[公开课优质课课件]解析椭圆的离心率求法

合集下载

圆锥曲线离心率公开课课件

圆锥曲线离心率公开课课件
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有,, abc 或数字的形式,至于如何建立不等关系,可总结为
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
(2)椭圆焦点三角形顶角范围 (3)一般结论:b2 MF1 MF2 a2
2
利用焦点三角形顶得F1MF2 120o,120o F1BF2 180o,
60o
OBF2
90o,e sin OBF2 [
3 ,1). 2
利用焦点三角形顶角范围
一般结论:椭圆 G
: x2 a2
y2 b2
1(a
b
0)
的两焦点为 F1(c, 0), F2 (c, 0)
2b2 ,即 a2
2(a2 c2 ) 所以e
c a
2 ,所以椭圆离心率 2
的取值范围是[ 2 ,1) . 2
一般结论:b2 MF1 MF2 a2
求圆锥曲线离心率值及 范围常见题型与思路
1,直接利用已知条件找关系
2,在焦点三角形中找关系
3,利用条件中平面几何知识,结合 椭圆(双曲线)特殊边,角找关系
23
A. 7
B.4
C. 3
D. 3
解析 因为△ABF2为等边三角形, 所以不妨设|AB|=|BF2|=|AF2|=m, 因为A为双曲线右支上一点, 所以|F1A|-|F2A|=|F1A|-|AB|=|F1B|=2a, 因为B为双曲线左支上一点, 所以|BF2|-|BF1|=2a,|BF2|=4a, 由∠ABF2=60°,得∠F1BF2=120°, 在△F1BF2中,由余弦定理得4c2=4a2+16a2-2·2a·4a·cos 120°,

[公开课优质课课件]详解椭圆曲线的离心率求解

[公开课优质课课件]详解椭圆曲线的离心率求解

[公开课优质课课件]详解椭圆曲线的离心
率求解
简介
本课程将详细解释椭圆曲线的离心率求解方法。

通过本课程,您将了解离心率的概念、计算方法,以及椭圆曲线上离心率的意义和应用。

椭圆曲线和离心率
椭圆曲线是平面上一组满足特定数学方程的点的集合。

离心率是描述椭圆曲线形状的一个重要参数,它衡量了椭圆曲线的扁平程度。

离心率的取值范围是0到1,离心率越接近0,椭圆曲线越接近圆形;离心率越接近1,椭圆曲线越扁平。

离心率的计算方法
离心率的计算方法可通过椭圆曲线的半长轴和半短轴长度进行求解。

我们可以使用以下公式计算离心率:
离心率 = sqrt(半长轴^2 - 半短轴^2) / 半长轴
其中,sqrt表示计算平方根。

离心率的结果是一个在0到1之间的实数。

离心率的意义和应用
离心率对于椭圆曲线的几何特征和性质具有重要影响。

离心率越大,曲线越扁平,其特征点和形状会有所改变。

离心率的值还可以用来判断椭圆曲线是否为圆形、椭圆或双曲线,并对密码学等领域的算法和保密性产生重要影响。

感谢您参加本次公开课,希望通过本课程的学习,您能更好地理解椭圆曲线的离心率求解方法及其应用。

2024全新椭圆的课件

2024全新椭圆的课件

通过化简这个等式,可以得到 椭圆的标准方程。
这种方法适用于已知椭圆的焦 点、长轴和短轴等信息,可以 通过这些信息来求解椭圆的标 准方程。
利用极坐标转换求解
01
将椭圆的极坐标方程转换为直角坐标方程,得到一个关于 $x$和$y$的二次方程。
02
通过解这个二次方程,可以得到椭圆的标准方程中的参数 $a$和$b$。
$frac{x^2}{a^2}
+
frac{y^2}{b^2}
=
1$
($a>b>0$),其中$a$和$b$分
别为椭圆的长半轴和短半轴。
焦点、焦距和离心率
焦点
椭圆上任意一点到两焦点的距离之和 等于长轴长。
焦距
离心率
椭圆的离心率$e$定义为 $e=frac{c}{a}$,离心率越小,椭圆 越接近于圆。
两焦点之间的距离,用$2c$表示,其 中$c=sqrt{a^2-b^2}$。
解析:(1) 利用离心率和过点条件列出 方程组,求解得到椭圆C的方程;(2) 联立直线与椭圆方程,利用判别式和垂 直平分线性质列出不等式组,求解得到 $k$的取值范围。
04
椭圆在几何图形中应用
利用椭圆性质解决几何问题
椭圆的定义和性质
椭圆是由在平面内满足“从两个 定点F1和F2出发的线段长度之和 等于常数(且大于两定点之间的 距离)的点的集合”形成的图形。
03
椭圆与直线关系分析
直线与椭圆相交条件判断
判别式法
通过联立直线与椭圆方程,消元后得到一个关于$x$(或$y$)的二次方程,利用判 别式$Delta$判断方程的根的情况,从而确定直线与椭圆的交点个数。
图形法
通过绘制直线与椭圆的图形,观察交点的个数和位置,从而判断直线与椭圆的关系。

椭圆离心率求法经典全面

椭圆离心率求法经典全面

离心率的五种求法椭圆的商心率0<0<1,双曲线的商心率丘>1,抛物线的离心率e = \. 一、直接求出“、J 求解《巳知圆锥曲线的标准方程或4、e 易求时,可利用率心率公式0 =上来解决。

a例1:已知双曲线^y-y 2 =1 (d>0)的一条淮线与抛物线y 2 =-6x 的准线重合, 则该双曲线的离心率为()A •迺B. 22 2Q 2 解:抛物线y 2 =-6x 的准线是X = -,即双曲线的右准线X =—2c2c 2 — 3c — 2 = 0 > 解得 c = 2 , a = -x/3,e =—=——,故选 r> a 3变式练习1:若椭圆通过原点,且核心为仟(1,0)、竹(3,0),则其商心率为()A. -B. -C. -D.丄43 24解:由片(1,0)、F 2(3,0)知 2c = 3 —1, • • c = 1 ,又T 椭圆过原点,■•a_c = l, a + c = 3 > • • a = 2 , c = 1 ,所以离心率e = — = — •故选C ・a 2变式练习2:若是双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为()A. —B. —C. - D 22 2 2c 3解:由题设a = 2, 2C = 69则c = 3, ^ =-=-,因此选Ca 2变式练习3:点P (-3, 1)在椭圆亠+二=1 (a >b>0)的左准线上,过点P 且方向 a 2b 2为a =(2,-5)的光线,经直线$ = -2反射后通过椭圆的左核心,则这个椭圆的离心率为()Di 2解:由题意知,入射光线为y-l=--(x + 3),关于y = —2的反射光线(对称关系)为 2 尤“c J3c解得 a = \[3 9 c = 1,则 e = — = •故选A云+ 5 = 0"3二、构造"、。

的齐次式,解出fV 6 TB !35x-2y+ 5 = 0,贝ij<按照题设条件,借助〃、b、C之间的关系,构造"、e的关系(特别是齐二次式),进而取得关于0的一元方程,从而解得离心率2 2例2:已知片、化是双曲线二一匚=1 (。

(完整版)专题椭圆的离心率解法大全,推荐文档

(完整版)专题椭圆的离心率解法大全,推荐文档

椭圆的离心率为(
)
[解析] b ( b ) 1 a2 c2 ac e 5 1
ac
2
3,以椭圆的右焦点 F2 为圆心作圆,使该圆过椭圆的中心并且与椭圆交于 M、N 两点,椭圆的左焦点为 F1,直线
MF1 与圆相切,则椭圆的离心率是 3 1
变式(1):以椭圆的一个焦点 F 为圆心作一个圆,使该圆过椭圆的中心 O 并且与椭圆交于 M、N 两点,如果
22
m2
3
综上 m 16 或 3 3 3
3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是
5
4,已知 m,n,m+n 成等差数列,m,n,mn 成等比数列,则椭圆 x2 y2 1的离心率为 mn
2n 2m n
[解析]由 n2 m2n mn 0
m 2 n 4 ,椭圆
x2 m
可得| PF1 |2 | PF2 |2 | F1F2 |2 4c2 ,则| PF1 || PF2 | 2(a2 c2 ) 2b2 ,
PF1

PF2
是方程 z 2
2az
2b2
0 的两个根,则
4a2
8(a2
c2) 0 e2
c2 a2
1 2
e
2 2
解法 3:正弦定理
设记 PF1F2 ,PF2 F1 ,由正弦定理有
4
0 3 则 2 sin( ) 1,1 2 sin( ) 2
24
44 2
4
4
所以 2 e 1 2
解法 5:利用基本不等式由椭圆定义,有 2a | PF1|| PF2 | 平方后得 4a 2 | PF1|2 | PF2 |2 2| PF1|| PF2 | 2(| PF1|2 | PF2 |2 ) 2| F1F2 |2 8c2

高中数学椭圆公开课全省一等奖PPT课件

高中数学椭圆公开课全省一等奖PPT课件

03
提高数学思维能力
通过学习和练习,提高数学思 维能力,包括逻辑推理、归纳 分类、化归等思想方法的应用 能力。
04
关注数学文化
了解数学史、数学名著和数学 家的故事等数学文化内容,丰 富自己的数学素养和视野。
2024/1/25
30
感谢您的观看
THANKS
2024/1/25
31
PF_2$,若$Delta PF_1F_2$的面积为9,求椭圆的方程。
7
02
椭圆与直线关系
2024/1/25
圆方程的解的情况,可以确定直线与椭圆的位置关系, 如相切、相交或相离。
判别式法
将直线方程代入椭圆方程,消去一个未知数,得到一个关于另一个未知数的二 次方程,通过判别式Δ的值来判断位置关系。当Δ>0时,直线与椭圆相交;当 Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离。
例题4
结合实际问题,利用参数方程求 解最值问题。
01
02
例题1
已知椭圆的参数方程,求其普通 方程和焦点坐标。
03
04
例题3
利用参数方程研究椭圆上点的运 动轨迹和性质。
2024/1/25
22
05
高考真题回顾与拓展延伸
2024/1/25
23
历年高考真题回顾
(2019年全国卷II)椭圆的焦点 三角形面积问题
解题思路
首先根据题目条件列出方程或不等式,然后结合图形分析,运用相关知识点进行 求解。在解题过程中,需要注意数形结合思想和转化与化归思想的应用。
2024/1/25
12
03
椭圆在几何图形中应用
2024/1/25
13
利用椭圆性质求最值问题

《2.2.2椭圆的几何性质(2)》课件-优质公开课-人教A版选修2-1精品

《2.2.2椭圆的几何性质(2)》课件-优质公开课-人教A版选修2-1精品
成一个正六边形,那么这个椭圆的离心率 3 .1
6、点P是椭圆
x2 a2

y2 b2
1上的动点,当P的坐标为(±a,0)时,
P到原点O的最大距离为
a

;当P的坐标为(0,±b时) ,
P到原点O的最小距离为------b-------;设F(1 c,0),则当P的
的 轨 迹 方 程 又 是 怎 样 呢?
椭圆的第一定义与第二定义是相呼应的.
定义 1
图形
定义 2
平面内与 两个定点F1、 F2的距离的和 等于常数(大
焦 准
点 线
:F1 ( :x
c ,0 a 学.科.网2
)、
F
2
(
c
,0
)
c
平面内与 一个定点的距 离和它到一条
定直线的距离
于 F1F2 )的点 的轨迹。
(x c)2 y2 c
.
a2 x
a
c
将 上 式 两 边 平 方 , 并 化简 , 得 ( a 2 c 2 ) x 2 a 2 y 2 a 2 (a 2 c 2 ).
设a2 c2 b2,则 方 程 可 化 成 x2 y2 a 2 b2 1(a b 0).
2 2,
要将这个工艺品平放在一圆形盒中邮寄,则盒子底面圆的
直径至少为 8 2cm 。
2、2005年10月17日,神州六号载人飞船带着亿万中华儿女千 万年的梦想与希望,遨游太空返回地面.其运行的轨道是以地 球中心为一焦点的椭圆,设其近地点距地面m(km),远地点 距地面n(km),地球半径R(km),则载人飞船运行轨道的短轴
的比是常数
e c (0 e 1) a

椭圆离心率求法

椭圆离心率求法

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ac e =来解决。

例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为()A.23 B. 23 C. 26D.332 解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为()A. 43B. 32C. 21D. 41解:由()0,11F 、()0,32F 知132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C. 变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为()A.23B. 26C. 23 D 2解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为()A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c ca 解得3=a ,1=c ,则33==a c e ,故选A 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[公开课优质课课件]解析椭圆的离心率求

椭圆是一个重要的几何概念,在数学和物理学中广泛应用。

而椭圆的离心率是描述椭圆形状的一个重要参数。

本文将解析椭圆的离心率求法,帮助读者更好地理解椭圆的性质和特点。

1. 椭圆的定义
椭圆可以定义为到两个焦点距离之和恒定的点构成的图形。

数学上,椭圆可以用一个数学方程来表示,即椭圆的离心率求法的基础。

2. 椭圆的离心率
离心率是描述椭圆形状的一个重要参数。

离心率的定义是椭圆焦点间距离除以长轴长度的比值。

我们可以通过以下步骤计算椭圆的离心率:
1. 确定椭圆的长轴和短轴长度。

2. 计算椭圆的焦点之间的距离。

3. 将焦点之间的距离除以长轴长度,得到离心率的值。

3. 举例说明
例如,假设椭圆的长轴长度为a,短轴长度为b。

椭圆的焦点之间的距离为c。

那么椭圆的离心率可以表示为:
离心率 = c / a
通过以上公式,我们可以计算出任意椭圆的离心率。

4. 总结
本文解析了椭圆的离心率求法。

椭圆的离心率是一个重要的参数,用来描述椭圆形状的特点。

离心率的值越接近于0,椭圆形状越接近于圆形;离心率的值越接近于1,椭圆形状越长而细长。

希望本文对读者理解椭圆的离心率求法有所帮助。

> 注意:以上内容仅供参考,具体情况还需根据实际问题进行具体分析和计算。

---
Word Count: 193 words。

相关文档
最新文档