动到点2M (1,2,3),计算重⼒所作的功(长度单位为m ,重⼒⽅向为z 轴负⽅向).解由于位移{}121,3,3M M =---s =,重⼒{}0,0,200g =-F (298/g m s =),所以, 重⼒所作的功{}{}0,0,2001,3,36005880W g g J =?-?---==F s =.习题 6-21.设32,2=--=+-ai j k b i j k ,求 (1) ?a b 及?a b ; (2) a 与b 的夹⾓的余弦.。
高等数学第3版(张卓奎 王金金)第十一章习题解答

第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=;(5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得()()3sin 4cos 3sin 4cos 0y y x x x x ''+=-++-= ∴ 3sin 4cos y x x =-是方程的解.(3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得220x y xy yy ''--+=移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=- ()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得()()3223222()20xy xy xyy y yxy x x y xy x xy xxy x xy x -+--⋅+⋅+⋅-⋅=---- 故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 11201C C C =⎧⎨+=⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题3-1
1.填空题
(1)函数x y 2
sin =在区间]2
,2[π
π-
上满足罗尔定理的=ξ . (2)曲线x
e y -=在点=x 处的切线与连接两点)1,0(与)1,1(e
的弦平行.
解 (1)显然函数x y 2
sin =在区间]2
,2[π
π-
上满足罗尔定理的三个条件,所以存在22
ππξ∈(-,),使得()0'=y ξ,即sin 20,0ξξ==.
(2) 由于函数x
e
y -=在区间[01],上连续,(01),内可导,
所以满足拉格朗日定理的条件.故存在01x ∈
(,),使得(1)(0)()10-'=-y y y x ,即1
1e e
ξ--=-,解得11ln(e )ξ=--.
2.证明下列恒等式 (1)arctan arccot 2
x x π
+=
,),(+∞-∞∈x .
(2)3
11
3arccos arccos(34)()22
π--=-
≤≤x x x x . 证 (1) 令()arctan arccot =+f x x x ,则(,),()0x f x '∀∈-∞+∞=,所以()≡f x C (常数).又(0),2
f π
=
故()arctan arccot ,(,)2
f x x x x π
=+=
∈-∞+∞.
(2) 令3
()3arccos arccos(34)=--f x x x x ,则11
(),22
∀∈-
<<x x 22
()0f x '=+
==,
所以()≡f x C (常数).又1
(0)(),2
=±=f f π 所以
311
()3arccos arccos(34)()22
=--=-≤≤f x x x x x π.
3.证明:方程015
=-+x x 只有一个正实数根.
证 存在性:令5
()1=+-f x x x .则()f x 在区间[01],上连续,且(0)10,=-<f (1)10=>f ,根据零点定理知,至少存在(01)ξ∈,,使得()0=f ξ,即ξ是方程的一个正实数根;
唯一性:假设方程有两个正根1212(0)()∈+∞<设,,ξξξξ,则()f x 在12[],ξξ上满足罗尔定理
的条件,所以至少存在一点412[],()=5+1=0'∈使,f ηξξηη,这与4
()510'=+>f x x 矛盾.说明
方程015
=-+x x 只有一个正实数根.
4.设函数)(x f 在[0,]π上连续,在(0,)π内可导,证明:在(0,)π内至少存在一点ξ,使得
()sin ()cos 0'+=f f ξξξξ.
证 令()()sin =F x f x x .则()F x 在[0,]π上连续,在(0,)π内可导,并且(0)()0==F F π,故()F x 在[0,]π上满足罗尔定理的条件.因此,至少存在一点(0,)∈ξπ,使得()0ξ'=F ,亦即
()sin ()cos 0'+=f f ξξξξ.
5.设函数)(x f 在],[b a 上二阶可导,且0)()(==b f a f ,令)()()(x f a x x F -=,证明:在
),(b a 内至少存在一点ξ,使得0)(=''ξF .
证
()()0==F a F b ,则()F x 在区间[,]a b 上满足罗尔定理的条件,(,)∴∃∈a b η使得
()0'=F η.又()()()(),''=+-F x f x x a f x 可见()0'=F a ,故()'F x 在区间[,]a η上也满足罗尔
定理的条件,所以,(,)(,)∴∃∈∈a a b ξη,使得()0''=F η.
6.证明下列不等式
(1) 当1>x 时,x
e e x >; (2) 当0b a >>时,
ln b a b b a
b a a
--<<
. 证(1) 令()=x f x e ,则()f x 在区间[1,]x 上满足拉格朗日中值定理的条件,从而有
()(1)()(1)(1)'-=-<<f x f f x x ξξ,(1)(1)-=->-x e e e x e x ξ即,>x e ex 从而.
(2)令()ln =f x x ,则()f x 在区间[,]a b 上满足拉格朗日中值定理的条件,从而有
ln ln 1-=-b a b a ξ,又由于111
<<b a ξ,所以1ln ln 1-<<-b a b b a a
,亦
ln b a b b a b a a --<<. 7.设0a b <<,函数)(x f 在],[b a 上连续,在),(b a 内可导,证明:在),(b a 内至少存在一点ξ,使得()()()ln
b
f b f a f a
ξξ'-=. 证 令()ln g x x =,则()()f x g x 、在区间[,]a b 上满足柯西中值定理的条件.从而
(,)∃∈a b ξ使
()()()()()()f b f a f g b g a g ξξ'-='-,即 ()()()
1ln ln f b f a f b a
ξξ
'-=
-,即()()()ln b f b f a f a ξξ'-=. 8.设0a b <<.证明:在),(b a 内至少存在一点ξ,使(1)()-=--b a ae be e b a ξξ.
证 令函数1
(),()x e f x g x x x
==,则()()f x g x 、在区间[,]a b 上满足柯西中值定理的条件.从。