氯吡格雷基因多态性,个人整理

合集下载

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯毗格雷和华法林代谢相关基因多态性检测及临床检验通讯第60期北京积水潭医院检验科主办2017年4月氯吡格雷和华法林代谢相关基因多态性检测及临床应用一、概述氯吡格雷是心血管疾病中广泛用于抗血小板的药物。

多项研究表明,CYP2C佃*2功能缺失型突变在亚洲人种出现频率约为29%-35%,而CYP2C19*3出现频率约为2%-9%,均高于白种人和非洲人。

FDA建议,临床医生在使用氯吡格雷前应检测患者的CYP2C佃基因型,对已证实的氯吡格雷代谢不良者应考虑增加剂量,或使用其他抗血小板药物。

华法林是一种双香豆素衍生物,是目前临床上应用最广泛的口服抗凝药物之一,用于预防和治疗深静脉血栓、肺栓塞、心脏瓣膜置换术及房颤导致的血栓形成。

华法林治疗窗较窄,很小的剂量都可能导致不良反应的发生,且在不同个体达到相同作用效果,高低剂量者之间可相差10倍以上。

CYP2C9基因多态性对华法林剂量影响较大。

VK0RC1是维生素K循环中的关键酶,华法林因抑制该酶而阻断维生素K以辅因子形式参与羧化酶的催化反应,抑制了凝血因子U、 %、区、X 的功能活性,从而产生抗凝作用。

FDA指出:在使用华法林时,建议检测CYP2C9 和VKORC1基因型。

检测方法SulfurylaseAPS+PPi ATPlucirerin oxy LuciferinLuciferaseATP Lightnucleotide incorporation lightseen as a peak in Pyrvgmm图1、焦磷酸测序检测原理本实验室采用PCR-焦磷酸测序法”进行该项目的检测。

本法是由4种酶催化的同一反应体系中的酶级联化学发光反应。

实验时,一条生物素标记的测序引物与单链模板DNA退火后,在DNA聚合酶、ATP硫酸化酶、荧光素酶和三磷酸腺苷双磷酸酶4种酶的协同作用下,将引物上每一个dNTP 的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯吡格雷和华法林代谢相关基因多态性检测及临床引言药物治疗能够有效地帮助人们控制和预防各种疾病和症状。

然而,在药物治疗过程中,不同个体间的药物代谢差异可能会导致治疗效果不同和副作用的发生。

近年来,基因多态性检测已经成为了个体化药物治疗的重要手段。

本文将介绍氯吡格雷和华法林代谢相关基因多态性检测及其在临床实践中的应用。

氯吡格雷代谢相关基因氯吡格雷是一种抗血小板药物,用于预防和治疗血栓性疾病。

目前认为,氯吡格雷的代谢是通过CYP2C19酶完成的。

CYP2C19是一种细胞色素P450酶,在人体内负责代谢多种药物和内源性化合物。

CYP2C19的活性和表达受基因多态性的影响,从而导致不同个体之间的药物代谢差异。

近年来,研究发现,CYP2C19的基因多态性和氯吡格雷的治疗效果、耐受性以及副作用有密切关系。

由于CYP2C19酶的不同等级对药物代谢能力的影响不同,因此,人类的CYP2C19等级可以分为五个等级:极速代谢型(EM)、快速代谢型(PM)、中间代谢型(IM)、普通代谢型(NM)和低代谢型(UM)。

研究表明,患者CYP2C19的基因型与药物耐受性和毒副作用的发生密切相关。

华法林代谢相关基因华法林是一种口服抗凝药物,广泛应用于静脉血栓栓塞症、心房颤动、人工心脏瓣膜置换和深静脉血栓等临床情况。

然而,华法林的剂量需要个体化调整,以达到最佳的治疗效果。

华法林的代谢涉及到多个基因的共同作用。

其中,最重要的基因是CYP2C9和VKORC1基因。

CYP2C9是细胞色素P450酶之一,负责华法林的代谢。

CYP2C9的基因多态性也导致了华法林治疗效果的差异。

CYP2C9基因多态性分为三个等级:1、2和3,其中CYP2C91是正常基因,CYP2C92和CYP2C93是变异基因。

研究表明,CYP2C92和CYP2C93是华法林剂量减少和出血风险增加的主要风险因素。

VKORC1基因编码维生素K受体复合物1,是华法林的作用靶点。

VKORC1基因也存在多态性。

基因检测指导氯吡格雷用药意义及个体化用药分析

基因检测指导氯吡格雷用药意义及个体化用药分析

同时,我们在调整剂量或调整用药后,都应监测患者 的凝血功能、血小板聚集抑制率等指标,并关注患者 疾病的恢复情况以及不良反应的发生情况。
Hale Waihona Puke 氯吡格雷与质子泵抑制剂在临床上经常会见到的氯吡格雷与质子泵抑制剂 (PPIs)联用的情况,此时应避免选择主要经 CYP2C19和CYP3A4代谢的质子泵抑制剂奥美拉唑和埃 索美拉唑,如确需使用,可考虑选择泮托拉唑或雷贝 拉唑,或使用H2受体拮抗剂雷尼替丁等,以避免应药 物相互作用而降低氯吡格雷的抗栓效果。
氯吡格雷是应用范围最广泛、临床研究最深入的P2Y12抑 制剂
尽管新型P2Y12抑制剂(替格瑞洛/普拉格雷)的抑制血小板 聚集作用较强 ,但氯吡格雷在各大指南中依旧保持最高级 别推荐
对于部分人群而言,氯吡格雷是不可替代的P2Y12抑制剂
与新型P2Y12受体抑制剂相比,氯吡格雷疗效相当, 出血风险明显更低
而在临床中,我们经常会遇到如病例3中的双联抗血小板, 针对多药联合抗血小板的患者,我们的用药方案不能仅由 基因检测结果做决定,多联抗血小板本身增大了出血等副 反应发生的几率,因此若需加量应慎之又慎,盲目加量可 能弊大于利。同时,我们还应该重视的是,患者合并使用 与氯吡格雷有相互作用的药物时,应分析该药物对氯吡格 雷药效的影响。
由以上3个病例可以看出,氯吡格雷基因检测,对患者制定 用药剂量具有重要的参考价值,不同的基因类型,需制定 不同的用药方案,但这一方案不能单纯由基因检测结果报 告中的药师建议决定,更重要的是结合患者自身的具体情 况以及合并用药情况综合考虑。病例1和病例2中的患者, 均为单药抗血小板,直接通过基因分型可帮助临床确定用 药方案。
病例2
患者,男,67岁,因“头晕伴恶心、呕吐一天”入院。

个体化用药基因检测报告单模板氯吡格雷等

个体化用药基因检测报告单模板氯吡格雷等

XXXXXXXXXXXXXXX药剂科脱氧核糖核酸(DNA)位点测定报告单姓名:XXX 性别:女年龄:67 身高:体重:民族:科室:心内科病历号:病床号:33送检医生:XXXX 送检日期:.02.09 临床诊断: 冠状动脉粥样硬化、PCI术后DNA序列测定结果:(氯吡格雷用药相关基因)序号检测基因检测位点检测结果1 CYP2C19*2 681G>A(rs4244285)GG2 CYP2C19*3 636G>A(rs4986893)GG CYP2C19*1/*1野生纯合型4 PON1 576 G > A (rs662) AA:PON1突变纯合型检测结论:该患者CYP2C19酶为正常代谢型,酶活性表达正常,PON1基因型突变纯合型(AA),酶活性表达减弱。

该患者PCI术后,行标准氯吡格雷治疗,1年后发生支架血栓的风险,比正常人高11.6倍,因此,从理论上认为该患者使用常规剂量(75mg/d)的氯吡格雷可能无法有效转化为其活性代谢产物,可能导致氯吡格雷抵抗,使得血栓形成风险增加。

个体化用药建议:(1)该患者采用氯吡格雷(75mg,qd)抗血小板治疗,可能无法发挥良好的抗血小板作用。

因此,建议替代使用新型抗血小板药物替格瑞洛;但应关注替格瑞洛所致呼吸困难。

或给予氯吡格雷(75mg/d)、阿司匹林(100mg/d)和西洛他唑三联抗血小板治疗;或者将阿司匹林剂量增加至200~300mg/d;或停用氯吡格雷,换用其他抗血小板药。

(2)调整给药方案后,应检测血小板聚集率或血栓弹力图以评价临床疗效。

(3)治疗期间应密切关注患者有无皮肤黏膜及消化道等部位出血的发生,若出现则应调整给药方案。

(4)在应用氯吡格雷时,应避免使用CYP2C19酶抑制药,如奥美拉唑、兰索拉唑、埃索美拉唑等,因其可抑制CYP2C19酶,导致CYP2C19酶活性进一步减弱,使得氯吡格雷生物转化进一步下降,而降低氯吡格雷疗效。

如必须使用,可替代使用其他对氯吡格雷作用影响较弱的药物如雷贝拉唑或H2受体阻断剂如雷尼替丁等。

氯吡格雷 代谢基因

氯吡格雷 代谢基因

氯吡格雷代谢基因氯吡格雷是一种抗血小板药物,常用于预防心脑血管疾病,例如心脏病和中风。

然而,每个人对药物的反应不同,其中一部分原因可能是由于个体的代谢基因差异。

首先,氯吡格雷主要通过肝脏酶系统代谢。

酶是一种催化化学反应的蛋白质,它们帮助将药物分解为代谢产物,以便能够在体内被排出。

对于氯吡格雷来说,其中一个关键的代谢酶是CYP2C19。

这个酶的活性有可能受到个体基因的表达水平的影响。

研究表明,CYP2C19基因有多个变异型。

其中,CYP2C19*1型被认为是正常活性的基因,而CYP2C19*2和CYP2C19*3则是常见的变异型。

这些变异型导致CYP2C19酶的活性降低,从而使得氯吡格雷的代谢速率下降。

因此,携带CYP2C19*2或CYP2C19*3的个体可能需要更低的氯吡格雷剂量来达到相同的药效。

此外,还有其他一些CYP2C19变异型,如CYP2C19*4、CYP2C19*5和CYP2C19*17等。

这些变异型对CYP2C19酶的活性也产生了不同程度的影响。

其中,CYP2C19*17型的表达与酶的活性升高相关,这可能导致氯吡格雷的代谢速度加快,从而需要更高的剂量才能达到预期的治疗效果。

了解个体的氯吡格雷代谢基因类型可以为个体化药物治疗提供有益的信息。

一些研究发现,携带CYP2C19变异型的个体在接受氯吡格雷治疗时可能更容易出现药物耐受性和治疗失败。

因此,对于这些患者,可能需要调整药物剂量或尝试其他的抗血小板药物。

总结而言,氯吡格雷代谢基因的变异可能对个体对药物的反应产生影响。

了解个体的CYP2C19基因型可以为氯吡格雷的药物治疗提供指导。

未来,个体化药物治疗的发展将依赖于对代谢基因的深入了解,从而为患者提供更有效的个性化治疗方案。

氯吡格雷个体化用药基因检测

氯吡格雷个体化用药基因检测

氯吡格雷个体化用药基因检测通过CYP2C19基因分型,指导氯吡格雷个体化用药,提高药物临床疗效,降低毒副作用。

临床研究证实,CYP2C19*2、*3、*17位点多态性影响氯吡格雷的代谢速率,从而影响药物的疗效。

权威机构推荐:2012年,中国国家食品药品监督管理局(CFDA )在氯吡格雷说明书中增添了药物基因组学意见,指出CYP2C19慢代谢情况与氯吡格雷的作用降低相关。

美国FDA 、欧盟药品局(EMA )、日本药品与医疗器械管理局(PDMA )、加拿大健康局(HCSC )强调CYP2C19慢代谢者使用氯吡格雷的疗效降低,发生副作用的风险增加。

2015年,国家卫计委个体化医学检测技术专家委员会发布《药物代谢酶和药物作用靶点基因检测技术指南(试行)》,肯定了CYP2C19基因检测在氯吡格雷个体化用药中作用。

检测技术:荧光定量PCR 探针法,技术成熟可靠。

重复性高:批内及批间重复性均达95%以上。

准确度高:探针引物特异性高,准确性达95%以上。

杭州中翰金诺医学检验所地 址:浙江省杭州市余杭经济开发区兴国路519号电 话:4000 919 220 传真:0571-8902 8159网 址: 邮 箱:info@注:* 表示用药建议仅供临床医生参考,不作为最终治疗依据,具体药物选择及用法用量请遵医嘱。

1. SA Scott, K Sangkuhl, EE Gardner, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011,90(2):328-32.2. Holmes D R, Dehmer G J, Kaul S, et al. Journal of the American College of Cardiology, 2010, 56(4): 321-341.3. 丁力平, 胡桃红,马会利等. CYP2C19基因分型指导下的支架血栓治疗一例.中国心血管病研.2010,8(12):926-9274.4. 中华人民共和国国家卫生和计划生育委员会. 药物代谢酶和药物作用靶点基因检测技术指南(试行)概要[J]. 实用器官移植电子杂志, 2015, 3(5):257-267.样本要求:EDTA 抗凝外周血2ml 保存及运输条件:2~8℃低温保存、运输他汀类药物个体化用药基因检测他汀类药物是目前预防和治疗冠心病的有效药物,在体内的代谢主要与SLCO1B1、APOE 基因有关。

氯吡格雷基因检测报告解读

氯吡格雷基因检测报告解读

氯吡格雷基因检测报告的解读主要涉及对检测结果的分析和理解。

以下是对氯吡格雷基因检测报告的一般解读:
1. 检测结果分类:氯吡格雷基因检测结果通常可以分为多态性、异常、特征型和正常型。

这些分类代表了不同的基因变异情况。

2. 变异类型:存在多种基因变异,如CYP2C19基因、CYP3A4基因、CYP2D6基因等。

这些基因变异与氯吡格雷的药物代谢和效果有关。

3. 检测结果解读:根据检测结果,可以判断患者是否存在氯吡格雷相关基因的变异。

如果存在变异,还需进一步分析变异的类型和程度,以评估其对氯吡格雷药物效果的影响。

4. 药物治疗调整:根据检测结果,医生可能会调整患者的药物治疗方案。

例如,如果检测结果显示患者存在氯吡格雷代谢相关的基因变异,医生可能会调整氯吡格雷的用量或更换其他抗血小板药物。

5. 临床意义:氯吡格雷基因检测的临床意义在于帮助评估个体药物安全性,协助制定药物用量,从而提高治疗效果并减少不良反应的风险。

需要注意的是,具体的解读方法和解读结果可能因不同的检测机构和医生而有所不同。

因此,在解读氯吡格雷基因检测报告时,最好咨询专业医生或遗传咨询师,以获得更准确和个性化的解读和建议。

氯吡格雷基因结果解读

氯吡格雷基因结果解读

氯吡格雷基因结果解读氯吡格雷是一种抗血小板药物,用于预防心血管疾病患者的血栓形成。

个体对氯吡格雷的反应存在遗传差异,部分人群可能会出现不良反应或缺乏疗效。

因此,进行氯吡格雷基因结果解读可以帮助医生更好地了解患者对该药物的遗传敏感性,从而制定个体化的治疗方案。

以下是关于氯吡格雷基因结果解读的详细内容:1.CYP2C19基因CYP2C19基因编码一种酶,参与氯吡格雷的代谢过程。

根据CYP2C19基因型的不同,个体可分为三个主要类型:正常代谢型(EM)、中间代谢型(IM)和缓慢代谢型(PM)。

-EM型:具有正常的酶活性,能有效代谢氯吡格雷。

-IM型:酶活性降低,代谢速度较慢。

-PM型:酶活性严重受损,代谢能力显著减弱。

根据多项研究表明,PM型患者在使用标准剂量氯吡格雷时,药物的抗血小板效应较弱,容易出现治疗失败和血栓再发。

因此,在进行氯吡格雷治疗前,了解患者的CYP2C19基因型非常重要。

2.ABCB1基因ABCB1基因编码一种P-糖蛋白(P-gp)转运蛋白,参与药物从细胞内转运到细胞外的过程。

该基因多态性可能会影响氯吡格雷的转运和清除。

有些研究表明,ABCB1基因中某些位点的多态性与氯吡格雷治疗的疗效和安全性相关。

例如,rs1045642位点的多态性可能与氯吡格雷在肝脏中的代谢和排泄有关。

不同基因型的个体在药物的吸收、分布和消除方面可能存在差异。

3.PON1基因PON1基因编码一种酯酶,参与氯吡格雷的代谢和解毒。

PON1基因的多态性可能会影响个体对氯吡格雷的敏感性。

一些研究表明,PON1基因的多态性与氯吡格雷的疗效和副作用有关。

例如,rs662位点的多态性与PON1酶活性的变化相关。

较低的酶活性可能导致氯吡格雷代谢减慢,从而增加出现不良反应的风险。

4.结果解读根据患者的基因检测结果,可以进行如下解读:-CYP2C19基因型:根据患者的基因型,确定其对氯吡格雷的代谢能力。

-EM型:正常代谢型,预计对氯吡格雷有良好的疗效和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氯吡格雷是一种前体药物,本身无抗血小板作用,需要经过细胞色素P450将其转化为活性代谢产物才能实现其血小板抑制效应。

部分患者在长期服用氯吡格雷后,血小板活性未得到有效控制导致严重支架内血栓形成、再发心肌梗死等不良心血管事件发生,临床上称这种现象为氯吡格雷抵抗。

CYP2C19是氯吡格雷活性代谢产物生成过程中的主要酶,而CYP2C19基因多态性是导致氯吡格雷抵抗的最重要的因素[1]。

2010 年3 月, 美国食品药品监督管理局(FDA) 宣布氯吡格雷抵抗的“黑框警告”,提醒应用氯吡格雷后出现心血管不良事件与CYP2C19 功能缺失的等位基因有关。

CYP2C19 不同位点的等位基因对氯吡格雷的代谢的作用强度不同, 在各等位基因中,*1 为正常功能等位基因;*2 和*3 为功能缺陷型等位基因(其在亚洲人群中突变频率分别为30%~50%和5%~10%);*17 是功能增强等位基因(其在我国人群中的突变频率为1.2%~3%),携带CYP2C19*2 和*3 等位基因者为CYP2C19 慢代谢型,此类人群氯吡格雷体内活化速率降低、活性代谢产物减少、抗血小板活性降低。

Meta 分析的结果表明,在服用氯吡格雷的患者中,携带1~2 个CYP2C19 功能缺陷型等位基因的患者发生不良临床事件的危险性可能会增加55~76%[2]。

建议(1)基因多态性所致血小板反应性差异对个体临床结果的影响尚不能肯定,不推荐常规进行CYP2C19基因型检测。

(2)这些个体化用药建议主要用于行PCI 的ACS 患者。

目前还没有数据支持CYP2C19基因型检测用于其他场合的用药指导[3]。

常用经由CYP2C19代谢的药物:
①质子泵抑制剂:奥美拉唑、兰索拉唑、泮托拉唑、雷贝拉唑
②抗抑郁药:氟西汀、西酞普兰、艾司西酞普兰
③抗癫痫药:丙戊酸钠、苯妥英钠、苯巴比妥、地西泮
④其他:伏立康唑、利福平
[1]张丽娜,王浩然,丁虎,等.氯吡格雷吸收和代谢通路相关基因变异与临床个体化用药实践.分子诊断与治疗杂志,2013,5(5):289-294
[2]刘俊,朱艳虹,栾佳杰,等.基因型检测在氯吡格雷个体化抗血小板治疗中的应用价值.中国药房,2014,25(12):1097-1098.
[3]钟诗龙,韩雅玲,陈纪言,等.氯吡格雷抗血小板治疗个体化用药基因型检测指南解读.中国实用内科杂志,2015,35(1):38-41。

相关文档
最新文档