高中物理模块要点回眸第26点求解变力做功的“五法”素材教科版2!
高中物理:求解变力做功的几种方法

高中物理:求解变力做功的几种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法。
一、动能定理法例1、如图1所示,质量为m的物体从A点沿半径为R的粗糙半球内表面以的速度开始下滑,到达B点时的速度变为,求物体从A运动到B的过程中,摩擦力所做的功是多少?图1解析:物体由A滑到B的过程中,受重力G、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A运动到B的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A运动到B的过程中,弹力不做功;重力在物体由A运动到C的过程中对物体所做的正功与物体从C运动到B的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A运动到B的过程中对物体所做的功,就等于物体动能的变化量,则有:即可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
小结:利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这是动能定理比牛顿运动定律优越的一个方面。
二. 微元求和法例2、如图2所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
图2解析:在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移……都与当时的F方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:小结:变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用计算功,而且变力所做功应等于变力在各小段所做功之和,化曲为直的思想在物理学研究中有很重要的应用,研究平抛运动和单摆的运动时,都用到了这种思想。
求解变力做功的四种方法

联立解得 d′=( 2-1)d. [归纳提升] 当力为变力,应用平均值法求功时,
F
=F1+ F2
2
只能用于 F 与位移 l 成线性关系的情况,不能用于 F 与时间 t
成线性关系的情况 .
*
栏目 导引
图象法求变力做功
第七章 机械能守恒定律*
• 变力做旳功W可用F-l图线与l轴所围成旳面积 表达.l轴上方旳面积表达力对物体做正功旳多 少,l轴下方旳面积表达力对物体做负功旳多少 .
第七章 机械能守恒定律*
• 1.做功旳两个必要原因 • (1)作用在物体上旳力. • (2)物体在力方向上旳位移. • 2.功旳体现式:W=Flcos α,α为力F与位移l旳
夹角. • (1)α<90°时,W>0. • (2)α>90°时,W<0. • (3)α=90°时,W=0.
*
栏目 导引
第七章 机械能守恒定律*
• [答案] 50 J
• [易错提醒] F做功旳位移等于左边绳旳变短旳部分,而 不等于物体旳位移.
*
栏目 导引
[解析] (1)将圆弧 AB 分成很多小段 l1、l2、…、ln,拉力在每 小段上做的功为 W1、W2、…、Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37°角,所以: W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°, 所以 WF= W1+ W2+…+Wn =Fcos 37°(l1+l2+…+ln) =Fcos 37°·π3R=20π J=62.8 J. (2)重力 mg 做的功 WG=-m gR(1-cos 60°)=-50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.
求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。
力可以改变物体的状态,让物体移动、加速或减速。
做功就是施加力使物体移动的过程中能量的转移。
以下将介绍几种常见的变力做功的方法。
1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。
例如,我们推车子或推行李箱时,就是通过推力来做功。
2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。
例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。
3.重力做功:重力是地球吸引物体向地心运动的力。
当一个物体从高处下落时,重力对物体做功。
在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。
4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。
弹力做功是将弹性势能转化为动能的过程。
例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。
5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。
摩擦力做功是将机械能转化为热能的过程。
例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。
6.磁力做功:磁力是磁体之间的相互作用力。
当磁场改变时,施加在物体上的磁力会做功。
例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。
7.电力做功:电力是在电子之间产生的相互作用力。
当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。
例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。
总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。
通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。
如何求变力做功

F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。
求变力做功的方法

求变力做功的方法引言:在物理学中,力是物体相互作用的表现,而功是力对物体做功的量度。
求变力做功的方法是物理学中的重要内容之一。
本文将介绍几种常见的方法,以便更好地理解和应用力和功的概念。
一、应用力的方向和大小为了使力能够做功,我们需要正确地应用力。
力的方向和大小决定了其对物体的影响。
如果力的方向与物体的运动方向相同,那么力将对物体做正功;如果力的方向与物体的运动方向相反,那么力将对物体做负功。
此外,力的大小也会影响功的大小,力越大,做功的能量也就越大。
二、改变物体的位置改变物体的位置是求变力做功的一种常见方法。
当我们对物体施加力时,物体会发生位移,而力对物体的位移就是做功。
举个例子,当我们用手推动一辆停在路边的汽车,汽车发生位移,我们的手对汽车做了功。
在这个过程中,我们通过施加力改变了汽车的位置,从而实现了对汽车的做功。
三、改变物体的形状改变物体的形状也是求变力做功的方法之一。
当我们对物体施加力时,物体可能会发生形变。
在这个过程中,力对物体的形变也是做功的表现。
例如,当我们拉伸弹簧时,力对弹簧产生的形变就是做功的体现。
在这个过程中,我们通过施加力改变了弹簧的形状,从而实现了对弹簧的做功。
四、改变物体的速度改变物体的速度也是求变力做功的方法之一。
当我们对物体施加力时,物体可能会改变其速度。
根据功的定义,力对物体的速度改变也是做功的体现。
举个例子,当我们用力踢足球时,力对足球的速度改变就是做功的表现。
在这个过程中,我们通过施加力改变了足球的速度,从而实现了对足球的做功。
五、改变物体的形态改变物体的形态也是求变力做功的方法之一。
当我们对物体施加力时,物体可能会发生形态的改变。
在这个过程中,力对物体的形态改变也是做功的体现。
举个例子,当我们用力压缩弹簧时,力对弹簧形态的改变就是做功的表现。
在这个过程中,我们通过施加力改变了弹簧的形态,从而实现了对弹簧的做功。
六、总结求变力做功的方法是物理学中的基础内容之一。
求变力做功的几种方法
求变力做功的几种方法变力做功是物理学中的一个重要概念,指的是通过施加力使物体移动,并且力的方向与物体的位移方向相同,从而产生功。
在物理学中,变力做功的几种常见的方式包括:1.恒力做功:恒力做功是指当施加于物体上的力保持恒定,并且力的方向与物体的位移方向相同时所产生的功。
例如,当将物体按直线方向推动时,施加力的大小和方向始终保持不变,这时产生的功就是恒力做的功。
2.弹力做功:弹力做功是指当施加于弹性物体上的力使其发生形变,并且力的方向与变形的方向相同时所产生的功。
例如,当将弹簧压缩或拉伸时,弹簧将会产生弹力,并且完成对外做功的过程。
3.重力做功:重力做功是指当物体受到重力的作用时所产生的功。
例如,将物体从高处抬升到低处,重力将会对物体做功,使物体下降。
此时,重力与物体的下降方向相同,从而产生重力做的功。
4.摩擦力做功:摩擦力做功是指当物体在摩擦力的作用下移动时所产生的功。
例如,当将物体沿水平面上的表面推动时,摩擦力将与物体的运动方向相反,并且产生摩擦力做的功,将物体减速或停止。
5.推力做功:推力做功是指当物体受到推力的作用时所产生的功。
例如,当用力将物体沿斜面推动时,推力将与物体的位移方向一致,并且产生推力做的功,使物体上升或下降。
除了上述几种方式之外,还有其他一些特殊情况下的功。
例如,当物体围绕固定点旋转时,所受到的转动力矩将使物体围绕轴旋转,并且产生转动功。
而当应力作用下的材料发生变形时,所施加的应力将会对材料做功,称为弹性势能的转化。
总之,变力做功具有多种方式,这些方式在物理学中都有着重要的应用。
通过研究和理解这些不同的方式,可以更好地理解和应用物理学的知识,并且在实际生活中解释和分析各种物理现象。
变力做功的计算课件
详细描述
对于变力做功的计算,需要采用积分法。具体来说,需要先 求出力随时间变化的函数关系,然后对这段函数进行积分, 得到总功。公式表示为:W = ∫F·ds。其中,F表示力关于时 间的函数,s表示位移关于时间的函数。
CHAPTER 02
变力做功的常见形式
线性变化力做功
总结词
线性变化力做功是指力的大小随位移线性变化的情况。
变力做功的实际应用
车辆行驶中的变力做功计算
总结词
车辆行驶中,由于摩擦力、空气阻力等因素 ,力的大小和方向会发生变化,变力做功的 计算对于车辆性能优化和节能减排具有重要 意义。
详细描述
在车辆行驶过程中,发动机输出的扭矩和车 轮上的驱动力是变化的,这导致车辆的加速 度和速度也会发生变化。通过计算变力做功 ,可以更准确地评估车辆的能耗和排放,进 而优化车辆设计,提高燃油经济性和减少环 境污染。
机器运转中的变力做功计算
总结词
机器运转过程中,由于摩擦、弹性形变等因 素,作用在机器上的力是变化的,变力做功 的计算有助于提高机器效率和延长使用寿命 。
详细描述
在机器运转过程中,作用在机器上的力通常 会发生变化,例如轴承摩擦力、气瓶压力等 。通过计算变力做功,可以了解机器在不同 工况下的能耗和效率,从而优化机器设计、
CHAPTER 05
变力做功的实验验证
实验设计
实验目标:验证变力做功的计算方法 ,探究变力做功与物体运动轨迹的关
系。
实验原理:基于能量守恒定律和牛顿 第二定律,通过测量变力作用下的位
移和力,计算变力做功。
实验步骤
1. 准备实验器材,包括位移传感器、 力传感器、数据采集器等。
2. 设计实验方案,包括设定初始条件 、调整变力大小和方向等。
五种方法搞定变力做功问题
五种方法搞定变力做功一.微元法思想。
当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。
例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求此过程中摩擦力所做的功。
思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。
如:弹簧的弹力做功问题。
例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( )A .0B .021x F m C .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.图2Fx 0FxF•Ox 0图2-甲图2乙三.功能关系法。
功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。
例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是: A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KB D .E KC <2E KB【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。
高考物理:变力做功的求解方法!
高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。
如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。
2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。
若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。
3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。
4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。
5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。
6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,其具有普遍的适用性。
在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。
二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。
B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。
C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。
2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26点求解变力做功的“五法”
1.变力的功=力×路程
当力的大小不变而方向始终与运动方向相同或相反时,这类力所做的功等于力和路程的乘积,如滑动摩擦力、空气阻力等做的功.
2.变力的功=平均力×x cos α
当力的方向不变,大小随位移线性变化时,可先求出力的平均值F=F1+F2
2
,再由W=F x cos
α计算.
3.变力的功=功率×时间
当变力的功率P一定时,可用W=Pt求功.
4.变力的功=“面积”
作出变力F随位移x变化的图像,图像与横轴所夹的“面积”即为变力做的功,如图1中阴影部分所示.
图1
5.变力的功=动能变化-其他恒力所做的功
当物体受到变力(也可只受变力)及其他恒力作用引起物体的动能发生变化时,根据动能定理知,变力的功等于动能变化减去其他恒力所做的功.
对点例题如图2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?
图2
解题指导因力F的大小恒定,且始终与运动方向相同,故F的功等于力乘以路程,即W=
F·2πL=2πFL
答案2πFL
图3
一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图3中给出了拉力随位移变化的关系图像.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有( )
A.物体与水平面间的动摩擦因数
B.合外力对物体所做的功
C.物体匀速运动时的速度
D.物体运动的时间
答案精析
第26点求解变力做功的“五法”
精练
ABC [物体做匀速运动时,受力平衡,则f=F=7 N;再由滑动摩擦力公式可求得物体与水平面间的动摩擦因数;故A正确;4 m后物体做减速运动,图像与坐标轴围成的面积表示拉力做的功,则由图像中减速过程包括的方格数可知拉力所做的功;再由摩擦力与位移的乘积求出摩擦力的功;则可求得总功;故B正确;已求出物体合外力所做的功;则由动能定理可求得物体开始时做匀速运动时的速度;故C正确;由于不知道具体的运动情况,无法求出减速运动的时间,故D错误.]。