直线与圆的方程专题精讲

直线与圆的方程专题精讲
直线与圆的方程专题精讲

直线与圆的方程专题精讲

问题一:直线的方程

【典型例题】

命题角度1直线的倾斜角与斜率

例1.已知两点A (- 1,- 5)、B (3, -2),直线I的倾斜角是直线AB 倾斜角的一半,求I的斜率。

命题角度2直线方程五种形式的灵活运用例2?过点M ( 0 , 1 )作直线,使它被两直线

l i:x 3y 10 0, l2:2x y 8 0所截得的线段恰好被M所平分,求此直线方程。

命题角度3直线方程中参数的讨论

例3.已知两条直线h:ax by 4 0和—(a 1)x y b 0 ,求满足下列条件的a、b的值:

(1) l1 l2,且l1 过点(一3, — 1 );

(2 ) h〃l2,且坐标原点到这两条直线的距离相等。

命题角度4直线方程的应用

例4.为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪

(如图1),另外△ EFA内部有一文物保护区不能占用,经测量

AB = 100m , BC = 80m , AE = 30m , AF = 20m,应如何设计才

能使草坪面积最大?

命题角度5距离公式的应用

例5.已知直线I经过点P( 3,1 ),且被两条平行直线l1:x y 1 0 和l2:x y 6 0截得的线段之长为5,求直线I的方程。

命题角度6对称问题

例6.已知直线l:2x 3y 1 0,点A (—1,—2)。求:

(1 )点A关于直线I的对称点A '的坐标;

(2)直线m:3x 2y 6 0关于直线I的对称直线m '的方程;

(3)直线I关于点A (- 1,- 2)对称的直线I’的方程。

热身训练:

1. (2013 ?辽宁‘为已知点0(0.0) ^(0,6) ,B(^+ CZ3)T若△SB 为直角三角形,则必有< >

A.

B &=疋+丄

a

C ~)=0

1 ■

D P16—a31+ ft——j- =0

a i

2. (2012 - i*r^>3)设。€站则%=1"是“直线h+知一1 =

0与直线 g怎+Q斗1行壬理X。平行肝的 C )

扎充分不必要条件&必要不充分条件

C.充分必要条件D既不充分也不必要条件

a. (2ou?湖南,为在著腰直角三角形REC中点P是边佔上异于A,曰的一点.光线从点P出发,经BC.CA 反射后又回到点P〈如图头若光线QR经过AABC的重心, 则AP等于( )

£ (2013 -堺标Uil2> 已知点A(-l,0)^a r0);CC0f l)r 直线严“+廻>3将zXABC分割为面积相零的淅部分次"的-取值范围是() -B■ '

A.(0,1) C - 5. (2011 ?安織,15)在平面直角

坐标系中,如果无与了都是整

数,就称点(竝切为整点,下列命题中正确的是 _______ (写 出所有正确命题的编号).

① 存在这样的直线,既不与坐标轴平行又不经过任何整点;? ② 如果$与Q 都是无理数■则宜线y=kjc+b 不经过任何 TFC/TvX ,

③ 直线/经过无穷多个整点,当且仅当?经过两个不同的. 整点;:' * ■ . ■'

:④宜线y-kx+b 经过无穷多个整点的充分必要条件是池与 &都是有理数■ ° 「 ?⑤存在恰经过二个整点的直线.

6. (2009 ?江西,16)设直线系 M :jxos'0+(y-2>sm ^=1(0<0 .£%),对于下列四个命题匕 -?

A. M 中所有直线均经过一个定点;

B. 存在定点P 不在M 中的任一条直线上;

C. 对于任意整数存在正#边形,其所有边均在M 中的直线上厂.

D. M 中的直线所能围成的正三角形面积都相等.

.其中真命题的代号是 (写出所有真命题的代号).必一给

寺)

I已知三条直线A : 2j:-^+a = 0(a>0),

■ ? ■ . 心》一4尹T妙-F 1 _= 0躺v+jrl ;= 0』且£、与厶「的距离为專’

心)求筑的超.

'⑵館頁找动二点P,使得尸点同时满足下列三个条件匸①F是

第一象限的点「②F点到h的距离是尸点

-■ ■ . ■

1 ?p- - ■ . … 到打距离的守:③尸点到A的距离与P点到b的距离之比是反:屆?若您求F点坐标;若不能,说明理由.

问题二:圆的方程

【典型例题】

命题角度1求圆的方程

例1.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线1 :x 2y 0的距离最小的圆的方程。

命题角度2与圆有关的轨迹问题

例2:已知圆的方程为云十;/=r\圆内有定点屋a,电,觀魔上有两个动点,A.B.# PA丄P%求鑽形APBQ的顶点殳的轨迹方程「’

命题角度3与圆有关的最值问题

(2013 ■ jt辰⑴已知圆G :?—2尸斗(丁一卸 R 個G;?—3严+0—4尸=9,阿N分别是圆G,G

上的动点』为戈轴上的动点侧SPMHI PN\的最小值为

■<■r ?■" *" "

(?)

A. 5咄題一4 H 717-1 G 6—2施U VI7

J'B' ' I I ■(2X2013 *篤龙江天底模拟分)已知实数乂汐满足方程护十护一

牡+1=僅

①求丄的最大值和蚤小值;

T- ■

②求*~三的最大值和最小值.

③求去+ b的最兀值和最小值.

命题角度4利用圆的方程解决实际问题

例4.有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每公里的运费

是B地每公里运费的3倍。已知A、B两地距离为10公里,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低。求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应

如何选择购物地点?

命题角度5直线与圆的位置关系

例 5.已知圆 x 2 y 2 6mx 2(m 1)y 10m 2 2m 24 0(m

R).

(1 )求证:不论m 为何值,圆心在同一直线I 上; (2)与I 平行的直线中,哪些与圆相交、相切、相离? (3 )求证:任何一条平行于I 且与圆相交的直线被各圆截 得弦长相等。

3

严上到直线3^+4y-11=0的距离等于1的点有

A.1个

B.2个 Q3个 D4个 <2)(2014 ?沸北黄冈调研,心在坐标平面内,与点AC1.2)的 距离为1、且与点E(3d>的距离为盒的宜线共有.( )

扎1条 B,2条 C3条 U4条 命题角度6直线与圆相交问题 ms (11C2014 “山东聆璇二模

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分) 1. 已知直线经过点 A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点 ( 1,3) 且平行于直线 x 2 y 3 0 的直线方程为( ) A . x 2y 7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线 y ax 与 y x a 正确的是( ) y y y y O x O x O x O x A B C D 4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则 a=( ) A . 2 B . 2 C . 3 3 3 3 2 D . ( 2 5.过 (x , y )和 (x , y )两点的直线的方程是 ) 1 1 2 2 A. y y 1 x x 1 y 2 y 1 x 2 x 1 B. y y 1 x x 1 y 2 y 1 x 1 x 2 C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0 D.( x 2 x 1)( x x 1) ( y 2 y 1 )( y y 1 ) 0 6、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则( ) A 、 K ﹤ K ﹤ K L 3 1 2 3 L B 、 K ﹤ K ﹤ K 2 1 3 C 、 K 3﹤ K 2﹤ K 1 o x D 、 K 1﹤K 3﹤ K 2 L 1 7、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( ) A 、 3x+2y-5=0 B 、 2x-3y-5=0 C 、 3x+2y+5=0 D 、 3x-2y-5=0 8、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

直线与圆的方程单元测试卷含答案

直线与圆的方程单元测试卷 一。选择题 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

高中数学讲义 第八章 直线和圆的方程(超级详细)

高中数学复习讲义第八章直线和圆的方程

【方法点拨】 1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题. 2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题. 3.熟练运用待定系数法求圆的方程. 4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想. 6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识. 第1课直线的方程 【考点导读】 理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程. 高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考.

【基础练习】 1. 直线x cos α+ 3y +2=0 的倾斜角范围是50,,66πππ????????????? 2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 10320-+=-=或x y x y 3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x 4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】 例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程; (3)已知实数m 1? ?∈???? ,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况. 解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,1 1 k m = +, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1 211 y x m -= ++. (3)①当m =-1时,2 π α=; ②当m ≠-1时, ∵( 1,1k m ?=∈-∞?+∞??+??

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

最新高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y =的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2 2 2 2 040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()222x a y b r -+-=外,即()()22 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。

高中数学必修二《直线与方程及圆与方程》测试题_及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A.32- B .32 C.2 3 -? D.23 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A. 23 B .32 C .32- ?D. 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K ) A 、K1﹤K 2﹤K 3 B 、K2﹤K 1﹤K 3 C、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ?( ) A. 2 2 B.2?C .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x+3y -13=0 B 4x-3y-19=0 C 3x -4y-16=0 D 3x+4y -8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; x

2020高考数学(理)二轮专题复习讲义《五 第1讲 直线与圆(小题)》

第1讲直线与圆(小题) 热点一直线的方程及应用 1.两条直线平行与垂直的判定 若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2?k1=k2,l1⊥l2?k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式

(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d = |C 1-C 2|A 2 +B 2 (A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2 (A 2 +B 2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A.1 B.-2 C.1或-2 D.-32 答案 A 解析 ①当m =-1时,两直线分别为x -2=0和x -2y -4=0,此时两直线相交,不合题意. ②当m ≠-1时,两直线的斜率都存在,由直线平行可得??? -11+m =-m 2, 2 1+m ≠-2 解得m =1. 综上可得m =1. (2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A.x +(2-1)y -2=0 B.(1-2)x -y +2=0 C.x -(2+1)y +2=0 D.(2-1)x -y +2=0 答案 C 解析 如图所示可知A (2,0), B (1,1), C (0,2), D (-1,1),

高中数学直线与圆的方程知识点总结49648

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

直线和圆的方程练习题

《直线和圆的方程》练习题 一、选择题 1、三角形ABC 中,A(-2,1),B(1,1),C(2,3),则k AB ,k BC 顺次为 ( ) A . - 71,2 B . 2,-1 C . 0,2 D . 0,-7 1 2、斜率为-21,在y 轴上的截距为5的直线方程是 ( ) A . x -2y = 10 B . x + 2y = 10 C . x -2y + 10 = 0 D . x + 2y + 10 = 0 3、经过(1,2)点,倾斜角为135?的直线方程是 ( ) A . y -2 = x -1 B . y -1 =-(x -2) C . y -2 = -(x -1) D . y -1 =x -2 4、原点在直线l 上的射影是P (-2,1),则直线l 的方程为 ( ) A . x + 2y = 0 B . x + 2y -4 = 0 C . 2x -y + 5 = 0 D . 2x + y + 3 = 0 5、如果直线ax + 2y + 2 = 0与3x -y -2 = 0直线平行,那么系数a = ( ) A . -3 B . -6 C . -23 D . 3 2 6、点(0,10)到直线y = 2x 的距离是 ( ) A . 25 B . 5 C . 3 D . 5 7、到点C(3,-2)的距离等于5的轨迹方程为 ( ) A .(x -3)2 + (y + 2)2 = 5 B . (x -3)2 + (y + 2)2 = 25 C . (x + 3)2 + (y -2)2 = 5 D .(x + 3)2 + (y -2)2 = 25 8、已知圆的方程为x 2 + y 2-4x + 6y = 0,下列是通过圆心直线的方程为( ) A . 3x + 2y + 1 = 0 B . 3x -2y + 1= 0 C .3x -2y = 0 D . 3x + 2y = 0 9、已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为 ( ) A .(x + 1)2 + (y -1)2 = 25 B .(x -1)2 + (y + 1)2 = 100 C .(x -1)2 + (y + 1)2 = 25 D .(x + 1)2 + (y -1)2 = 100 10、直线3x + 4y + 2 = 0与圆x 2 + y 2 + 4x = 0交于A ,B 两点,则线段AB 的垂直平分线的方程是 ( ) A . 4x -3y -2 = 0 B . 4x -3y -6 = 0 C . 4x + 3y + 6 = 0 D . 4x + 3y + 8 = 0 11、直线3x -4y -5 = 0和(x -1)2 + (y + 3)2 = 4位置关系是 ( ) A . 相交但不过圆心 B . 相交且过圆心 C . 相切 D . 相离 12、点P (1,5)关于直线x + y = 0的对称点的坐标是 ( ) A . (5,1) B . (1,-5) C .(-1,5) D . (-5,-1) 13、过点P(2,3)且在两坐标轴有相等截距的直线方程是 ( ) A .x + y -5 = 0 B .x + y + 5 = 0 C .x + y -5 = 0 或x + y + 5 = 0 D .x + y -5 = 0 或3x -2y = 0

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

直线和圆的方程知识点汇总

直线和圆--知识总结 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

考点:直线与圆的方程综合测试(教师版)

直线与圆的方程 (时间:90分钟__分数:120分) 一、选择题(共10小题,每小题5分,共50分) 1.(2015·河南安阳期末,3)x cos α+y sin α+1=0,α∈? ? ???0,π2的倾斜角为( ) A .α B.π2+α C .π-α D.π 2-α 【答案】 B 设直线x cos α+y sin α+1=0的倾斜角为θ, 则斜率 k =tan θ=-cos αsin α=sin ? ??? ?π2+αcos ? ?? ?? π2+α=tan ? ???? π2+α. 又α∈? ? ???0,π2,所以θ=π2+α. 2.(2015·山西太原二模,3)“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】 A 由a =2得两直线斜率满足(-2)×2 4=-1,即两直线垂直;由两直线垂直得(-a )×a 4=-1,解得a =±2,故选A. 3.(2014·吉林长春调研,5)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.17 5 C .8 D .2 【答案】 D ∵直线3x +4y -3=0与直线6x +my +14=0平行, ∴63=m 4≠-14 3,∴m =8,即直线6x +my +14=0为3x +4y +7=0,∴两平行直线间的距离为|7+3| 32+42 =2.故选D. 4.(2015·福建泉州一模,5)已知圆C :x 2+y 2=25,直线l 在x 轴、y 轴上的截距分别为6和8,则圆上的点到直线l 的最大值为( ) A.245 B .5 C .10 D.495 【答案】 D 由题意知,直线l 的方程为4x +3y -24=0,则圆心到直线的距离为d = |0+0-24| 42+32

相关文档
最新文档