公交线路选择的优化模型
可变线路式公交车辆调度优化模型

i ∈S
( ) 1
. t . s
∑x ∑x
, i j
/ { } S 1 = 1, j∈S / { S S} = 1, j∈S
( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 8 ( ) 9 ( ) 1 0
, i j
T S S i∈ S i >A i +T s, e Pk ≤l k ∈ N1 ∪ N3 k ≤T k, T Pk < T Dk , k∈ N T Pk ≥ T Rk , k ∈ N1 ∪ N3 ) ≤C NB( t∈ ( 0, T) t B ,
0 引 言
随着经济的发 展 和 机 动 化 水 平 的 提 高 , 城市 交通拥堵问题也不断加剧 。 公共交通在道路交通 资源的充分利用上具有私人交通无法比拟的优越 性, 已经成为缓解道路交通拥堵的 1 条重要途径 。 ) 可变线路 式 公 交 ( 作为1种新 f l e x r o u t e t r a n s i t - 融合了常规公交运营模式 型公 交 运 营 模 式 , ( 的高成本效益以及需求响应式公交系统 F R T) ( ) 能够提供门到门的公交运输 D R T 的机动灵活 , 是解决城郊 地 区 公 交 服 务 问 题 的 1 条 重 要 服务 , 途径 。 可变线路式公 交 可 以 描 述 为 : 车辆在一定的 服务区域内围绕 基 准 线 路 运 行 , 并在松弛时间内 偏离基准路线行 驶 , 在乘客要求的地点停车上下 客 。 车辆行驶过 程 中 满 足 一 定 的 时 空 限 制 , 即车 辆驶离基 准 路 线 为 乘 客 提 供 站 外 上 下 车 服 务 之 需要返回基准线路继续行驶 , 并且满足线路上 后, 固定站点的时间约束 。 根据可变线路式公交乘客 的上下车位置可 以 将 其 分 为 4 类 : 站外上车站外 、 、 下车 ( 站内 上 车 站 外 下 车 ( 站外上车 I类 ) I I类 ) 。 站内下车 ( 和站内上车站内下车( I I I类 ) I V 类) 其运行模式见图 1, 其中 1 和s 为公交线路的首末 站。
公交网络站距的优化模型

() 5
其 中 . b为 公 交 车 匀 速 行 驶 的 速 度 V
状态 的不 同 .将每 日车辆营运总成本划分
为 车辆 正 常行 驶 时 的 营 运 成 本 及 车 辆 在 站
选 取 对 整 个 公 交 网 络 的 影 响 为 出发 点 . 以
T = i(y V (- )V ) d m n (/ w,d y/ w
图 1 公 交 站 的选 取
可 种 具 有 拓 扑 性 质 的 网络 图 . 依 附 于 路 网 , 素 的 总 和 . 表 示 为 它
w W T+ + T r 但又区别于路网 , 由公 交 线 路 和 站 点 构 成 。 T W o o WwT + s s r r Wd d = T+ () 1
它 的 设 置 直 接 影 响 了 公 交 车 辆 的 平 均 速 间 ;s 车 内行 程 时 间 , T 为 即实 际 乘 车 时 间 ;
可 链. 因此 站 距 是 公 交 线 网设 计 的 关 键 变 量 , 行 点 到 相 应 车 站 的步 行 时 间 :w为 等 车 时 决 定 的 。 表 示 为 : T
m s)b为 ( ) ( / )a为 车 辆 出站 的 加 速 度 ( / , 3 m s ,
m s) 其 中 , w为乘 客 的平 均步 行 速度 ( / , 车 辆进 站 的减 速 度 ( / 。 V ms ) 停 靠 时 间包 括 上 下 客 时 间 和 开 关 门 时
xY为 乘 客 到 站 点 的 距 离 24 车 辆 停 靠 时 间 . 点停 站 时 的 营运 成 本 。 者 从 站 点 、 距 的 d为 最 优 站 距 ., 笔 站
公交网络站距 的优化模型
王卫荣 章 文 誉
公交线路发车频率优化的双层规划模型及其解法_于滨

主要研究更具普遍意义的第二种优化方法 。在发 车频率制定的过程中 , 存在着供给 (公交企业 )和 需求 (乘客 )两个主体 , 供 、需双方是相互作用 、 相互影响的 , 即供给方依据线路的客流量制定发 车频率 , 而需求方调整自己的行为来适应这个频
收稿日期 :2005-12-01. 基金项目 :国家自然科学基金资助项目 (50479055). 作者简介 :于滨 (1977 - ), 男 , 博士研究生. 研究方向 :网格 , 智能公交. E-ma il:m in lfish@ yahoo. com. cn 通讯联系人 :程春田 (1965 - ), 男 , 教授 , 博士生导师. 研究方向 :电力系统优化 , 防汛减灾.
m k n =Umk +1
Sk - 1 m
- (n
-
1) /rk ) +Rmk
f)
M o 分为三部分 :①等待车辆费用 τw 是在车
辆到站前 , 站台上的乘客 (不包括上趟车 留剩的
乘客 )等待的时间费用 ;②等待上车费用 τμ是车 辆到站后 , 在站台停车期间乘客在车外等待上车
的时间费用 ;③额外费用 τφ是留剩乘客 (受车容 量限制被留剩在站台上的乘客 )等待当前车辆和
吉 林 大 学 学 报 (工 学 版 )
Journa l o f Jilin U niversity (Enginee ring and T echno logy Ed ition)
V o.l 36 N o. 5 S ep.t 2006
文章编号 :1671 - 5497(2006)05 - 0664 - 05
第 36卷
辆车在第 k 站的停车时间 , Smk
=m
ax(uU
k m
基于优化模型的城市公交停靠站址的选择

性好, 刚度大 , 因此冲击振动 比轨枕
( )隧道和高架结构振动而辐 3
( )设置车轮隔音罩和在车辆 3 () 4 采用密封车体设计 , 减小噪
式大得多 。轨枕式整体道 床包括短 射的噪声控 制。地铁隧道上方建筑 两侧设置下裙边 。 枕式和长枕式。 长枕式效果 良好 。 另 物的基础可设置 弹性装置 ( 如橡胶 外弹性支承块式整体道床和浮置板 垫块等) 能有效地降低振动 。 对于 声 进入车 内。
9 皈 4 8 馅 2 0- 0 81 2
技 术 与 研 究
况 ,并且将垂直交叉路段 又具 体分 出行方式( 本文取步行方式) 。 为公交路线直行 、左转 和右转 三种 对于第一种情 况 ,问题 在于如 情形 ,对应建立多条公 交线路 的停 何在区间AB或B C内选择适 当的停 靠站位置的优化选择模 型。本 文模 靠点( 即车 站) ,使 乘客的平 均步行 型与参考文献3 的模型相 比, 虑了 时间最小 。第二和第 三种情 况均可 考 所有 目标区域的 出行和行人过街产 转化为第一种情况加 以考虑 , 因此 , 生的延误 ,并且在垂直交叉路 段的 本文仅就第一种情 况的站址 优化选 选址 中考虑到公交停靠站与交 叉 口 择模 型加 以研究 。
式整体道 床的减振 效果十分 显著 。 那些防振要求很 高的建筑物 ,如精 弹性 支承块式轨道结构 由弹性 支承 密仪器实验 室等 ,轨道交通线路应
3结束语
随 着 城 市 交通 事 业 的快 速 发 块 、道床板和混凝土底座及配套扣 尽可能绕避 ,或迁移建筑物。高架 件构成。弹性支承块是 由橡 胶靴套 桥宜采用混凝土 梁, 尽量少用钢梁 , 展 ,机动车 的保有量急剧增 加 ,交 包裹 的钢筋混凝土支承块及块 下大 桥梁支座 采用橡 胶支座 ,桥梁两侧 通 噪声 已经成为城市生活的一 大公
公交车调度方案的优化模型

公交车调度⽅案的优化模型第三篇公交车调度⽅案的优化模型2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出⾏状况、提⾼公交公司的经济和社会效益,都具有重要意义。
下⾯考虑⼀条公交线路上公交车的调度问题,其数据来⾃我国⼀座特⼤城市某条公交线路的客流调查和运营资料。
该条公交线路上⾏⽅向共14站,下⾏⽅向共13站,表3-1给出的是典型的⼀个⼯作⽇两个运⾏⽅向各站上下车的乘客数量统计。
公交公司配给该线路同⼀型号的⼤客车,每辆标准载客100⼈,据统计客车在该线路上运⾏的平均速度为20公⾥/⼩时。
运营调度要求,乘客候车时间⼀般不要超过10分钟,早⾼峰时⼀般不要超过5分钟,车辆满载率不应超过120%,⼀般也不要低于50%。
试根据这些资料和要求,为该线路设计⼀个便于操作的全天(⼯作⽇)的公交车调度⽅案,包括两个起点站的发车时刻表;⼀共需要多少辆车;这个⽅案以怎样的程度照顾到了乘客和公交公司双⽅的利益;等等。
如何将这个调度问题抽象成⼀个明确、完整的数学模型,指出求解模型的⽅法;根据实际问题的要求,如果要设计更好的调度⽅案,应如何采集运营数据。
公交车调度⽅案的优化模型*摘要:本⽂建⽴了公交车调度⽅案的优化模型,使公交公司在满⾜⼀定的社会效益和获得最⼤经济效益的前提下,给出了理想发车时刻表和最少车辆数。
并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建⽴了求最⼤客容量、车次数、发车时间间隔等模型,运⽤决策⽅法给出了各时段最⼤客容量数,再与车辆最⼤载客量⽐较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。
模型Ⅱ建⽴模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双⽅⽇满意度为(0.941,0.811)根据双⽅满意度范围和程度,找出同时达到双⽅最优⽇满意度(0.8807,0.8807),且此时结果为474次50辆;从⽇共需车辆最少考虑,结果为484次45辆。
随机条件下固定公交线路服务频率优化模型

此 时 , 能 由= 车 辆 满 载未 能 上 车 的乘 客 数 可 F
为
UB 一 m a ( 儿 ・H + UB 一 , x 0, 1 一 C+ ( 1一 P ) N L 1 ) ( ) 4
时 车上乘 客总 数 ; a为乘 客 平 均 下 车 时 间 ; 为 乘
客平 均上 车 时 间 ; 为 车 站 k 的乘 客 到 达 率 ; 为 车辆 到达车 站 k时将要 下车 乘客 占车 上总乘 客 的比率 ; C为 车辆 的承载 能力 .
1 3 模 型建 立 .
车辆离 开车 站时 的总乘 客数 为
L
.
=
:
L 1 A + B 一
. 一
() 5
根据 公交 线路 的乘客需 求合 理确 定公交 线路
服 务频 率是平 衡公 交 供 求 的关 键 内容. 实 际 的 在 公 交服 务 中 , 线路服 务频 率越 高 , 乘客 在站候 车 时 间可能 越短 , 并且 获 得 座位 或 者 能 够 上车 的 可 能 性越 大 , 但是 对 于公 交 部 门 可能 意 味着 较 低 的 车 1 1 模型假 设 . 由于公 交线路 服务 除 了受到 车辆站 间运行 时
辆i 与前 一辆 车 (一1 到 达 车 站 k的 实 际车 头 时 ) 间距 ; 车辆 i从 车站 ( 一1 启 动 运 行至 车 站 R 为 足 ) k停 车 的 时 间 ; 为车 辆 i在 车站 k服 务 乘 客 上 D 下 车的等 待时 间 ; 为车 辆 i到 达 车站 k时车 上 A 需要 下车 的乘 客数 ; 为车 辆 i到 达 车站 k时 上 B 车 的乘 客数 ; B U 为车 辆 i离开 k站 时 由于车 辆 满 载未能 上车 的乘 客 数 ; 车辆 i离 开 车 站 k L为
响应动态需求的灵活型公交路径优化调度模型

第47卷第3期2021年3月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGYVol. 47 No.3Mar. 2021响应动态需求的灵活型公交路径优化调度模型孙继洋1,2,黄建玲3,陈艳艳1,魏攀一1,2,贾建林1,宋程程1收稿日期:2019-10-18基金项目:国家重点研发计划资助项目(2017YFC0803903,2016YFE0206800)作者简介:孙继洋(1980—),男,高级工程师,主要从事智能交通大数据方面研究,E-mail :cdyan@ bjut. edu. cn(1.北京工业大学北京市交通工程重点实验室,北京100124; 2.交通运输部公路科学研究院,北京100088;3.北京市交通信息中心,北京100161)摘要:为解决灵活公交乘客需求差异性大、实时变化性大的问题,提出一种考虑乘客动态需求的灵活公交路径优化调度模型.在已知乘客预约需求量、车辆载客容量、车队规模等条件下,根据乘客需求动态变化特征对接驳行程 时间进行实时迭代更新,将车辆的运营成本(车辆行驶时间)和乘客的时间成本(乘客上车前等待车辆的时间、实际到达时间与期望到达时间之间的差值)最小化作为目标,构建了考虑乘客动态需求的灵活型公交路径优化调度模 型,并采用基于引力模型的启发式算法进行求解.最后,通过实例分析验证了模型和算法的可行性.结果表明:对 随机产生的15个需求点的102个出行需求,全部服务完成所需车辆为17~21辆,平均每辆车的旅行时间为24. 59min,100组数据的求解时间均在25. 00 s 以内,计算耗时平均为12. 04 s.可见该优化模型能够在实时调整接驳规划时间的前提下,更大程度满足乘客动态需求,有效减小规划路径的误差,缩短行车距离和乘客出行时间,相比忽略接驳行程时间变化的灵活公交调度模型结果更优.关键词:交通工程;城市交通;路径优化;启发式算法;灵活型公交;动态需求中图分类号:U121 文献标志码:A 文章编号:0254 -0037(2021)03 -0269 - 11doi : 10.11936/bjutxb2019100011Flexible Bus Route Optimal Scheduling Model in Responseto Dynamic DemandSUN Jiyang 1,2 , HUANG Jianling 3, CHEN Yanyan 1 , WEI Panyi 1,2 , JIA Jianlin 1 , SONG Chengcheng 1(1. Beijing Key Laboratory of Traffic Engineering , Beijing University of Technology , Beijing 100124, China ;2. Research Institute of Highway , the Ministry of Transport , Beijing 100088, China ;3. Beijing Transportation Information Center , Beijing 100161, China )Abstract : To solve the problem that the demand of flexible bus passengers varies significantly and thedemand of flexible bus passengers varies significantly in real time , a flexible bus route optimization scheduling model considering the dynamic demand of passengers was proposed. Under the conditions ofknown passenger reservation demand , vehicle passenger capacity and the team known condition such as size , according to the dynamic changes of passenger demand for real-time iterative update shuttle traveltime , the operating costs of the vehicle ( vehicle ) and time cost for passengers before ( the passengers waiting time of the vehicle , the actual time of arrival and the difference in value between expected time of arrival) minimization as the target , was established considering the passenger dynamic demand type flexible bus route optimization scheduling model , and USES the heuristic algorithm based on gravitymodel. Finally , the feasibility of the model and algorithm was verified by an example. The analysis results show that for the 102 travel demands of 15 randomly generated demand points , the number ofvehicles needed to complete all the services is 17 - 21 , the average travel time of each vehicle is 24. 59270北京工业大学学报2021年minutes,the solution time of100sets of data is all within25.00seconds,and the average calculation time is12.04seconds.It can be seen that under the premise of real-time adjustment of connection planning time,this optimization model can satisfy the dynamic demand of passengers to a greater extent,effectively reduce the error of the planning path,shorten the driving distance and passenger travel time,and achieve better results than the flexible bus scheduling model that ignores the change of connection travel time.Key words:traffic engineering;urban traffic;route optimization;heuristic algorithms;flexible bus;dynamic demand城市公交线路优化调度是提高公交运行效率、降低乘客出行和公交运营成本的主要手段.一个好的公交调度系统能够根据乘客的出行需求,快速优化调整线路运营方案,提高线路服务率,减少运行时间,降低乘客出行时间成本[1-»传统公交路径优化方法主要是通过长期的经验观察或IC卡数据统计分析,对部分线路进行延长、缩短、增删、调整走向等优化,优先满足大客流站点的乘客需求,这类方法主要适用于固定线路的公交路径优化,线路调整周期较长[4-7].灵活型公交的出现,为线路的动态优化调整提供了可能[7-10],目前国内外学者均开展了相关研究.其中,Quadrifoglio等[11-12]通过对灵活公交系统关键参数的分析,建立了公交系统运行效率参数优化调整模型,并针对其前期建立的系统线路设计和调度问题,进行了仿真验证分析,对模型进行了参数修正.付晓等[13]利用超级网络同时模拟用户的活动与出行行为,并根据用户出行行为特征建立了公交路径选择模型.Koffman[14]提出了基于多目标需求的城市公交智能调度算法;Tsubouchi[15]提出了 利用最小生成树寻优公交路径最优算法;熊杰[16]通过对区域内潜在公交用户需求的分析,建立了接驳轨道交通的公交线路优化模型;Li等[17]、Chen 等[18]通过对乘客预期等待时间和线路上客概率的推导,建立了超路径的公交运输路径调整模型;潘述亮[19]重点考虑了长时预约对灵活公交线路调整的影响,并提出了优化调度方法;郭晓俊[20]重点考虑了短时预约对灵活公交线路调整的影响,并提出了优化调度方法.这些研究虽然都是根据乘客的预约需求建立的灵活型公交路径优化算法,但其前提条件均是乘客需提前发出预约或假设乘客需求已知,相对即时预约来说均属于“静态需求”.然而,在乘客出行过程中,往往会根据出行需要发出短时预约或即时预约,灵活型公交需要根据乘客的“动态需求”,计算因动态需求变化导致的车辆接驳行程时间变化,即时调整线路实现路径的动态优化.鉴于此,考虑到乘客需求的动态变化以及由于需求变化导致的车辆接驳行程时间变化,本文提出了一种基于乘客动态需求的灵活公交路径优化调度方法.在已知车辆载客容量、车队规模等条件下,根据乘客需求动态变化特征对接驳行程时间实时迭代更新,将车辆运营成本和乘客出行成本最小化作为主要目标,建立了考虑乘客动态需求的灵活型公交路径优化调度模型.1问题描述与建模1.1问题描述在传统的固定型接驳公交运营中,公交线路规划设计与车辆运营调度是2个独立的过程,一般在线路规划设计完成之后制定车辆运营调度方案,调度方案在相当长一段时间内不发生变化.这就造成了线路设计和车辆调度之间脱节,两者不能有效衔接的问题,且线路设计和车辆调度无法根据乘客需求进行及时调整•但高效的接驳公交系统,应能够根据乘客的实际需求及时调整运营线路,并根据线路和乘客需求实时动态调整车辆调度方案.灵活型公交是一种以需求为基础的交通系统,它能根据乘客发出的需求,以最短路线服务最多乘客为目标,动态调整运营线路,并在线路调整同时,融合分析沿线乘客需求数量、车辆载客容量等因素,实时调整车辆调度方案,最大程度地满足更多乘客需求,解决传统固定型接驳公交的乘客需求与线路规划、车辆调度脱节的问题.本文提出的响应动态需求的灵活公交路径优化调度模型,将乘客即时需求作为公交路径动态优化调整的依据之一,根据乘客出行需求点位、需求量和需求时间,对公交路径和行车方案进行实时优化和调度.为使得本文所建立的模型更合理、得当,本文综合考虑乘客需求、运营成本等各方面的因素,进行如下灵活型公交路径优化模型假设、参数选取和建模.1.2模型假设对灵活型公交路径优化模型的建立提出如下假设,其中1)、2)为动态假设,3)~6)为静态假设.第3期孙继洋,等:响应动态需求的灵活型公交路径优化调度模型2711)每个站点的乘客预约需求量动态变化.2)车辆站点之间的行程时间动态变化.3)每个站点的位置均已知.4)预约后,每个乘客拟到达目标站点的时间已知.5)乘客到站上车的服务时间为常数.6)接驳车辆的载客容量已知.1.3模型参数按照上述模型假设,对各模型变量进行定义,如表1所示.表1模型参数Table1Medol parameter变量定义及说明参数类型Z优化路径的总时间成本因变量H乘客需求站点集合常量D目标站点集合常量K接驳运营车辆集合常量R乘客需求集合常量d”乘客需求r的目标站点d决策变量T t目标站的第t个发车时刻决策变量N乘客需求总量决策变量P r乘客需求r的上车站点p决策变量T”乘客需求r的期望发车时刻决策变量C j站点i和j之间的旅行时间决策变量V接驳车队规模决策变量Q k接驳车辆k的载客容量决策变量M足够大的一个常数常量X kt t时刻时车辆k将需求r接驳至乘客期望的站点,X,”为1;否则为0决策变量如车辆k选择(i,j)路段作为途经路径时,匕*为1;否则为0决策变量a 车辆行驶至需求r所在公交站点的时间决策变量乘客需求r到达目标站的时间决策变量车辆行驶至需求s所在站点的时间决策变量决定车辆k的运行线路不出现闭环U ik 的变量.如果接驳车辆离开站点i,则-=0;如果接驳车辆到达站点则4=1决定车辆k的运行线路不出现闭环辅助变量U k的变量.如果接驳车辆离开站点j,则乞=0;如果接驳车辆到达站点j,则U k=1辅助变量1.4模型表述按照上述模型假设和变量设置情况,采用非线性规划形式对灵活型公交路径优化模型进行表述,即Z=min I移移移c£k+移a+i e H U D j e H U D A e K reR移移移(S-e”)](1)r e R k e K t式(1)为灵活型公交路径优化模型表述的目标方程,由3个部分之和组成,取其最小化值:1)所有车辆的行驶时间,以降低运营成本;2)每个乘客在需求点等候车辆抵达的时间之和,以减少乘客的总出行时间;3)每个乘客等待车辆的实际到达时间与期望到达时间的差值之和,以减少乘客的总出行时间.移移Y jk逸1,VieH(2)j e H U D keK移移Y jk臆V,VieH(3)j e H U D keK约束式(2)(3)表示在任意一个乘客需求点,保证车辆进行服务,且车辆数在1与V之间.移移如臆V,V j e D(4)i e H k e K约束式(4)表示参与服务的车辆总数不超过V辆.移忌-移乙逸0,VieH,keK(5)j e H U D p e H约束式(5)表示对任意一个需求点,任一参与服务的车辆均有到达和离开的过程.4-匕+IHI X Y j臆IHI-1,Vi',eHUD,keK(6)约束式(6)保证了系统规划路径的单向性,即不能产生往返回路.移移如逸1,VkeK(7)i e H j e D移移Y jk臆0,VkeK(8)i e H j e D约束式(7)(8)表示参与服务的任意一辆车必须将乘客运送至目标站点.移移X rkt臆Q k,VkeK(9)r e R t e T约束式(9)保证车辆不能超载运输.移移X rkt=1,VreR(10)k e K t e T约束式(10)表示乘客发出需求后,只能被一辆车服务,不能同时被多辆车服务.移X skm-(1-X rkt)M臆0,Vr,seR,meT/{t}VkeK,VteT (11)272北京工业大学学报2021年约束式(11)表示一辆接驳车辆在单程接驳运送中,只能服务于一个目标站点的一个发车时刻.移移移X kt=N(⑵r沂 R k沂K i沂T约束式(12)表示所有接驳车辆实际服务的需求数量与预约的需求量相等.a+-a+抵严臆必,坌『异沂R,V"K(13)-a r-%+丫”肿MWM,V r,swR,V kwK(14)约束式(13)(14)表示当同一接驳车辆为相邻2个站点提供接驳服务时,后一个站点接受服务的时间应等于前一个站点接受服务的时间与两站点间行程时间之和.a r+%一a s+Y p肿MWM,Vr e R,Vk e K,V/'eD(15)a s一a r一%+岭亦MWM,V r沂R,V k沂K,Vj沂D(16)约束式(15)(16)表示接驳车辆到达目标站点的时间等于为最后一个需求点提供服务的时间与需求点与目标站点之间的行程时间之和.e,臆移移X ki T i,VreR(17)约束式(17)表示接驳车辆应在 目标站点车辆发车之前抵达目标站点.2模型求解本文提出的面向多目标站的灵活性公交路径优化调度问题,是一类典型的非确定性多项式问题都能在多项式时间复杂度内归约到的问题(non-deterministic polynomial hard,NP-hard).在问题规模较大时计算量和复杂程度会急速增加.因此,为了应对复杂问题的快速高效计算问题,通常采用可同时保证计算速度和计算精度的启发式算法进行求解.当在一定区域范围内,多个点位同时发出出行需求时,可看作同时存在的多个引力点.受点位间距离影响,不同点位之间引力大小各有不同,可对应理解为车辆在2个需求点间接驳运送的时间成本各不相同.因此,为使车辆能够快速在需求最多、距离最小的点位间进行接驳服务,受四阶段出行分布预测的引力模型启发,本文提出一种基于引力模型的启发式算法.总体思路是:首先基于引力模型生成较优的初始解,再利用路线间和路线内的优化算法分别改进路线,从而得到最终路线.详细步骤介绍如下.2.1乘客出行预约与需求分配首先,将乘客发出出行预约和进行需求服务分配分为以下4个步骤:步骤1乘客按其出行需求,进行预约出行.每个乘客将其出发站、目标站、期望到达目标站的时间等信息传输到出行预约平台.考虑到乘客需求和接驳车辆站点之间的行程时间的动态变化特征,预约平台的乘客需求和接驳车辆站点之间的行程时间每5min进行一次更新.步骤2出行预约平台根据每个乘客的目标站和期望到达目标站的时间,按照实际到达时间不晚于乘客期望值的原则,对所有乘客进行聚类.步骤3根据2.2,2.3节中路径生成结果,结合接驳车辆到达时间、平均行驶速度、乘客需求点的位置、各需求点乘客数量等因素,初步估算车辆到达的时间.步骤4将初步估计的接驳车辆到达各需求点的时间,发送给对应需求点的乘客,乘客根据接驳车辆到达时间的合理性,选择是否确定乘车.2.2基于引力模型的生成初始车辆路径解基于引力模型的计算方法,以起始需求点为已知站点,根据引力模型的原理遍历所有剩余需求点,查找与已知点之间引力最大的点,并将最新搜索到的站点作为新的已知点,继续遍历剩余需求点确定下一个与已知点之间引力最大的点,按此步骤逐步迭代,直到所有需求点均被查找到,从而可以生成可行的初始车辆路径解.定义两站点间的引力T(18)式中:N,为站点,的上车人数;c.为站点,和站点j 之间的车辆行驶时间.F,.的值越大,说明这2个站点的乘客数越多且旅行花费越小,需要优先服务,应该将站点j设为站点,的下一个站点.在已知车辆载客限定辆Q时,按如下步骤生成初始路径的解:步骤1确定车辆出发站点.初始k=1,从有乘客上车需求的站点中,随机抽取一个作为车辆k 的出发点.步骤2判断是否还有同类乘客未服务.若有,则跳至步骤3;否则,跳至步骤5.步骤3搜索下一站点.在包含同类乘客的上车站点中,找出与当前站点之间吸引力最大的站点第3期孙继洋,等:响应动态需求的灵活型公交路径优化调度模型273X,尝试将站点X加入路径选择链,计算车辆在加入该需求点后车上总人数,以及加入该需求点X后直接行驶至目标站点所需的时长.步骤4判断加入站点X后,车辆路线是否合理.若当前车辆服务的乘客数量未超过车载容量Q k,且到达目标站点的时间未超过乘客需求的时间,则以站点X为新的起点,跳至步骤3;否则,跳至步骤5.步骤5判断是否所有类别的乘客均被安排服务.若还有乘客未被安排服务,则调度下一辆车, k=k+1,跳至步骤1;否则,输出当前全部初始解,结束基于引力模型的初始解计算步骤.2.3基于站点均衡与交换的车辆路径优化介绍路线间和路线内的路径优化算法,使得路径质量和乘客服务水平进一步提升.需要注意的是,算法的步骤1和步骤2均属于车辆路径间的优化,在步骤1和步骤2的路径优化算法执行过程中,可能会搜索出多组可行的路线解.若在搜索时仅保存当前最优的一组解,再执行步骤3,可能搜索到的最终路线结果并不是最优.所以,本算法会保存步骤1和步骤2寻找到的所有可行解组,并对每一组可行解执行步骤3,综合评价所有的路线解组的目标函数,以找到最终的最优解.步骤1首先对服务于目标站点和到达目标站点时间需求相同的车辆之间进行站点数量均衡.检查各接驳车辆是否存在服务需求点过多或过少的现象.如果有,则在确保车辆不超载的条件下,将需经过站点数量较多的车辆路线中的部分站点,转移给经过站点数量较少的车辆路线,并安排合理的站点顺序.步骤2尝试对服务于目标站点和到达目标站点时间需求相同的车辆之间进行路径优化.主要应用两路线间,交换两站点的方式,搜索更优的路线.在交换优化的过程中,保证车辆不超载和按时到达目标站点的需求.步骤3对每一辆车的路线进行内部优化.主要在同一车辆路线内,尝试交换两站点的顺序,评估目标函数值是否减少.若减少,则交换站点顺序;否则舍弃本次交换.在尝试一定次数之后,结束计算流程,生成最终路线结果.步骤4考虑到乘客需求的动态变化特征和站点之间旅行时间的变化特征,每5min进行一次各站点需求的采集和重新计算,重复以上步骤1至步骤3.经过如上4个步骤,可在保证乘客按照预期时间到达目标站点的前提下,使得路径调度模型的目标函数最优,全部服务时间缩短,每一辆车的路线更加合理,车辆的运行成本降低,乘客的等待时间减少,提升服务质量和效率.3案例分析3.1案例假设北京市回龙观地区是通勤人群居住密集区,高峰时段出行需求量大,不同工作性质和通勤距离的出行者出行时间差异较大,因此适合作为需求响应型灵活公交模型验算的案例.为了便于模型分析,本文对回龙观区域公交网络进行了抽象化提取,保留网络拓扑结构.根据实际情况下乘客的出行需求,假设一个乘客出行案例,采用上述模型对案例进行求解,验证本文所提模型的可用性.小型网络常变量的输入参数如表2所示,初始时刻每个站点的乘客需求如表3所示,初始时刻站与站之间的旅行耗时矩阵如表4所示,其中H为需求点,D为目标站.表2案例中的常变量Table2Constant variables in the case变量名称变量值需求点数量/个15目标站点数量/个3车辆额定载客量/人7车队规模/辆18期望到达站点时间/min30/40/50乘客到站上车服务时间/min0.53.2案例计算根据本文提出的计算模型和方法,对上述假设案例进行计算,获取各接驳车辆的行驶路线、接驳乘客的数量、每条路线对应的目标函数如表5所示.之后,随着乘客需求和站点之间旅行时间的动态变化,上述路径规划结果无法满足当前乘客需求和真实状况,需进行新的路径规划.此时,预约平台将汇总的第一个5min后新的乘客需求和接驳车辆站点之间的行程时间并进行更新,如表6所示,再次利用2.2节中所述的方法进行求解.之后,根据乘客需求和站点之间旅行时间的动态变化信息,预约平台汇总第2个5min后新的乘客需求,并更新接驳车辆站点之间的行程时间,如274北京工业大学学报2021年表3初始时刻各站点乘客需求(初始5min)Table3Quantity demanded at the demand point(the first5minutes)乘客出发站目标站期望到站乘客出发站目标站期望到站乘客出发站目标站期望到站编号时间/m in编号时间/m in编号时间/m in 111303112306113302115032125062135031150332230631350421303422506423305215035323065235063130363240663330731403732506733408413038423068433095130395230695330105140405240705340115150415250715350125150426230725350136130436240736330146140446250746340157130457230757330167150467250767350177150478230778330188130488240788340198140498250798350209140509240809340211014051102408110340221015052102508210350231114053112408311340241115054122308412330251213055122508512350261215056122508612350271313057132308713330281414058142408814340291414059152408915340301514060152409015340表7所示,再次利用2.2节中所述的方法进行求解.下,车辆行驶最终路径结果如图1所示,此时,15个以此类推,预约平台继续汇总之后每个5min的乘需求站点发出的102个预约需求全部得以满足(为客需求和更新接驳车辆站点之间的行程时间,并利便于识别,分别以D1、。
混合策略遗传算法的公交线路优化模型研究

∑ ∑Ekn+q ,] q ,) ( 志 (r m)
maf Q 一 x()
~
一
m i n ( n c L)
) 1 要求单位时间内单 位里程接运线路 运
送 的客流量最 大 ; 目标 函数式 ( ) 2 要求 设 置 的线 路 条数 最
少, 函数 c r ( 表示集合 L的元素个数 。 ad L) 考虑 以下约束条件 : 1 )起终点条件约束 接运公交线路 的终 点必须 为轨道 交通车 站 , 即对于 所 布设 的接运线路 , 有
Z S ) NR, ∈ L ( E V£ () 3
能力最优来求解接运公交 线路 布设和 网络优 化问题 , 文 本
线路 的总称 。建设接运公交线路的 目的是 为 了保证现有 轨
道交通 线 路 有 足 够 的 客 流 量 , 分 发 挥 轨 道 交 通 的 运 充 能_ 。国内轨道 交 通 接 运 线 路 布设 的研 究 比较 少 , 1 ] 曹 玫l 提 出了基于遗传算法的城市轨道交通接运公交线 网规 3 ] 划 。李诗灵 提出 了基于粒子群算法的城 市轨道交通接 运 ] 公交规划 。许旺土l 提 出了基于改进遗传 算法 的接运公 交 5 ] 线路优化模型 。研究 主要 围绕 乘客等 待时 间最小 化、 载 运
t i a e ,a x mp eo u h s r t e sit o u e ih e l y o r i e e tmu a in s r t ge Ga s in,Ca c y e y ig e p i t h s p p r n e a l f c t a e s i n r c d wh c mp o sf u f r n t to t a e i s gi d df s: u sa u h ,L v ,sn l- o n .Usn ig
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公交线路选择的优化模型
作者:张俊丽
来源:《价值工程》2015年第28期
摘要:本文针对城市公交线路选择问题建立了相应的数学模型。
将公共自行车看作独立于公汽、地铁的第三种交通方式。
利用网络图,主要从换乘次数、出行花费和出行总时间三个方面来确定最佳线路,分别考虑了各单目标,增加不同的上限约束,建立了任意两站点的最佳线路相应的网络流模型。
Abstract: In this paper, the corresponding mathematical model is established for the problem of urban public transportation route selection. The public bicycle as independent of the bus, the subway third modes of transport. Using the network diagram, three main factors are considered to find the best route, the number of trips, travel expenses and travel time.The network flow model of the best optimal line between any two sites, which considers the single objective and the different upper bound constraints.
关键词:公交系统;最佳线路;最小费用流;优先因子
Key words: bus system;best line;minimum cost flow;priority factor
中图分类号:U491.1+7 文献标识码:A 文章编号:1006-4311(2015)28-0206-02
0 引言
城市公共交通网络是城市交通网络的重要组成部分,提高城市交通系统的利用率被公认为是改善交通拥堵的有效途径之一。
而如何优化城市现有公交网络以提高城市公交系统的利用率,是当今倍受关注的一个重要课题。
公交汽车和城市轨道交通在城市公共交通体系中发挥着大动脉的作用,但是由于线路和站点布局的限制,是无法覆盖城市每一个角落的。
即在公共交通体系的末端,缺少一套针对每个乘客特定的短途出行需求的公共交通微循环系统。
为了解决这一问题,一种能够实现城市公共交通微循环的公共自行车租赁系统被引入我国。
西安市区也常规地在轨道交通站点、公交站点、社区门口设置租赁点,通过“公共自行车管理系统”来管理这些租赁点的自行车。
对租赁站点的发展规模预测、追加投资额的分配问题进行探讨,对政府建设城市公共自行车租赁系统具有一定的指导意义。
但是在如何将公共交通中地铁、公共汽车、公共自行车租赁有效结合一直是个空白。
本文给出了城市中任意两站点最佳线路方案。
本文认为所谓最佳线路,应该从乘车费用、公共自行车骑行时间、换乘次数、出行时间四个方面来理解。
对于任意两站点的最佳线路,建立了网络流模型。
1 模型准备:构造容量费用网络图N=(V,E,C,B)
设两个虚拟点作为网络流的源点S(source)、汇点T(terminal),根据目前西安市298条公交线路、2条地铁的2563个公交站点与S、T共同构成顶点集V(G)={v1,v2,…,vn}。
对于网络中任意两站点vi与vj,当ei=vivj时,表示任意两站点vi与vj之间能否直达,ei=1表示可以直达,ei=0表示不能到达,则所有的有向边vivj构成边集E(G)={e1,
e2,…,en}。
各有向边上的数据bij称为各有向边的费用(包括费用、换乘次数、换乘时间),所有费用率bij构成集合B={bij|vivj?缀E}。
所有边的容量都为1,即cij=1。
所有的cij构成集合C。
对于上下行路线,由于上行线的终点站(即下行线的始发站)与其他站点可认为是没有区别的,可将下行线逆序接到上行线之后,看作一条线路。
2 模型确定
结合实际情况,本文选择最佳线路时考虑了三个目标:出行花费、换乘次数、出行时间。
针对不同的目标,各有向边的费用率bij均不相同,表示出行花费、换乘次数、出行时间的费用率分别可以记作mij、kij、tij。
对于公汽线路,三者的计算方法如下:
2.1 乘车费用mij
将公共自行车看作独立于公汽、地铁的第三种交通方式,并假设步行只能沿已有的有向边行进。
从站点i直达到站点j的实际乘车费用为mij。
西安的公交根据收费方式可分为四种:一是无人售票车可刷卡车。
这种车无论你坐多远,投币一元,刷卡5角。
多数大巴属于这类。
二是无人售票车不可刷卡车。
票价一元。
三是有人售票的大巴。
起步一元,全程2-5元不等。
四是有人售票中巴车。
起步0.5元(三站),以后每四站加收0.5元。
全程一般在5元以内。
四还有空调车,一般都是2元。
4 小结
本文给出了城市中任意两站点,寻求其最佳线路方案的问题。
考虑到查询者的各种不同需求,本文认为所谓最佳线路,应该从乘车费用、换乘次数、出行时间三方面来理解。
查询者寻找连接两点的最佳线路,可看作车辆将查询者从起始站点运输到目的站点,对于此类运输问题,建立了网络流模型来求解。
考虑到不同需求者对三个目标的偏爱程度不同,通过巧妙设置优先因子的值来区分三个目标的优先级,建立了类似目标规划的网络流模型,从而满足查询者不同需求的最佳线路。
参考文献:
[1]赵静,但琦.数学建模与数学实验[M].北京:高等教育出版社,2003.
[2](美)Mark M. Meerschaert,数学建模方法与分析[M].北京:机械工业出版社,2009.
[3]李国勇.最优控制理论与应用[M].北京:国防工业出版社,2008.
[4]姜启源,谢金星,叶俊.数学建模[M].三版.北京:高等教育出版社,2003.
[5]谢金星,薛毅.优化模型与LINDO/LINGO软件[M].北京:清华大学出版社,2005.
[6]戴明强,李卫军,杨鹏飞.数学模型及其应用[M].北京:科学出版社,2007.。