2020高考数学集合分类汇编

合集下载

集合 高考数学真题分类题库2020解析版 考点1

集合 高考数学真题分类题库2020解析版  考点1

考点一集合一、选择题1.(2020·全国卷Ⅰ高考文科·T1)已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A∩B=()A.{-4,1}B.{1,5}C.{3,5}D.{1,3}【命题意图】该题考查的是有关集合的问题,涉及的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【解析】选D.由x2-3x-4<0解得-1<x<4,所以A=|-1<<4,又因为B=-4,1,3,5,所以A∩B=1,3.2.(2020·全国卷Ⅰ高考理科·T2)设集合A=|2-4≤0,B=|2+≤0,且A∩B=|-2≤≤1,则a=()A.-4B.-2C.2D.4【命题意图】本题主要考查一元二次不等式、一元一次不等式、集合的交集的基本运算.【解析】选B.解一元二次不等式x2-4≤0可得:A=|-2≤≤2,解一元一次不等式2x+a≤0可得B=|≤由于A∩B=|-2≤≤1,故-2=1,解得:a=-2.3.(2020·全国卷Ⅱ文科·T1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.⌀B.{-3,-2,2,3)C.{-2,0,2}D.{-2,2}【命题意图】本题考查绝对值不等式的解法、集合交集运算,意在考查学生的运算求解能力.【解析】选D.因为A=<3,∈Z=-2,-1,0,1,2,B=>1,∈Z=>1或<-1,∈Z,所以∩B=2,-2.4.(2020·全国卷Ⅱ理科·T1)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则U(A∪B)=()A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}【命题意图】本题考查集合的并集和补集运算,意在考查学生的运算求解能力.【解析】选A.由已知得A∪B={-1,0,1,2},所以U(A∪B)={-2,3}.5.(2020·全国卷Ⅲ理科·T1)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【命题意图】本题主要考查集合的交集运算,考查学生对交集定义的理解以及运算能力.【解析】选C.由题意,A∩B中的元素满足≥+=8,且x,y∈N*,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.6.(2020·全国卷Ⅲ文科·T1)已知集合A={1,2,3,5,7,11},B=3<<15,则A∩B中元素的个数为()A.2B.3C.4D.5【命题意图】本题主要考查集合的交集运算,考查学生对交集定义的理解.【解析】选B.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.7.(2020·新高考全国Ⅰ卷)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【命题意图】本题考查集合的并集运算,考查基本运算能力,体现了数学运算的核心素养.【解析】选C.因为A=[1,3],B=(2,4),所以A∪B=[1,4).8.(2020·北京高考·T1)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}【命题意图】考查集合的运算,容易题.【解析】选D.画数轴,或者逐个检验集合A中元素是否属于B,易得A∩B={1,2}.检索号219.(2020·天津高考·T1)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(U B)=()A.{-3,3}B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3}【命题意图】本题考查考生对集合的含义、表示方式及集合的补集、交集的理解与运算.【解题指南】可先求出B的补集,再求交集即可.【解析】选C.由题意结合补集的定义可知:U B={-2,-1,1},则A∩(U B)={-1,1}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助Venn图或数轴寻找元素之间的关系,使问题准确解决.10.(2020·浙江高考·T1)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|2<x≤3}D.{x|1<x<4}【命题意图】本题主要考查集合的交集运算,考查基本运算求解能力,体现直观想象与数学运算的核心素养.【解析】选B.因为P=(1,4),Q=(2,3),所以由数轴得P∩Q=(2,3).二、填空题11.(2020·江苏高考·T1)已知集合A=-1,0,1,2,B=0,2,3,则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:0,2。

2011-2020年高考数学真题分类汇编 专题01 集合概念与运算(教师版含解析)

2011-2020年高考数学真题分类汇编 专题01 集合概念与运算(教师版含解析)

专题01集合概念与运算全景展示年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合 1,2,3,5,7,11A , 315|B x x ,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B I ,故A B ∩中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A .2B .3C .4D .6【答案】C 【解析】由题意,A B ∩中的元素满足8y xx y,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A = 22(,)1x y x y │,B =(,)x y y x │,则A ∩B 中元素的个数为A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y 与直线y x 相交于两点 1,1, 1,1 ,则A B ∩中有两个元素,故选B .4.【2018新课标2,理1】已知集合�=�,�2+�2≤3,�∈�,�∈�,则�中元素的个数为()A .9B .8C .5D .4【答案】A 【解析】∵�2+�2≤3,∴�2≤3,∵�∈�,∴�=−1,0,1,当�=−1时,�=−1,0,1;当�=0时,�=−1,0,1;当�=−1时,�=−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B = |,x y x A y A 中元素的个数是A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ;1,0,1,2,1,0,1x y x y ;2,0,1,2,2,1,0x y x y .∴B 中的元素为2,1,0,1,2 共5个,故选C .6.【2013江西,理1】若集合2|10A x R ax ax 中只有一个元素,则a =A .4B .2C .0D .0或4【答案】A 【解析】当0a 时,10 不合,当0a 时,0 ,则4a ,故选A .7.【2012江西,理1】若集合{1,1}A ,{0,2}B ,则集合{|,,}z z x y x A y B 中的元素的个数为()A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y 只能取 1,1,3等3个数值.故共有3个元素,故选C .8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y ,B ={(,)|,x y x y 为实数,且1}x y ,则A B 的元素个数为A .4B .3C .2D .1【答案】C 【解析】由2211x y x y 消去y ,得20x x ,解得0x 或1x ,这时1y 或0y ,即{(0,1),(1,0)}A B ,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合R 25A x x 中的最小整数为_______.【答案】3 【解析】不等式52 x ,即525 x ,73 x ,所以集合}73{ x x A ,所以最小的整数为3 .考点2集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x ,{|11}B x x ,则A .A BÜB .B AÜC .A BD .A B∩【答案】B 【解析】A=(-1,2),故B A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(- ,0)∪(2,+ ),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合 1,2,3A , 2,3B ,则A .A =BB .A B∩C .A BÜD .B AÜ【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ,故A 、B 、C 均错,D 是正确的,选D .4.【2012福建,理1】已知集合{1,2,3,4}M ,{2,2}N ,下列结论成立的是()A .N MB .M N MC .M N N∩D .{2}M N ∩【答案】D 【解析】由M ={1,2,3,4},N ={ 2,2},可知 2∈N ,但是 2 M ,则N M ,故A 错误.∵M N ={1,2,3,4, 2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x ,则()A .P QB .Q PC .R C P QD .R Q C P【答案】D 【解析】{|1}P x x ∴{|1}R C P x x ,又∵{|1}Q x x ,∴R Q C P ,故选D .6.【2011北京,理1】已知集合P =2{|1}x x ,{}M a .若P M P ,则a 的取值范围是A .( ∞, 1]B .[1,+∞)C .[ 1,1]D .( ∞, 1] [1,+∞)【答案】C 【解析】因为P M P ,所以M P ,即a P ,得21a ,解得11a ,所以a 的取值范围是[1,1] .7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(- ,0)∪(2,+ ),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A BB .C BC .D C D .A D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x R ,{|05,}B x x x N ,则满足条件A CB 的集合C 的个数为()A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,2|320,A x x x x R1,2 ,易知|05,1,2,3,4 N B x x x .因为 A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合 3,4的子集个数,即有224 个.故选D .考点3集合间的基本运算【试题分类与归纳】1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个【答案】B 【解析】∵P=M ∩N={1,3},∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x },N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}【答案】C 【解析】因为集合M= |31x x ,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}【答案】A ;【解析】依题意, 1,4,9,16B ,故 1,4A B ∩.5.【2014新课标1,理1】已知集合A={x |2230x x },B={x |-2≤x <2},则A B =A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,) ,∴A B =[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N= 2|320x x x ≤,则M N =()A .{1}B .{2}C .{0,1}D .{1,2}【答案】D 【解析】∵2=32012N x x x x x ,∴M N ∩ 1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x ,N ={|21}x x 则M N ∩()A.)1,2( B .)1,1( C .)3,1(D .)3,2( 【答案】B 【解析】M B ∩(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x ,则A B ∩()A.B .2C .{0}D .{2}【答案】B 【解析】∵ 1,2B ,∴A B ∩ 2.9.【2015新课标2,理1】已知集合21,01,2A {,,},(1)(20B x x x ,则A B ∩()A .1,0A B .0,1C .1,0,1 D .0,1,2【答案】A 【解析】由题意知,)1,2( B ,∴}0,1{ B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ,则集合A B ∩中的元素个数为()(A)5(B)4(C)3(D)2【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D .11.【2015新课标2,文1】已知集合 |12A x x , |03B x x ,则A B ()A .1,3 B .1,0 C .0,2D .2,3【答案】A 【解析】由题知,)3,1( B A ,故选A .12.【2016新课标1,理1】设集合}034|{2x x x A ,}032|{ x x B ,则B A =(A)3(3,2 (B)3(3,2 (C)3(1,2(D)3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23( ,所以B A =3(,3)2,故选D .13.【2016新课标2,理2】已知集合{1,}A 2,3,{|(1)(2)0,}B x x x x Z ,则A B ()(A){1}(B){12},(C){0123},,,(D){10123} ,,,,【答案】C 【解析】由题知B ={0,1},所以A B {0,1,2,3},故选C .14.【2016新课标3,理1】设集合 |(2)(3)0,|0S x x x T x x ,则T S =(A)[2,3](B)(- ,2]U [3,+ )(C)[3,+ )(D)(0,2]U [3,+ )【答案】D 【解析】由题知,),3[]2,( S ,∴T S =(0,2]U [3,+ ),故选D .15.【2016新课标2,文1】已知集合{123}A ,,,2{|9}B x x ,则A B ∩()(A){210123},,,,,(B){21012},,,,(C){123},,(D){12},【答案】D 【解析】由题知,)3,3( B ,∴}2,1{ B A ,故选D .16.【2016新课标1,文1】设集合{1,3,5,7}A ,{|25}B x x ,则A B ∩()(A){1,3}(B){3,5}(C){5,7}(D){1,7}【答案】B 【解析】由题知,}5,3{ B A ,故选B .17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,【答案】C 【解析】由题知,}10,6,2,0{ B C A ,故选C .18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x},则A .{|0}AB x x ∩B .A B RC .{|1}A B x x D .A B∩【答案】A 【解析】由题知,)0,( B ,∴{|0}A B x x ∩,故选A .19.【2017新课标1,文1】已知集合A = |2x x ,B = |320x x ,则()A .A ∩B =3|2x xB .A ∩BC .A B 3|2x xD .A B=R【答案】A20.【2017新课标2,理2】设集合 1,2,4 ,240x x x m .若 1 ∩,则 ()A . 1,3B . 1,0C . 1,3D .1,5【答案】C 【解析】由 1 ∩得1B ,所以3m , 1,3B ,故选C .21.【2017新课标2,文1】设集合 123234A B ,,, ,,, 则A B =()A . 123,4,,B . 123,,C . 234,,D . 134,,【答案】A 【解析】由题意{1,2,3,4}A B ,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为()A .1B .2C .3D .4【答案】B 【解析】由题意可得, 2,4A B ∩,故选B .23.【2018新课标1,理1】已知集合�=��2−�−2>0,则∁��=A .�−1<�<2B .�−1≤�≤2C .�|�<−1∪�|�>2D .�|�≤−1∪�|�≥2【答案】B 【解析】由题知,�=�|�<−1或�>2,∴���=�|−1≤�≤2,故选B .24.【2018新课标3,理1】已知集合�=�|�−1≥0,�=0,1,2,则�∩�=A .0B .1C .1,2D .0,1,2【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C .25.【2018新课标1,文1】已知集合,,则()A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合242{60M x x N x x x ,,则M N =()A . {43x x B . {42x x C .{22x x D .{23x x 【答案】C 【解析】由题意得,42,23M x x N x x ,则22M N x x .故选C .28.【2019新课标1,文2】已知集合 1,2,3,4,5,6,72,3,4,52,3,6,7U A B ,,,则C U B A ∩=()A .1,6B .1,7C .6,7D .1,6,7【答案】C 【解析】由已知得 1,6,7U C A ,所以U B C A {6,7},故选C .29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】由题意得,2,3,1A x x x B x x 或,则1A B x x .故选A .30.【2019新课标2,文1】.已知集合={|1}A x x ,{|2}B x x ,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .【答案】C 【解析】由题知,(1,2)A B ∩,故选C .31.【2019新课标3,理1】已知集合21,0,1,21A B x x , ,则A B ()A . 1,0,1B .0,1C .1,1 D .0,1,2【答案】A 【解析】由题意得,11B x x ,则 1,0,1A B .故选A .32.【2019浙江,1】已知全集 1,0,1,2,3U ,集合 0,1,2A , 1,0,1B ,则U A B ∩ð=A .1 B . 0,1C .1,2,3 D .1,0,1,3 【答案】A 【解析】{1,3}U A ð,{1}U A B ∩ð.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x R ,则()A C B∩ A .2B .2,3C .1,2,3 D .1,2,3,4【答案】D 【解析】由题知, 1,2A C ∩,所以 1,22,3,41,2,3,4A C B ∩ ,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∩N ð M I ,则N M A .MB .NC .ID .【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M .35.【2018天津,理1】设全集为R ,集合{02}A x x ,{1}B x x ≥,则() R I A B ðA .{01}x x ≤B .{01}x x C .{12}x x ≤D .{02}x x 【答案】B 【解析】因为{1}B x x ≥,所以{|1}R B x x ð,因为{02}A x x ,所以() R I A B ð{|01}x x ,故选B .36.【2017山东,理1】设函数24y x的定义域A ,函数ln(1)y x 的定义域为B ,则A B =∩()A .(1,2)B .(1,2]C .(2,1)D .[2,1)【答案】D 【解析】由240x ≥得22x ≤≤,由10x 得1x ,故A B={|22}{|1}{|21}x x x x x x ∩∩≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A ,{2,4}B ,{|15}C x x R ≤≤,则()A B C ∩A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x R ≤≤【答案】B 【解析】(){1246}[15]{124}A B C ∩∩,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x ,{|02}Q x x ,那么P Q =A .(1,2)B .(0,1)C .(1,0)D .(1,2)【答案】A 【解析】由题意可知{|12}P Q x x ,选A .39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x R 则A B =A .(1,1)B .(0,1)C .(1,)D .(0,)【答案】C【解析】集合A 表示函数2x y 的值域,故(0,)A .由210x ,得11x ,故(1,1)B ,所以(1,)A B .故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ,则A B ∩=A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B ,所以{1,4}A B ∩,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x ≥≤,则()R P Q∩ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]【答案】C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q =x x ∩ð,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x ,集合{|13}B x x ,则A B = A .{|13}x x B .{|11}x x C .{|12}x x D .{|23}x x 【答案】A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<< .43.【2015福建,理1】若集合234,,,A i i i i (i 是虚数单位), 1,1B ,则A B ∩等于()A .1 B .1C .1,1 D .【答案】C 【解析】由已知得 ,1,,1A i i ,故A B ∩ 1,1 ,故选C .44.【2015广东,理1】若集合 410M x x x ,410N x x x ,则M N ∩A .1,4B .1,4 C .0D .【答案】D 【解析】由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --=得4x =或1x =,得{1,4}N =.显然 ∩M N .45.【2015陕西,理1】设集合2{|}M x x x ,{|lg 0}N x x ≤,则M NA .[0,1]B .(0,1]C .[0,1)D .(,1]【答案】A 【解析】20,1x x x ,lg 001x x x x ,所以 0,1 ,故选A .46.【2015天津,理1】已知全集 1,2,3,4,5,6,7,8U ,集合 2,3,5,6A ,集合1,3,4,6,7B ,则集合U A B∩ðA . 2,5B . 3,6C . 2,5,6D .2,3,5,6,8【答案】A 【解析】{2,5,8}U B ð,所以{2,5}U A B ∩ð,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{ x y y B x x A x 则B A ∩A .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵ 1,2B ,∴A B 2,故选B .48.【2014浙江,理1】设全集 2| x N x U ,集合5|2 x N x A ,则 A C U A . B .}2{C .}5{D .}5,2{【答案】B 【解析】由题意知{|2}U x N x ≥,{|A x N x ,所以 A C U {|2x N x≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ,则集合()U C A BA .{|0}x xB .{|1}x xC .{|01}x xD .{|01}x x 【答案】D 【解析】由已知得,=0A B x x 或 1x ,故()U C A B {|01}x x ,故选D .50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{ U 的子集,且(){4}U A B ð,{1,2}B ,则U A B∩ðA .{3}B .{4}C .{3,4}D .【答案】A 【解析】由题意 1,2,3A B ,且{1,2}B ,所以A 中必有3,没有4,3,4U C B ,故U A B ∩ð 3.51.【2013陕西,理1】设全集为R ,函数()f x 的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(D .,1)(1,)( 【答案】D 【解析】()f x 的定义域为M =[ 1,1],故R M ð=(,1)(1,) ,选D .52.【2013湖北,理1】已知全集为R ,集合112x A x, 2|680B x x x ,则()R A C B∩A . |0x x B . |24x x ≤≤C . |024x x x 或D .|024x x x 或【答案】C 【解析】 0,A , 2,4B , 0,24,R A C B ∩ .53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ,则集合{5,6}等于A .M NB .M NC . n n C M C ND .n n C M C N 【答案】D 【解析】因为{1,2,3,4}M N ,所以 n n C M C N =()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∩N ð M I ,则N M A .M B .N C .I D .【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M .55.【2017江苏】已知集合{1,2}A ,2{,3B a a },若{1}A B ∩,则实数a 的值为_.【答案】1【解析】由题意1B ,显然1a ,此时234a ,满足题意,故1a .56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B ,则A B ∩()A .{4,1}B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x 解得14x ,所以 |14A x x ,又因为 4,1,3,5B ,所以 1,3A B ∩,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】求解二次不等式240x 可得: 2|2A x x ,求解一次不等式20x a 可得:|2a B x x.由于 |21A B x x ,故:12a ,解得:2a .故选B .58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】因为 3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选D .59.【2020年高考全国II 卷理数1】已知集合 2,1,0,1,2,3,1,0,1,1,2U A B ,则 U A B ð()A . 2,3B . 2,2,3C . 2,1,0,3D .2,1,0,2,3 【答案】A 【解析】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x ,{|23}Q x x 则P ∩Q =()A .{|12}x x B .{|23}x x C .{|23}x x D .{|14}x x 【答案】B 【解析】由已知易得23P Q x x ∩,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x ,则A B∩A .{1,0,1} B .{0,1}C .{1,1,2} D .{1,2}【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B I I ,故选D .62.【2020年高考山东卷1】设集合{|13}A x x ,{|24}B x x ,则=A B A .{|23}x x B .{|23}x x C .{|14}x x D .{|14}x x 【答案】C 【详解】 1,32,41,4A B U U ,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U ,集合{1,0,1,2},{3,0,2,3}A B ,则 U A B ∩ð()A .{3,3} B .{0,2}C .{1,1} D .{3,2,1,1,3}【答案】C 【解析】由题意结合补集的定义可知: U 2,1,1B ð,则U 1,1A B ∩ð,故选C .64.【2020年高考上海卷1】已知集合 1,2,4,2,4,5A B ,则A B ∩.【答案】 2,4【解析】由交集定义可知 2,4A B ∩,故答案为: 2,4.65.【2020年高考江苏卷1】已知集合 1,0,1,2,0,2,3A B ,则A B ∩.【答案】 0,2【解析】由题知, 0,2A B ∩.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y ∈A },则B 中所含元素的个数为()A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y Z ,{(,)||2,||2,B x y x y ≤≤,}x y Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ,则A B 中元素的个数为()A .77B .49C .45D .30【答案】C 【解析】因为集合22{(,)1,,}A x y x y x y Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B 的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477 个.3.【2013广东,理8】设整数4n ,集合 1,2,3,,X n ,令集合{(,,)|,,S x y z x y z X ,且三条件,,x y z y z x z x y 恰有一个成立},若 ,,x y z 和 ,,z w x 都在S 中,则下列选项正确的是A . ,,y z w S , ,,x y w SB . ,,y z w S , ,,x y w SC . ,,y z w S , ,,x y w SD . ,,y z w S , ,,x y w S【答案】B 【解析】特殊值法,不妨令2,3,4x y z ,1w ,则 ,,3,4,1y z w S ,,,2,3,1x y w S ,故选B .如果利用直接法:因为 ,,x y z S , ,,z w x S ,所以x y z …①,y z x …②,z x y …③三个式子中恰有一个成立;z w x …④,w x z …⑤,x z w …⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z ,于是 ,,y z w S , ,,x y w S ;第二种:①⑥成立,此时x y z w ,于是 ,,y z w S , ,,x y w S ;第三种:②④成立,此时y z w x ,于是 ,,y z w S , ,,x y w S ;第四种:③④成立,此时z w x y ,于是 ,,y z w S , ,,x y w S .综合上述四种情况,可得 ,,y z w S , ,,x y w S .4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b ∈[0]”.其中正确的结论个数是()A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k 丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b =5(n-m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,ki i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p ,11i i p p ,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q ,121j j j q q q ,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】(1)子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列”12100,,,p p p 满足11p ,11i i p p ,1≤i ≤99;∴P 的“特征数列”:1,0,1,0…1,0.所以P =},,{99531a a a a .∵E 的子集Q 的“特征数列”12100,,,q q q 满足11q ,121j j j q q q ,1≤j ≤98,,可知:j =1时,123q q q =1,∵11q ,∴2q =3q =0;同理4q =1=7a =…=32n q .Q 的“特征数列”:1,0,0,1,0,0…1,0,0,1.所以Q =},,,{10097741a a a a a .∴{ Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n .对于集合A中的任意元素12(,,,)n x x x 和12(,,,)n y y y ,记(,)M111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y .(1)当3n 时,若(1,1,0) ,(0,1,1) ,求(,)M 和(,)M 的值;(2)当4n 时,设B 是A 的子集,且满足:对于B 中的任意元素, ,当, 相同时,(,)M 是奇数;当, 不同时,(,)M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素, ,(,)0M .写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0) ,(0,1,1) ,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M ,1(,)[(10|10|)(11|11|)(01|01|)]12M .(2)设1234(,,,)x x x x B ,则1234(,)M x x x x .由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M 为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素 , ,均有(,)1M .所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x (1,2,,)k n ,11212{(,,,)|0}n n n S x x x x x x ,则121n A S S S .对于k S (1,2,,1k n )中的不同元素 , ,经验证,(,)1M ≥.所以k S (1,2,,1k n )中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n .取12(,,,)k n k e x x x S 且10k n x x (1,2,,1k n ).令1211(,,,)n n n B e e e S S ,则集合B 的元素个数为1n ,且满足条件.故B 是一个满足条件且元素个数最多的集合.。

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020高考真题分类汇编:集合与简易逻辑1.【2020高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B 2.【2020高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D3.【2020高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A. (1,2)B. [1,2)C. (1,2]D. [1,2] 【答案】C.4.【2020高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C5.【2020高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【点评】本题主要考查集合的交集、补集运算,属于容易题。

采用解析二能够更快地得到答案。

6.【2020高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0(B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【点评】本题主要考查含有量词的命题的否定,属于容易题。

2020全国高考数学考点题型分类与解析01 集合

2020全国高考数学考点题型分类与解析01 集合

7
.A .
A.
( •上海卷)已知集合 , ,求 10. 2020
A = {1, 2, 4} B = {2, 3, 4} A I B = _______
【答案】{2, 4}
4/4
=
p1i , i
= 1, 2,3, 4
q
=
pi+3 1
,
i
= 1, 2, 3, 4
即 { } ,故{ } , q ∈ p13, p14 , p15, p16 , p17
p13 , p14 , p15 , p16 , p17 = T
此时 即 中有 个元素 故 正确 故选: { } S ∪T = p1, p12, p13, p14, p14, p15, p16, p17 S U T
x + y = 8 (1,7),(2, 6), (3,5),(4, 4)
故 AI B中元素的个数为 4.故选:C.
( •江苏卷)已知集合 ,则 5. 2020
A = {−1, 0,1, 2}, B = {0, 2, 3} A I B = _____.
【答案】{0, 2}
【解析】∵ A = {−1,0,1,2}, B = {0, 2,3} ∴ AI B = {0, 2} ,故答案为:{0, 2}.
p1 p2 , p2 p4 ∈T
p4 ∈ S p1
同理 , , , , , p4 ∈ S p4 ∈ S p3 ∈ S p3 ∈ S p2 ∈ S
p2
p3
p2
p1
p1
若 ,则 ,则 ,故 即 , p1 =1 p2 ≥ 2
p3 p2
<
p3
p3 p2
=
p2
p3 = p22

2020高考数学专题一:集合各类题型汇编讲义,高考真题及答案

2020高考数学专题一:集合各类题型汇编讲义,高考真题及答案

一、高考考试要求:有关集合的高考试题考查重点是集合与集合之间的关系近年试题加强了对集合的计算化简的考查并向无限集发展多以小題形式出现也会渗透在解答题之中相对独立。

具体理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z= {整数}(√) Z ={全体整数} (×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N; A=,则CsA= {0})③空集的补集是全集.④若集合A=集合B,则CBA = , CAB = CS(CAB)= D(注:CAB = ).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.常用结论(1)非常规性表示常用数集:如{x|x=2(n-1)n∈Z}为偶数集{x|x=4n±1n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合ABC若A⊆BB⊆C则A⊆C(真子集也满足);④若A⊆B则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).1.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩CUA=φ A∪CUA=U ðCUU=φ ðCUφ=U反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (C UA)∩(CUB)题组一常识题1.若集合A={-101},B={y|y=x2,x∈A},则A∩B=()A.{0}B.{1}C.{01} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={01},所以A∩B={01}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=集合则。

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。

天津市各地市2020年高考数学 最新联考试题分类汇编(1) 集合

天津市各地市2020年高考数学 最新联考试题分类汇编(1) 集合

天津市各地市2020年高考数学 最新联考试题分类汇编(1) 集合一、选择题:1.(天津市耀华中学2020届高三第一次月考文)设集合={|||<1},={|=2}M x x N y y x,x M ∈,则集合()R M N I ð等于A 、(-∞,-1)B 、(-l ,1)C 、(,1][1,)-∞-+∞UD 、(1,+∞)3.(天津市天津一中2020届高三第二次月考文)已知全集U R =,{|21}x A y y ==+,{||1||2|2}B x x x =-+-<,则()U C A B =I ( )A .∅B .1{|1}2x x <≤ C .{|1}x x < D .{|01}x x << 【答案】B【解析】{21}{1}x A y y y y ==+=>,15{||1||2|2}{}22B x x x x x =-+-<=<<,所以{1}U A y y =≤ð,所以1(){1}2U A B x x =<≤I ð,选B. 4.(天津市新华中学2020届高三第二次月考文)已知集合{}92==x x M ,{}33<≤-∈=x z x N ,则=⋂N MA. ΦB. {}3-C. {}3,3-D. {}2,1,0,2,3--二、填空题:13. (天津市十二区县重点中学2020年高三毕业班联考一)若不等式4+-2+1x m x ≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B I . 【答案】{}-1<3x x ≤9. (天津市六校2020届高三第二次联考文)若集合{}1≤=x x A ,⎭⎬⎫⎩⎨⎧<=11x x A ,则B A ⋂= ▲ .【答案】)0,1[- (9) (天津市和平区2020届高三第二学期第一次质量调查文)已知集合11552A {x R ||x |}=∈-≤,则集合A 中的最大整数为 。

2020高考数学一轮复习 集合分类汇编 精品

2020高考数学一轮复习 集合分类汇编 精品

2020年高考数学试题分类汇编——集合1.(2020安徽理8)设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S ⊆A 且S∩B≠∅ 的集合S 的个数为( )A.57B.56C.49D.82.(2020安徽文2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于( )A .{1,4,5,6} B.{1,5} C.{4} D.{1,2,3,4,5}3.(2020北京理1)已知集合P={x ︱x 2≤1},M={a }.若P∪M=P,则a 的取值范围是( )A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)4.(2020北京文1)已知全集U=R ,集合{}21P x x =≤,那么U C P =( ) A. (),1-∞- B. ()1,+∞ C. ()1,1- D. ()(),11,-∞-+∞U5.(2020福建理1)i 是虚数单位,若集合S=}{1.0.1-,则( ) A.i S ∈ B.2i S ∈ C. 3i S ∈ D.2S i∈ 6.(2020福建文1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}7.(2020广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=, (){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为 ( )A.0 B.1 C.2 D.38.(2020广东文2)已知集合(){,|A x y x y =、为实数,且}221xy +=,(){,|B x y x y =、为实数,且}1x y +=,则A B I 的元素个数为( ) A .4 B .3 C .2D .1 9. (2020湖南理2)设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件10.(2020湖南文1)设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4}11、(2020江苏文1)已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A12.(2020江西理1)若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( ) A.}01|{<≤-x x B.}10|{≤<x x C.}20|{≤≤x x D.}10|{≤≤x x13.(2020江西2)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M ∪NB.M ∩NC.( C U M) ∪(C U N )D.( C U M) ∩( C U N)14.(2020辽宁理2)已知M ,N 为集合u 的非空真子集,且M ,N 不相等,若I N M C u ∅,则=N M Y ( )A .MB .NC .ID .∅15.(2020辽宁文1)已知集合A ={x 1|->x },B ={x 21|<<-x },则A I B =( )A .{x 21|<<-x }B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x } 16.(2020全国大纲卷文1)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则C U (M∩N)=( )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,417.(2020新课标卷文1)已知集合M={0,1,2,3,4},N={1,3,5},P=M N I ,则P 的子集共有( )A .2个B .4个C .6个D .8个18.(2020山东理1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x≤3},则M ∩N =( )(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]19.(2020山东文1)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x≤3},则M ∩N =( )(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]20.(2020四川文1)若全集{1,2,3,4,5}M =,{2,4}N =,则C U N=( )(A )∅ (B ){1,3,5}(C ){2,4} (D ){1,2,3,4,5} 21.(2020重庆文2)设,,则( ) (A), (B), (C),, (D),, 22.(2020湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =( ) A. 1[,)2+∞ B. 10,2⎛⎫ ⎪⎝⎭C. ()0,+∞D. 1(,0][,)2-∞+∞ 23.(2020湖北文1)已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则C U (A ∪B)=( ) A. {}6,8 B.{}5,7 C.{}4,6,7D.{}1,3,5,6,8 24.(2020上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤U ,则U C A = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2019新课标集合分类汇编 一、理科【2012新课标】1. 已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( D )()A 3 ()B 6 ()C 8 ()D 10【2013新课标1】1. 已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( B )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【2013新课标2】1. 已知集合M ={x |(x -1)2<4,x ∈R =,N ={-1,0,1,2,3},则M ∩N =( A ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}【2014新课标1】已知集合A={x|x 2﹣2x ﹣3≥0},B={x|﹣2≤x <2=,则A∩B=( A )A. [﹣2,﹣1]B. [﹣1,2]C. [﹣1,1]D. [1,2)【2014新课标2】1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( D )A. {1}B. {2}C. {0,1}D. {1,2}【2015新课标2】1. 已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0=,则A∩B=( A )(A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2}【2016新课标1】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A ∩B =( D ) (A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2【2016新课标2】2. 已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =( C ) (A ){}1 (B ){12}, (C ){}0123,,, (D ){10123}-,,,, 【2016新课标3】1. 设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( D )(A )[2,3] (B )(-∞,2)∪[3,+∞] (C )[3,+∞] (D )(0,2)∪[3,+∞]【2017新课标1】1.已知集合A ={x |x <1},B ={x |31x <},则( A )A . A ∩B ={x |x <0} B . A ∩B =RC .A ∩B ={x |x >1} D . A ∩B =Æ 【2017新课标2】2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =(C )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴ x 2-4x +3=0的解为 x =1或 x =3,∴B =1,3{} 【2017新课标3】1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则 A ∩B 中元素的个数为( B )A .3B .2C .1D .0【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故 A ∩B 表示两直线与圆的交点,由图可知交点的个数为2,即 A ∩B 元素的个数为2,故选B 。

【2018新课标1】2.已知集合{}2|20A x x x =-->,则( B ) A .{}|12x x -<< B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥【2018新课标2】2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 ( A ) A .9 B .8 C .5 D .4【2018新课标3】1.已知集合{}|10A x x =-≥,{}012B =,,,则 A ∩B =( C )A .{}0B .{}1C .{}12,D .{}012,,【2019新课标1】1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.【2019新课标2】1. 设集合{}065|2>+-=x x x A ,{}01|<-=x x B ,则=⋂B A ( )A.)1,(-∞B. )1,2(-C. )1,3(--D. ),3(+∞【答案】A【解答】{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A . 【2019新课标3】1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 【答案】A 【解答】}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .二、文科【2011新课标1】1. 已知集合M ={0, 1, 2, 3, 4},N ={1, 3, 5},,则P 的子集共有( B ) A .2个 B .4个 C .6个 D .8个【2011新课标2】1. 设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则( D ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【2012新课标1】1. 已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( B )A .A ⊂≠B B .B ⊂≠AC .A =BD .A ∩B =∅ 【2013新课标1】1. 已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( A )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【2013新课标2】1. 已知集合M ={x|-3<x <1=,N ={-3,-2,-1,0,1},则M∩N =( C )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}【2014新课标1】1. 已知集合{}13M x x =-<<, {}21N x x =-<<,则 M ∩N =( B )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-【2014新课标2】1. 已知集合{2,0,2}A =-,2{|20}B x x x =--=,则A B=( B )(A) ∅ (B ){}2 (C ){}0 (D) {}2-【2015新课标1】1. 已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为( D )(A )5 (B )4 (C )3 (D )2【2015新课标2】1. 已知集合A={}{}=<<=<<-B A x x B x x 则,30,21( A )A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3)【2016新课标1】1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B=( B )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【2016新课标2】1. 已知集合{123}A =,,,2{|9}B x x =<,则A B=( D )(A ){210123}--,,,,, (B ){21012}--,,,,(C ){123},, (D ){12}, 【2016新课标3】1. 设集合{0,2,4,6,8,10},{4,8}A B ==,则=( C ) (A ){48}, (B ){026},,(C ){02610},,, (D ){0246810},,,,, 【2017新课标1】1.已知集合A ={}|2x x <,B ={}|320x x ->,则( A ) A .A ∩B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A ∩B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R 【2017新课标2】1.设集合{}{}123234A B ==,,, ,,, 则A ∩B =( A ) A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,【解析】∵A={1,2,3},B={2,3,4},∴A ∪B={1,2,3,4}故选A .【2017新课标3】1.已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B ⋂中的元素的个数为( B )A. 1B. 2C. 3D. 4【解析】 集合A 和集合B 有共同元素2,4,则{}2,4A B ⋂=所以元素个数为2.【2018新课标1】1.已知集合{0,2}A ,{2,1,0,1,2}B,则 A ∩B =( A ) A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}-- 【2018新课标2】2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则 A ∩B =( C ) A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7 【2018新课标3】1.已知集合{}|10A x x =-≥,{}012B =,,,则 A ∩B =( C ) A .{}0B .{}1C .{}12,D .{}012,, 【2019新课标1】2. 已知集合}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,7}63{2,,,=B ,则=A C B U ( ) A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U ,又 7}63{2,,,=B ,则7}{6,=A C B U ,故选C.【2019新课标2】1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( )A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【2019新课标3】1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( ) A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A .。

相关文档
最新文档