【精品解析】北京市2020年高考数学最新联考试题分类大汇编(3)函数与导数
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)

2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。
2015-2020年新课标高考数学试卷分类汇编(6年真题)--导数(含解析)

2015-2020年新课标数学试卷分类汇编--导数一.选择题1.(2020•新课标Ⅰ)函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+12.(2020•新课标Ⅲ)若直线l与曲线y=和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x+C.y=x+1D.y=x+3.(2019•新课标Ⅱ)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=04.(2019•新课标Ⅲ)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣15.(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f (x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.17.(2016•新课标Ⅰ)若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]8.(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)9.(2015•新课标Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二.填空题1.(2020•新课标Ⅰ)曲线y=lnx+x+1的一条切线的斜率为2,则该切线的方程为.2.(2020•新课标Ⅲ)设函数f(x)=,若f′(1)=,则a=.3.(2019•新课标Ⅰ)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.4.(2018•新课标Ⅱ)曲线y=2lnx在点(1,0)处的切线方程为.5.(2018•新课标Ⅰ)已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.6.(2018•新课标Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.7.(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.8.(2017•新课标Ⅰ)曲线y=x2+在点(1,2)处的切线方程为.9.(2016•新课标Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y =f(x)在点(1,﹣3)处的切线方程是.10.(2016•新课标Ⅲ)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f (x)在点(1,2)处的切线方程是.11.(2016•新课标Ⅱ)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.12.(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.13.(2015•新课标Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.三.解答题1.(2020•新课标Ⅰ)已知函数f(x)=e x﹣a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.(2020•新课标Ⅲ)设函数f(x)=x3+bx+c,曲线y=f(x)在点(,f())处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.。
2020-2024北京高考真题数学汇编:对数与对数函数

2020-2024北京高考真题数学汇编对数与对数函数一、单选题1.(2023北京高考真题)下列函数中,在区间(0,)+∞上单调递增的是( )A .()ln f x x =-B .1()2x f x =C .1()f x x =-D .|1|()3x f x -=2.(2024北京高考真题)生物丰富度指数 1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则( ) A .2132N N =B .2123N N =C .2321N N =D .3221N N = 3.(2024北京高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 二、填空题4.(2020北京高考真题)函数1()ln 1f x x x =++的定义域是 . 5.(2023北京高考真题)已知函数2()4log x f x x =+,则12f ⎛⎫= ⎪⎝⎭.参考答案1.C【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可.【详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x =在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x =在()0,∞+上单调递减,y x =-在()0,∞+上单调递减,所以()1f x x=-在()0,∞+上单调递增,故C 正确; 对于D,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====, 显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.2.D 【分析】根据题意分析可得12112.1, 3.15ln ln S S N N --==,消去S 即可求解. 【详解】由题意得1211 3.15ln S S N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =. 故选:D.3.B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x +++>=,故B 正确,A 错误; 对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误,故选:B.4.(0,)+∞【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴> 故答案为:(0,)+∞【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 5.1 【分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【详解】函数2()4log x f x x =+,所以12211()4log 21122f =+=-=. 故答案为:1。
2020年高考数学 大题专项练习 导数与函数 二(15题含答案解析)
2020年高考数学 大题专项练习导数与函数 二1.已知函数f(x)=e x -x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).12(1)求实数a 的取值范围;(2)求证:f(x 1)+f(x 2)>2.2.设函数f(x)=lnx-0.5ax 2-bx.(1)当a=b=0.5时,求f(x)的最大值;(2)令,其图像上任意一点P(x 0,y 0)处切线的斜率k ≤0.5恒成立,求实数a 的取值范围.3.已知函数f(x)=e x -(x+a)ln(x+a)+x,(x ∈R).(1)当a=1时,求函数f(x)的图像在x=0处的切线方程;(2)若函数f(x)在定义域上为单调递增函数,①求a 的最大整数;②证明:4.已知函数f(x)=kx 3+3(k ﹣1)x 2﹣k 2+1在x=0,x=4处取得极值.(1)求常数k 的值;(2)求函数f(x)的单调区间与极值;(3)设g(x)=f(x)+c ,且∀x ∈[﹣1,2],g(x)≥2c+1恒成立,求c 的取值范围.5. (1)已知函数f(x)=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值.(2)设f(x)=ax 3+x 恰好有三个单调区间,求实数a 的取值范围.6.已知函数f (x )=+x 在x=1处的切线方程为2x ﹣y+b=0.(Ⅰ)求实数a ,b 的值;(Ⅱ)设函数g (x )=f (x )+x 2﹣kx ,且g (x )在其定义域上存在单调递减区间(即g /(x )<0在其定义域上有解),求实数k 的取值范围.7.已知f(x)=x 2-a 2ln x ,a>0.12(1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.若函数f(x)+g(x)和f(x)·g(x)同时在x=t 处取得极小值,则称f(x)和g(x)为一对“P(t)函数”.(1)试判断f(x)=x 与g(x)=x 2+ax+b 是否是一对“P(1)函数”;(2)若f(x)=e x 与g(x)=x 2+ax+1是一对“P(t)函数”.①求a 和t 的值;②若a <0,若对于任意x ∈ [1,+∞),恒有f(x)+g(x)<m·f(x)g(x),求实数m 的取值范围.9.已知函数f(x)=ae x -ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.1e10.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:n <e<n +1(其中n ∈N *,e 为自然对数的底数).(1+1n )(1+1n )11.已知函数.(1)若a=e ,求函数f(x)的极值;(2)若函数f(x)有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x -aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln .2a 13.已知函数在处的切线与轴平行,()(1)试讨论在上的单调性;(2)①设,求的最小值;②证明:.14.已知函数①若函数f(x)在定义域内单调递增,求的取值范围;②若且关于x的方程在[1,4]上恰有两个不相等的实数根,求实数b 取值范围;③设各项为正的数列满足:求证:.15.设函数f(x)=x2e x-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点.(1)求a和b的值.(2)设试比较f(x)与g(x)的大小.答案解析1.解:(1)∵f(x)=e x -x 2-ax ,∴f′(x)=e x -x -a .12设g(x)=e x -x -a ,则g′(x)=e x -1.令g′(x)=e x -1=0,解得x=0.∴当x ∈(-∞,0)时,g′(x)<0,函数g(x)单调递减;当x ∈(0,+∞)时,g′(x)>0,函数g(x)单调递增.∴g(x)min =g(0)=1-a .当a≤1时,f′(x)=g(x)≥0,函数f(x)单调递增,无极值点;当a>1时,g(0)=1-a<0,且当x→+∞时,g(x)→+∞;当x→-∞时,g(x)→+∞.∴当a>1时,f′(x)=g(x)=e x -x -a 有两个零点x 1,x 2.不妨设x 1<x 2,则x 1<0<x 2.∴函数f(x)有两个极值点时,实数a 的取值范围是(1,+∞).(2)证明:由(1)知,x 1,x 2为g(x)=0的两个实数根,x 1<0<x 2,且g(x)在(-∞,0)上单调递减.下面先证x 1<-x 2<0,只需证g(-x 2)<0.∵g(x 2)=ex2-x 2-a=0,得a=ex2-x 2,∴g(-x 2)=e -x2+x 2-a=e -x2-ex2+2x 2.设h(x)=e -x -e x +2x(x>0),则h′(x)=--e x +2<0,1ex∴h(x)在(0,+∞)上单调递减,∴h(x)<h(0)=0,∴g(-x 2)<0,即x 1<-x 2<0.∵函数f(x)在(x 1,0)上单调递减,∴f(x 1)>f(-x 2),∴要证f(x 1)+f(x 2)>2,只需证f(-x 2)+f(x 2)>2,即证ex2+e -x2-x -2>0.2设函数k(x)=e x +e -x -x 2-2(x>0),则k′(x)=e x -e -x -2x .设φ(x)=k′(x)=e x -e -x -2x ,φ′(x)=e x +e -x -2>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,即k′(x)>0,∴k(x)在(0,+∞)上单调递增,k(x)>k(0)=0,∴当x ∈(0,+∞)时,e x +e -x -x 2-2>0,则ex2+e -x 2-x -2>0,2∴f(-x 2)+f(x 2)>2,∴f(x 1)+f(x 2)>2.2.解:3.解:4.解:5.解:(1)∵函数f(x)的导函数f ′(x)=3x 2+2bx +c ,由题设知-1<x<2是不等式3x 2+2bx +c<0的解集.∴-1,2是方程3x 2+2bx +c=0的两个实根,∴-1+2=-b ,(-1)×2=,即b=-1.5,c=-6.23c 3(2)∵f ′(x)=3ax 2+1,且f(x)有三个单调区间,∴方程f ′(x)=3ax 2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a 的取值范围为(-∞,0).6.7.解:(1)f′(x)=x-=(x>0).a2x x +a x -a x当x ∈(0,a)时,f′(x)<0,f(x)单调递减;当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=a 2-a 2ln a.12令a 2-a 2ln a≥0,解得0<a<.12e 故a 的取值范围是(0,].e (2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增,不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2).因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2).设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x-+2a-x-=-≤0,a2x a22a -x 2a a -x 2x 2a -x所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0.又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0,即f(x 2)<f(2a-x 2).因此x 1+x 2>2a.8.解:9.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x -.1x由题设知,f ′(2)=0,所以a=.12e2从而f(x)=e x -ln x -1,f ′(x)=e x -.12e212e21x当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥-ln x -1.1e ex e设g(x)=-ln x -1,则g′(x)=-.ex e ex e 1x当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点.故当x >0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.1e10.解:(1) f ′(x)=1-=(x>0),a x x -a x当a ≤0时,f ′(x)=1-=>0,所以f(x)在(0,+∞)上是增函数;a x x -a x当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+n <e<1+n +1,1n 1n两边取对数后,只要证nln1+<1<(n +1)ln1+,即只要证<ln1+<,1n 1n 1n +11n 1n令x=1+,则只要证1-<lnx<x-1(1<x ≤2).1n 1x由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +-1(1<x ≤2),则φ′(x)=>0,1x x -1x2所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +-1>0,所以1-<lnx(1<x ≤2).1x 1x综上,原命题得证.11.解:12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x -(x >0).a x当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x ,v(x)=-,a x因为u(x)=e 2x 在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,a x所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <且b <时,f ′(b)<0,a 414故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0,当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0.故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-=0,所以f(x 0)=+2ax 0+aln ≥2a +aln .a x0a 2x02a 2a故当a >0时,f(x)≥2a+aln .2a 13.14.解:15.解:。
2020年北京卷数学高考试题文档版(含答案)
绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B ⋂=( ).A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2} 2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 3.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10 4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63+B .623+C .123D .1223+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4 B .5 C .6 D .7 6.已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)- B .(,1)(1,)-∞-⋃+∞ C .(0,1) D .(,0)(1,)-∞⋃+∞7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP 8.在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项 9.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ).A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭第二部分(非选择题 共10分)二、填空题共5小题,每小题5分,共25分。
2020年高考北京卷数学试题解析
2020年全国普通高等学校招生统一考试数学试卷(北京卷)一、选择题1.已知集合{1,0,1,2},{03}A B x x =-=<<,则A B =( ) A.{}1,0,1- B.{}0,1C.{}1,1,2-D.{}1,2【答案】D【解析】由题意得,{}12A B ⋂=,,故选D. 2.在复平面内,复数z 对应的点的坐标是(1,2),则i z =·( ) A.12i + B.2i -+ C.12i - D.2i --【答案】B【解析】由题意知,12i z =+,所以()i i 12i 2i z ⋅=⋅+=-+,故选B.3.在)52的展开式中,2x 的系数为( )A.5-B.5C.10-D.10【答案】C【解析】由二项式定理得52)的展开式的通项552155C (2)C (2)r rrrr rr T x--+=-=-,令522r -=,得1r =,所以12225C (2)10T x x =-=-,所以2x 的系数为10-,故选C. 4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A.6 B.6+ C.12+ D.12+【答案】D【解析】将三视图还原为直观图(图略),知该三棱柱是正三棱柱,其高为2,底面是边长为2的等边三角形,正三棱柱的上、下两个底面的面积均为1122sin 602222︒⨯⨯⨯=⨯⨯=面的面积均为224⨯=,故其表面积为12+,选D.5.已知半径为1的圆经过点()3,4,则其圆心到原点的距离的最小值为( ) A.4 B.5C.6D.7【答案】A【解析】设该圆的圆心为()a b ,,则圆的方程为22()()1x a y b -+-=,该圆过点(34),,22(3)(4)1a b ∴-+-=,此式子表示点()a b ,在以()34,为圆心,1为半径的圆上,则点()a b ,到原点14=,故选A.6.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A.()1,1- B.()(),11,+-∞-∞ C.()0,1 D.()(),01,+-∞∞【答案】D【解析】函数()21x f x x =--,则不等式()0f x >的解集即21x x >+的解集,在同一平面直角坐标系中画出函数2x y =,1y x =+的图象(图略),结合图象易得21x x >+的解集为(0)(1)-∞⋃+∞,,,故选D.7.设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ) A.经过点O B.经过点P C.平行于直线OP D.垂直于直线OP【答案】B【解析】连接PF ,由题意及抛物线的定义可知PQ FP =,则QPF 为等腰三角形,故线段FQ 的垂直平分线经过点P .故选B.8.在等差数列{}n a 中,19a =-,51a =-,记()121,2,n n T a a a n ==……,则数列{}n T ( ) A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项【答案】B解析:设等差数列{}n a 的公差为d ,19a =-,51a =-,5941a d ∴=-+=-,2d ∴=,9(1)2211n a n n ∴=-+-⨯=-.令2110n a n =-≤,则 5.5n ≤,5n ∴≤时,0n a <;6n ≥时,0n a >.190T ∴=-<,2(9)(7)630T =-⨯-=>,3(9)(7)(5)3150T =-⨯-⨯-=-<,4(9)(7)(5)(3)9450T =-⨯-⨯-⨯-=>,5(9)(7)(5)(3)(1)9450T =-⨯-⨯-⨯-⨯-=-<,当6n ≥时,0n a >,且1n a ≥,10n n T T +∴<<,12(12)n n T a a a n ∴==,,有最大项4T ,无最小项,故选B.9.已知R αβ∈,,则“存在k Z ∈使得()=1kk απβ+-”是“sin =sin αβ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】若存在k ∈Z 使得π(1)k k αβ=+-,则当2k n =,n ∈Z 时,2πn αβ=+,则sin sin(2π)sin n αββ=+=;当21k n =+,n ∈Z 时,(21) πn αβ=+-,则sin sin(2ππ)sin(π)sin n αβββ=+-=-=.若sin sin αβ=,则2πn αβ=+或2ππn αβ=+-,n ∈Z ,即π(1)k k αβ=+-,k ∈Z ,故选C.10.2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值,按照阿尔·卡西的方法,π的近似值的表达式是( ) A.30303sin tan n n n +()°°B.30306sin tan n n n +()°°C.60603sin tan n n n+()°° D.60606sin tan n n n+()°° 【答案】B【解析】连接圆心与圆内接正6n 边形的各顶点,则圆内接正6n 边形被分割成6n 个等腰三角形,每个等腰三角形的腰长均为圆的半径1,顶角均为360606n n=︒︒,底角均为6018030902n n-=-︒︒︒︒,所以等腰三角形的底边长均为30302cos 902sinn n ⎛⎫-= ⎪⎝⎭︒︒︒,故单位圆的内接正6n 边形的周长为3062sinn n⨯︒;连接圆心与圆外切正6n 边形的各顶点,则圆外切正6n 边形被分割成6n 个等腰三角形,每个等腰三角形底边上的高均为圆的半径1,顶角均为360606n n =︒︒,顶角的一半均为30n︒,所以等腰三角形的底边长均为302tann ︒,故单位圆的外切正6n 边形的周长为3062tann n︒⨯.因为单位圆的内接正6n 边形的周长和外切正6n 边形的周长的算术平均数为2π的近似值,所以303062sin 62tan 30302π6sin 6tan 2n n n n n n n n︒︒⨯+⨯=⨯+⨯︒︒≈,所以30303030π3sin3tan 3sin tan n n n n n n n ⎛⎫≈⨯+⨯=+ ⎪⎝︒︒︒⎭︒,故选A. 二、填空题 11.函数1()In 1f x x x =++的定义域是_________. 【答案】()0+∞, 【解析】函数1()ln 1f x x x =++的自变量满足100x x +≠⎧⎨>⎩,,0x ∴>,即定义域为()0+∞,.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】(3,0)【解析】双曲线22:163x y C -=中,2639c =+=,3c ∴=,则C 的右焦点的坐标为(30),, C 的渐近线方程为y x =,即y =,即0x ±=,则C 的焦点到其渐近线的距离d =.13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则PD =_________;PB PD ·=_________.;1-【解析】解法一 如图,由题意及平面向量的平行四边形法则可知,点P 为BC 的中点,在三角形PCD 中,||5cos cosPD DPB DPC =⋅∠=-∠=,||||cos 11PB PD PB PD DPB ⎛∴⋅=⋅∠==- ⎝.解法二 以A 为坐标原点,AB AD ,所在直线分别为x 轴,y 轴,建立如图所示的平面直角坐标系,则(00)(20)(22)(02)A B C D ,,,,,,,,1()(21)2AP AB AC ∴=+=,,(21)P ,,(21)PD ∴=-,,(01)PB =-,,||5PD ∴=(01)(21)1PB PD ⋅=-⋅-=-,,.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数φ的一个取值为_________. 【答案】π2(符合π2π+,2k k ∈Z 都可以,答案不唯一) 【解析】易知当sin()y x ϕ=+,cos y x =同时取得最大值1时,函数()sin()cos f x x x ϕ=++取得最大值2,故sin()cos x x ϕ+=,则π2π,2k k ϕ=+∈Z ,故常数ϕ的一个取值为π2. 15.为满足人民对美好生活的向往,环保部门要求企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱。
2020年高考数学真题-北京卷答案
参考答案一、选择题.1.【答案】D【解析】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D.2.【答案】B【解析】由题意得12z i =+,∴2iz i =-.故选B.3.【答案】C【解析】)52-展开式的通项公式为()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得1r =,则2x 的系数为()()11522510C -=-⨯=-.故选C.4.【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭D.5.【答案】A【解析】设圆心(),C x y 1=,化简得()()22341x y -+-=,∴圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,∴||1||OC OM +≥5==,∴||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选A.6.【答案】D【解析】∵()21xf x x =--,∴()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.∴不等式()0f x >的解集为()(),01,-∞+∞ .故选D.7.【答案】B【解析】如图所示,线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选B.8.【答案】B【解析】由题意可知,等差数列的公差511925151a a d --+===--,通项公式为()()11912211n a a n d n n =+-=-+-⨯=-,∵123456701a a a a a a a <<<<<<=<< ,50T <,∴()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,∴数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.∴数列{}n T 中存在最大项,且最大项为4T .故选B.9.【答案】C【解析】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,∴存在k Z ∈使得(1)k k απβ=+-.∴“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选C.10【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn ︒,∴单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tan n ︒,其周长为3012tan n n︒,∴303012sin 12tan303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选A.二、填空题.11【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,∴0x >,故答案为(0,)+∞.12【答案】(1)()3,0.【解析】在双曲线C中,a =,b =,则3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C的渐近线方程为2y x =±,即0x ±=,∴双曲线C 的焦点到其渐近线的距离为23312=+.故答案为()3,0;3.13【答案】(1)5;(2)1-.【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴,建立如图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,∴()22215PD =-+= ,()021(1)1PB PD ⋅=⨯-+⨯-=- .故答案为5;1-.14【答案】2π(2,2k k Z ππ+∈均可)【解析】∵()()()()22cos sin sin 1cos cos sin 1sin f x x x x ϕϕϕϕθ=++=+++,∴()22cos sin 12ϕϕ++=,解得sin 1ϕ=,故可取2ϕπ=.故答案为2π(2,2k k Z ππ+∈均可).15【答案】①②③【解析】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,∴甲的斜率的相反数比乙的大,∴甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,当甲企业在[]12,t t 这段时间内时,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,∴甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,都已达标;③正确;故答案为①②③.三、解答题16【答案】(Ⅰ)证明见解析;(Ⅱ)23.【解析】(Ⅰ)如图所示,在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,∴11//AB C D 且11AB C D =,∴四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,∴1//BC 平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅.∴直线1AA 与平面1AD E 所成角的正弦值为23.17【答案】选择条件①(Ⅰ)8(Ⅱ)3sin 2C =,63S =;选择条件②(Ⅰ)6(Ⅱ)7sin 4C =,1574S =.【解析】选择条件①(Ⅰ)17,cos 7c A ==- ,11a b +=2222cos a b c bc A =+- ,∴2221(11)72(11)7()7a a a =-+--⋅⋅-,∴8a =.(Ⅱ)2143cos (0,)sin 1cos 77A A A A π=-∈∴=-=,由正弦定理得873sin sin sin sin 2437a c C A C C=∴=∴=113sin (118)863222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈ ,∴223757sin 1cos ,sin 1cos 816A AB B =-==-=,由正弦定理得:116sin sin 3757816a b a aa A B -=∴=∴=(Ⅱ)sin sin()sin cos sin cos C A B A B B A=+=+918161684=+=11sin (116)62244S ba C ==-⨯⨯=.18【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;(Ⅱ)1336,(Ⅲ)01p p <.【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,∴3人中恰有2人支持方案一概率为2121311313((1()3433436C -+-=;(Ⅲ)01p p <19【答案】(Ⅰ)2130x y +-=,(Ⅱ)32.【解析】(Ⅰ)∵()212f x x =-,∴()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,∴切点为()1,11,由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠,∵()y f x =在点()2,12t t-处的切线方程为()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,∴()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果相同),则()423241441144(2444t t S t t t t t++==++,∴()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,∴()S t 在()0,2上递减,在()2,+∞上递增,∴2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==.20【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【解析】(1)设椭圆方程为()222210x y a b a b+=>>,由题意可得224112ab a b⎧+=⎪⎨⎪=⎩,解得2282a b ⎧=⎨=⎩,∴椭圆方程为22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为()4y k x =+,与椭圆方程22182x y +=联立可得()222448x k x ++=,即()()222241326480k x k x k +++-=,则2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++,令4x =-,可得()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++,同理可得()()222142Q k x y x -++=+.显然0P Q y y <,且PQPB y PQy =,注意到()1212442122P Q x x y y k x x ⎛⎫+++=-++ ⎪++⎝⎭()()()()()()()12211242422122x x x x k x x +++++=-+⨯++,而()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,∴0,P Q P Q y y y y +==-.从而1PQPB y PQy ==.21【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①;(Ⅱ)∵2*(2)1*,,,2,2i j i ja i j N i j i j N a --∀∈>=-∈,∴22i i j ja a a -=,∴{}n a 具有性质①;∵2*(2)11,3,1,2,22k l n k n la n N n k n l n a a ---∀∈≥∃=-=-===,∴{}n a 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<,第一种情况:若01N =,即01230a a a a <<<<< ,由①可知存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<,由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k la a >>,而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*)由②得存在s t >,满足:21s s k s s t ta aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+,由()111s s a a q s k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>=(**)由(**)和(*)式可得:211111ks t k a q a qa q ---≥>,结合数列的单调性有:211k s t k ≥-->-,注意到,,s t k 均为整数,故21k s t =--,代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为11n n a a q-=.即数列{}n a 为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k l a a >>,而3kkk la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设()22131,1a a q a a qq ==>,利用性质①取3,2i j ==,则224331121m a a q a a q a a q===,即数列中必然存在一项的值为31a q ,下面证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l l a aa a a a a ==>,从而4k <,与前面类似的可知则存在{}{}(),1,2,3k l k l ⊆>,满足24k l a a a =,若3,2k l ==,则:2341k la a a q a ==,与假设矛盾;若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾;若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾;即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =,同理可得:455161,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{}n a 为等比数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品解析:北京市2020年高考数学最新联考试题分类大汇编(3)函数与导数试题解析一、选择题:(5)(北京市东城区2020年1月高三考试文科)设0x >,且1xxb a <<,则 (A )01b a <<< (B )01a b <<< (C ) 1b a << (D ) 1a b << 【答案】C【解析】因为0x >,且1xxb a <<,所以1b a <<。
8.(北京市西城区2020年1月高三期末考试理科)已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ②22(20)y x x =--≤≤; ③ 1(0)y x x=->. 其中,Γ型曲线的个数是( ) (A )0(B )1(C )2(D )3 【答案】C【解析】对于①,3(03)y x x =-+≤≤的图像是一条线段,记为,BB '如图(1)所示,从的图象是圆222x y +=在第二象限的部分,如图(2)所示,显然,无论点B 、C 在何处,△ABC 都不可能为正三角形,所以②不是Γ型曲线。
对于③,1(0)y x x=->表示双曲线在第四象限的一支,如图(3)所示,显然,存在点B,C ,使△ABC 为正三角形,所以③满足; 综上,Γ型曲线的个数为2,故选C.7. (2020年3月北京市朝阳区高三一模文科)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年xy y=-x+3 OAB 'C '增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是A. 2B. 6.5C. 8.8D. 10【答案】D【答案】C3.(北京市西城区2020年4月高三第一次模拟文)若2log 3a =,3log 2b =,41log 3c =,则下列结论正确的是( D ) (A )a c b << (B )c a b << (C )b c a <<(D )c b a <<(8)(北京市东城区2020年4月高考一模理科)已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是(A )(),1-∞ (B )(],1-∞ (C )()0,1 (D )[)0,+∞【答案】A(8)(北京市东城区2020年4月高考一模文科)设集合1[0,)2A =,1[,1]2B =,函数1,,()22(1),.x x Af xx x B⎧+∈⎪=⎨⎪-∈⎩若x A∈,且[()]f f x A∈,则x的取值范围是(A)(41,0] (B) (21,41] (C)(21,41) (D) [0,83] 【答案】C“函数y=f(x)在R上单调递减”的(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件【答案】A8.(2020年3月北京市丰台区高三一模文科)已知定义在R上的函数()y f x=满足(2)()f x f x+=,当11x-<≤时,3()f x x=.若函数()()logag x f x x=-至少有6个零点,则a的取值范围是(A) (1,5)(B)1(0,)[5,)5+∞U(C)1(0,][5,)5+∞U(D)1[,1)(1,5]5U二、填空题:(11)(北京市东城区2020年1月高三考试文科)已知函数3,0,()(1),0,x xf xf x x≤⎧=⎨->⎩那么5()6f 的值为 . 【答案】12-【解析】55111()(1)()3()66662f f f =-=-=-=-(13)(北京市东城区2020年1月高三考试文科)对于函数()lg 21f x x =-+,有如下三个命题:①(2)f x +是偶函数;②()f x 在区间(),2-∞上是减函数,在区间()2,+∞上是增函数;③(2)()f x f x +-在区间()2,+∞上是增函数.其中正确命题的序号是 .(将你认为正确的命题序号都填上)【答案】①②【解析】:函数()f x 和(2)f x +的图像如图所示,由图像可知①②正确;函数2(2)()lg lg 2lglg 122x f x f x x x x x +-=--==+--,由复合函数的单调性法则,可知函数(2)()f x f x +-在区间()2,+∞上是减函数。
所以③错。
9. (北京市西城区2020年1月高三期末考试理科) 函数21()log f x x=的定义域是______. 【答案】{|011}x x x <<>或是Q 的导数),则商品价格P的取值范围是 . (10,20)(14)(2020年4月北京市海淀区高三一模理科)已知函数1,,()0,,x f x x ìÎïï=íïÎïîR Q Q ð则(ⅰ)(())f f x = ; (ⅱ)给出下列三个命题: ①函数()f x 是偶函数;((2))f f 的值为 0 ;函数()()g x f x k =-恰有两个零点,则实数k 的取值范围是 . 3,14⎛⎫ ⎪⎝⎭【答案】6214.(2020年3月北京市丰台区高三一模文科)定义在区间[,]a b 上的连续函数()y f x =,如果[,]a b ξ∃∈,使得()()'()()f b f a f b a ξ-=-,则称ξ为区间[,]a b 上的“中值点”.下列函数:①()32f x x =+;②2()1f x x x =-+;③()ln(1)f x x =+;④31()()2f x x =-中,在区间[0,1]上“中值点”多于一个的函数序号为____.(写出所有..满足条件的函数的序号)【答案】①④13. (2020年4月北京市房山区高三一模理科设)(x f 是定义在R 上不为零的函数,对任意R y x ∈,,都有)()()(y x f y f x f +=⋅,若))((,211*N ∈==n n f a a n ,则数列}{n a 的前n 项和的取值范围是 . ⎪⎭⎫⎢⎣⎡1,21三、解答题:(18)(北京市东城区2020年1月高三考试文科)(本小题共13分)已知函数1331(223+-+=x m mx x x f )(0)m >. (Ⅰ)若1=m ,求曲线)(x f y =在点))2(,2(f 处的切线方程;(Ⅱ)若函数)(x f 在区间(21,1)m m -+上单调递增,求实数m 的取值范围.解:(Ⅰ)当1=m 时,1331(23+-+=x x x x f ),35164382(=+-+=)f . 32('2-+=x x x f ),53442('=-+=)f . ………3分由于0>m ,)(x f ',)(x f 的变化情况如下表:x)3,(m --∞m 3-),3(m m -m),(+∞m)('x f+ 0 — 0 + )(x f单调增极大值单调减极小值单调增所以函数)(x f 的单调递增区间是(,3)m -∞-和(,)m +∞. …………9分19. (北京市西城区2020年1月高三期末考试理科)(本小题满分14分)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.② 当0a >时,令()0f x '=,得10x =,或211x a=-. 当10<<a 时,()f x 与()f x '的情况如下:x1(1,)x - 1x 12(,)x x 2x 2(,)x +∞ ()f x ' - 0++()f x↘1()f x↗ 2()f x↘x2(1,)x - 2x 21(,)x x 1x 1(,)x +∞ ()f x ' - 0++()f x↘2()f x↗ 1()f x↘所以,()f x 的单调增区间是(1,0)a -;单调减区间是(1,1)a--和(0,)+∞. …8分………………10分 (Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意. ………………11分(18) (2020年4月北京市海淀区高三一模理科)(本小题满分13分)已知函数21()e()(0)kxf x x x k k-=+-<.(Ⅰ)求()f x 的单调区间;当2k =-时,22'()2e (1)0x f x x =+≥,故()f x 的单调递增区间是 (,)-??.………………………………………3分 当20k -<<时,()f x ,'()f x 随x 的变化情况如下:x2(,)k-∞2k2(,1)k- 1-(1,)-+∞'()f x +-+()f xZ 极大值]极小值Z 所以,函数()f x 的单调递增区间是(,)k-∞和(1,)-+∞,单调递减区间是(,1)k-.………………………………………5分当2k <-时,()f x ,'()f x 随x 的变化情况如下:x(,1)-∞-1-2(1,)k-2k2(,)k+∞ '()f x +-+()f xZ 极大值] 极小值Z 所以,函数()f x 的单调递增区间是(,1)-∞-和(,)k+∞,单调递减区间是(1,)k-.………………………………………7分(Ⅱ)当1k =-时,()f x 的极大值等于23e -. 理由如下:当2k =-时,()f x 无极大值.所以 2e 1e 2k k --<. 因为 221e 3e 2--<, 所以 ()f x 的极大值不可能等于23e -. ………………………………………12分综上所述,当1k =-时,()f x 的极大值等于23e -.………………………………………13分18. (2020年3月北京市朝阳区高三一模文科)(本题满分14分)(Ⅱ)()2()21e x f x ax ax '=+-⋅,设2()21g x ax ax =+-, (1)当0a =时,()e xf x =-,()f x 在(),-∞+∞上为单调减函数. ……5分 (2)当0a <时,方程2()21g x ax ax =+-=0的判别式为244a a ∆=+, 令0∆=, 解得0a =(舍去)或1a =-.3°1a <-时,2440a a ∆=+>,令()0g x =,方程2210ax ax +-=有两个不相等的实数根 211a a x +=-+,221a a x +=--,当21a a x a +>--时,()0g x <,()0f x '<,()f x 在2(1)a a a+--+∞上为单调减函数. ……………………………………………………………………13分 综上所述,当10a -≤≤时,函数()f x 的单调减区间为(),-∞+∞;当1a <-时,函数()f x 的单调减区间为2(,1a a +-∞-,2(1)a a +--+∞,函数()f x 的单调增区间为22(11)a a a a ++-+-. …………………………14分19. (北京市西城区2020年4月高三第一次模拟文)(本小题满分13分)如图,抛物线29y x =-+与x 轴交于两点,A B ,点,C D 在抛物线上(点C 在第一象限),CD ∥AB .记||2CD x =,梯形ABCD 面积为S .(Ⅰ)求面积S 以x 为自变量的函数式; (Ⅱ)若||||CD k AB ≤,其中k 为常数,且01k <<,求S 的最大值.19.(本小题满分13分)(Ⅰ)解:依题意,点C 的横坐标为x ,点C 的纵坐标为29C y x =-+. ……1分点B 的横坐标B x 满足方程290B x -+=,解得3B x =,舍去3B x =-. ……2分 所以2211(||||)(223)(9)(3)(9)22C S CD AB y x x x x =+⋅=+⨯-+=+-+. ……4分由点C 在第一象限,得03x <<.所以S 关于x 的函数式为 2(3)(9)S x x =+-+,03x <<.…………5分① 若13k <,即113k <<时,()f x '与()f x 的变化情况如下: x (0,1)1 (1,3)k ()f x ' + 0 -()f x ↗ 极大值 ↘所以,当1x =时,()f x 取得最大值,且最大值为(1)32f =. …………11分 ② 若13k ≥,即103k <≤时,()0f x '>恒成立, 所以,()f x 的最大值为2(3)27(1)(1)f k k k =+-. …………13分综上,113k ≤<时,S 的最大值为32;103k <<时,S 的最大值为227(1)(1)k k +-.(18)(共14分)(Ⅰ)解:23e ()2e f x x x'=+-. …………2分()f x '23e (e)(3e)2e (0)x x x x x x-+=+-=>. 在区间(0,e)上,有()0f x '<;在区间(e,)+∞上,有()0f x '>.故()f x 在(0,e)单调递减,在(e,)+∞单调递增,故()F x 的最小值223e 2e m a =-+2e >,符合题意; …………13分(18)(北京市东城区2020年4月高考一模文科)(本小题共13分)已知1=x 是函数()(2)e xf x ax =-的一个极值点.(a ∈R )(Ⅰ)求a 的值;(Ⅱ)当1x ,[]20,2x ∈时,证明:12()()e f x f x -≤.(18)(共13分)(Ⅰ)解:'()(2)e x f x ax a =+-, …………2分由已知得0)1('=f ,解得1=a . …………4分当1a =时,()(2)e x f x x =-,在1x =处取得极小值.所以1a =. …………5分所以12()()0(e)e f x f x -≤--=. …………13分18. (2020年3月北京市丰台区高三一模文科)(本小题共13分) 已知函数321()13f x x ax =-+ ()a R ∈. (Ⅰ)若曲线y =f (x )在(1,f (1))处的切线与直线x +y +1=0平行,求a 的值;(Ⅱ)若a >0,函数y =f (x )在区间(a ,a 2-3)上存在极值,求a 的取值范围;(Ⅲ)若a >2,求证:函数y =f (x )在(0,2)上恰有一个零点.18.解:(Ⅰ)2x a =. ……………………6分因为a >0,所以0x =不在区间(a ,a 2-3)内,要使函数在区间(a ,a 2-3)上存在极值,只需223a a a <<-. ……………………7分所以……………………13分18.(2020年4月北京市房山区高三一模理科(本小题共13分)已知函数mx x x f -+=)1ln()(.(I )当1m =时,求函数)(x f 的单调递减区间;(II )求函数)(x f 的极值;(III )若函数()f x 在区间20,1e ⎡⎤-⎣⎦上恰有两个零点,求m 的取值范围.18.(本小题共13分)(II )m xx f -+='11)(,)1(->x (1)0≤m 时,0)(≥'x f 恒成立)(x f 在),1(∞+-上单调递增,无极值. ……………………6分(2)0>m 时,由于111->-m∴若()f x 在20,1e ⎡⎤-⎣⎦恰有两个零点,只需22(1)01011f e e m ⎧-≤⎪⎨<-<-⎪⎩即222(1)011m e m e ⎧--≤⎪⎨<<⎪⎩2211m e ∴≤<- ……………………13分(注明:如有其它解法,酌情给分)。